黑森瘿蚊生物型的适合度代价及小麦苗龄对其适合度的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑森瘿蚊Mayetiola destructor (Say)是广泛分布于世界主要小麦产区的一种重要小麦害虫。虽然利用抗性品种是控制其危害的最为经济有效的措施,但广泛使用抗虫品种对黑森瘿蚊种群形成的选择压力,导致适应抗性的生物型不断出现,严重制约了抗虫品种的持效期。小麦-黑森瘿蚊系统符合基因对基因(gene-for-gene)模式,为研究昆虫与植物的关系提供了重要依据。害虫在克服寄主抗性的过程中所伴随的适合度代价会影响生物型的进化方向与进程,但在黑森瘿蚊中尚未得到验证。持续筛选抗性材料,分析已知抗虫基因对新生物型的有效性,不仅可以为小麦的抗虫育种提供有用的信息,也可为改进抗虫管理对策提供重要的依据;而探索小麦发育期对黑森瘿蚊适合度的影响则可促进对田间种群动态规律的了解。因此,在实验室条件下,我们研究了黑森瘿蚊生物型分化过程伴随的适合度变化,比较了黑森瘿蚊在不同龄期幼苗上的适合度,评估了栽培二粒小麦的抗虫性,并分析了H13基因适应系(vH13)对已知小麦抗性基因的反应。主要取得如下结果:
     1.对两种抗性基因适应型种群H13和H9适应系与非适应生物型Great Plains (GP)的适合度比较结果表明,在去除抗性选择压力的环境下,两个进化种群的成虫个体均小于非适应型,表明黑森瘿蚊对寄主抗性的克服是以降低生殖力为代价的。进一步分析发现,以体型变化来衡量适合度代价的大小,会低估生殖力的损失率。与GP相比,H9适应系与H13适应系雌虫的翅长分别减少了9%和3%,雄虫翅长分别减少了5%和3%;而根据成虫体型大小与繁殖力的关系估计的雌虫产卵量分别减少了32%和12%,雄虫可授精卵量分别减少了18%和11%。
     2.比较了抗性基因适应型种群vH13系在两种小麦品种Molly和Newton上的适合度。Molly携带H13基因(新寄主),但最近对vH13系已丧失抗性,Newton不携带任何已知的黑森瘿蚊抗性基因(原始寄主)。结果表明,vH13在两种小麦上的体型大小和发育速率均无明显差别,但在新寄主上,幼虫取食期的存活率,以及卵—成虫期的存活率均显著降低,表明vH13系在选择压力下克服寄主抗性是以降低存活率为代价的。
     3.根据苗期对幼虫侵害的反应,从300份栽培二粒小麦品系中筛选出10个抗黑森瘿蚊材料,分别为CItr14972, CItr4013, PI154582, PI94634, PI94650, PI254194, PI362500,PI362501, PI355479和PI377655。其中CItr14972, CItr4013, PI154582, PI362500和PI377655等5种对vH13系表现为高抗。对vH13系的致害力分析表明,在供试的27种抗虫基因(或基因聚合体)中,有5种基因H3, h4, H13, H18和H31已丧失了抗性,而有17种表现高抗,包括H5, H7H8, H9, H11, H12, H14, H15, H17, H19, H20, H21, H22,H25, H26, H28, H29和H32,其中H9, H11, H15, H19, H20, H21, H25, H28和H29等9个基因可作为备选基因用于未来的vH13系流行区。
     4.小麦苗龄对黑森瘿蚊的适合度会产生显著影响。分别在2叶期开始取食和5–7叶期开始取食导致在成虫体型大小、卵–成虫的存活率和发育历期均出现显著差异。在小龄植株上的存活率高于大龄幼苗上的个体,发育历期也明显较短,但体型较小。在两种幼苗上卵—成虫的发育历期与成虫的体型之间不存在明显的相关性,获得较大的体型并不必然要求较长的发育时间。对成虫的羽化动态比较发现,大龄幼苗上的雌虫和雄虫均出现两个羽化高峰期,而在小龄麦苗上均只出现一个羽化高峰期。导致大龄幼苗上个体平均发育期较长的原因是羽化期延迟的个体在种群中的比例更高,而非为了获取较大体型所致。
     以上结果证实,黑森瘿蚊生物型在克服寄主抗性的致害性进化过程存在适合度代价,在去除抗性选择压力条件下,适合度代价表现为生殖力降低;在有选择压力条件下,表现为存活率降低;小麦的发育期会影响其适合度;栽培二粒小麦也是重要的抗性资源,大部分抗性基因对vH13系是有效的,可用于抗性育种。这些结果为进一步了解黑森瘿蚊生物型的进化过程、种群的田间动态变化规律以及揭示黑森瘿蚊—小麦的协同进化机制提供了重要的理论依据,在实践上可为抗性品种的培育、抗性基因的有效利用和害虫治理提供理论指导。
The Hessian fly, Mayetiola destructor (Say)(Diptera: Cecidomyiidae), is an importantpest of wheat Triticum spp (Poaceae)throughout most of wheat production areas. Resistantwheat varieties have been proved the most reliable and economical form of management forHessian fly. However, the continued development of virulent biotypes in response to selectionpressure imposed by wide-spread use of resistant cultivars poses great threat to thepermanence of resistance. The wheat-Hessian fly system serves as an excellent model forunderstanding plant-insect interactions, especially those involving gene-for-gene interactions.Fitness cost is believed to influence virulence evolution in insect to resistance genes. However,it has not been investigated for the Hessian fly. Screening resistance materials in wheat andanalyzing virulence of impeding virulent genotypes in Hessian fly will provide usefulinformation for wheat breeding program and for improving control strategies for the insect.Investigating interactions between plant ages and insect fitness will facilitate understandingthe dynamics of population in fields. We investigated the fitness changes under laboratoryconditions to1)test the hypothesis that adaptation to resistance couple with fitness cost inHessian fly;2)understand the effect of plant ages on fitness of Hessian fly;3)screenresistance sources in emmer wheat, and4) identify effectiveness of known H genes for a newadapted strain vH13. The main results are as follows:
     1. On H-gene-free wheat, two H-adapted strains were shorter to the nonadapted strain inegg-to-adult survival, but they differed in producing adults with shorter wings. By usingknown relationships between wing length and reproductive potential, we found that losses inwing length underestimate reduction in reproductive potential. For example, H9-andH13-adapted females had9%and3%wing reduction, respectively, but they were estimated tohave32%and12%reduction in egg production; for H9-and H13-adapted males, reduction inwing length were5%and3%, respectively, but they were estimated to have18%and11%reduction in reproductive potential.
     2. On two wheat lines, one conferring H13resistance (referring to as noval host plant),another one lacking any known gene (natal host plant), H13-adapted (vH13) populationsshowed no difference in growth rate and adult body size between the two hosts, but they differed in survival. Growing on noval host plant significantly decreased larval survivalduring feeding stage, and reflected on survival from egg-to-adult, indicating that adaptation toH resistance incur reduced survival on noval host, and adaptation to noval host do not resultin decreased performance on natal host.
     3. Ten of300accessions of emmer wheat, including CItr14972, CItr4013, PI154582,PI94634, PI94650, PI254194, PI362500, PI362501, PI355479, and PI377655, exhibitedantibiosis resistance to Hessian fly biotype Great Plains. Five of the10lines, includingCItr14972, CItr4013, PI154582, PI362500, and PI377655, exhibited highly resistance to vH13strain. Virulence analysis showed that seventeen of the tested27resisitance genes, H5, H7H8,H9, H11, H12, H14, H15, H17, H19, H20, H21, H22, H25, H26, H28, H29and H32,conferred high levels of resistance (>80%plants resistant)to vH13strain. Five genes, H3, h4,H13, H18, and H31were susceptible (<50%resistant plants). Nine H genes, including H9,H11, H15, H19, H20, H21, H25, H28, and H29should be recommended as candidate genes inareas where vH13strain would be predominant.
     4. Plant ages have pleiotropic effects on fitness of the Hessian fly. The insect displayedbetter performance on young seedlings with higher survival from egg to adult and shorteneddevelopment times, with one exception that both females and males were significantly smallerthan those on old seedlings. There was no trade-off between body size and development times.In addition, plant ages lead to a divergence of adult emergence strategy. Relative to adultemergence on young seedlings with one peak, both females and males showed a differentemergence manner with two peaks on old seedlings.
引文
[1]安新城,任顺祥,沙海潮.2007.光照和寄主叶龄对烟粉虱产卵和取食行为的影响.华南农业大学学报,28(3):24~27.
    [2]蔡以滢,陈珈.1999.植物防御反应中活性氧的产生和作用.植物学通报,16(2):107~112.
    [3]常金华,张丽,夏雪岩,李荣改,罗耀武,刘国庆.2004.不同基因型高粱植株的物理性状与抗蚜性的关系.河北农业大学学报,27(2):5~7.
    [4]范贤林,孟香清,芮昌辉.2000.抗Bt杀虫蛋白棉铃虫种群的相对适合度.农药学学报,2(3):35~38.
    [5]顾晓军,田素芬.2001.害虫适合度与害虫生态控制.世界科技研究与发展,(2):70~73.
    [6]郭芳,梁革梅,曹广春,陈豪,吴孔明,高希武,郭予元.2009.昆虫对Bt抗性的适合度代价及其与抗性治理策略的关系.环境昆虫学报,31(2):162~167.
    [7]郭建英,杨洋,丛林,陈婷,万方浩.2011.不同寄主植物对B型烟粉虱发育适合度的影响.应用昆虫学报,48(1):43~47.
    [8]蒋丽芬,茆振川,陈国华,杨宇红,谢丙炎.2011.南方根结线虫辣椒Me3毒性群体适合度代价及专化性分析.园艺学报,38(3):479~486.
    [9]李君明,宋燕,杨宇宏,杜永臣,冯兰香,谢丙炎,徐和金.2007.番茄苗龄对晚疫病生理小种T1的抗性表现差异研究.植物遗传资源学报,8(2):231~233.
    [10]刘芳,傅强,赖凤香.2004.害虫生物型及其遗传机理.昆虫学报,47(5):670~678.
    [11]刘凤沂,须志平,薄仙萍,沈晋良.2008.昆虫抗药性与适合度.昆虫知识,45(3):374~378.
    [12]刘鹤玲,蒋湘岳,刘奇.2007.广义适合度与亲缘选择学说:亲缘利他行为及其进化机制.科学技术与辩证法,24(5):26~29.
    [13]刘向东,翟保平,张孝羲,方军.2004.棉花型和黄瓜型棉蚜对寄主植物的适合度.生态学报,24(6):1119~1125.
    [14]刘旭明,金达生.1998.北京地区麦二叉蚜生物型鉴定研究初报.昆虫学报,41(2):141~144
    [15]娄永根和程家安.1997.植物的诱导抗虫性.昆虫学报,40(3):320~331.
    [16]卢伟,侯茂林,文吉辉,黎家文.2007.烟粉虱成虫对黄瓜叶龄的喜好性及与后代发育适合度间的关系.生态学报,27(7):2949~2955.
    [17]孟香清,芮昌辉,赵建周,范贤林,魏岑.1998.抗三氟氯氰菊酯棉铃虫种群相对适合度研究.植物保护,24(6):12~14.
    [18]彭奕欣,黄诗笺.1997.进化生物学.武昌:武汉大学出版社,107~135.
    [19]乔慧,刘芳,罗举,赖凤香,傅强,王华弟,戴德江.2009.不同植物上灰飞虱适合度的研究.中国水稻科学,23(1):71~78.
    [20]商鸿生.2010.植物免疫学(第二版)北京:中国农业出版社:55~57.
    [21]唐振华.1993.昆虫抗药性及其治理.北京:农业出版社:328~446.
    [22]魏建荣,杨忠岐,戴建青,杜家纬.2007.树木-蛀干昆虫-天敌昆虫间的三级营养关系.应用生态学报,18(5):1125~1131.
    [23]肖英方,顾正远,邱光,吕班,王跃群.1998.迁入江淮稻区褐稻虱生物型跟踪检测及分析.昆虫学报,41(3):275~279.
    [24]新疆黑森瘿蚊协作组.1984.黑森瘿蚊.乌鲁木齐:新疆科技出版社.
    [25]严善春,张丹丹,迟德富.2003.植物挥发性物质对昆虫作用的研究进展.应用生态学报,14(2):310~313.
    [26]杨捷.2008.小菜蛾抗性适合度代价研究进展.河北农业科学,12(9):29~30,33.
    [27]杨峰山,吴青君,徐宝云,曹丽波,朱国仁,张友军.2006.小菜蛾对Bt毒素Cry1Ac和Bt制剂抗性的选育及其抗性种群的生物学适应性.昆虫学报,49(1):64~69.
    [28]姚洪渭,叶恭银,程家安.2002.害虫抗药性适合度与内分泌调控研究进展.昆虫知识,39(3):181~187.
    [29]张寰,王志刚,黄大庄,张彦广,周国娜.2005.柳树物理性状与光肩星天牛危害相关性分析.河北农业大学报,28(5):75~84.
    [30]张学祖.1983.黑森瘿蚊在新疆的发现及调查研究.植物保护学报,10(1):1~9.
    [31] Agosta S J.2008. Selection on offspring size varies within and among families in relation to hostnutritional quality. Evol. Ecol.,22:71~83.
    [32] Agrawal A A.2000. Host-range evolution: Adaption and trade-offs in fitness of mites on alternativehosts. Ecology,81(2):500~508.
    [33] Agrios G.1997. Plant Pathology. Academic Press, San Diego, CA.
    [34] Alonso C and Herrera C M.2000. Seasonal variation in leaf characteristics and food selection bylarval noctuids on an evergreen Mediterranean shrub. Acta Oecol.,21:257~265.
    [35] Alstad D N, and Andow D. A.1995. Managing the evolution of insect resistance to transgenic plants.Science,268:1894~1896.
    [36] Alyokhin A V, and Ferro D N.1999. Relative fitness of colorado potato beetle (Coleoptera:Chrysomelidae) resistantand susceptible to the Bacillus thuringiensis Cry3A toxin. J. Econ. Entomol.,92:510~515.
    [37] Amri A, Cox T M, Gill B S, and Hatchett J H.1990a. Chromosomal location of the Hessian flyresistance gene H20in Jori durum wheat. J. Hered.,81:71~72
    [38] Amri A, Cox T M, Hatchett J H, and Gill B S.1990b. Complementary action of genes for Hessian flyand resistance in the wheat clutivar ‘Seneca’. J. Hered.,81:1224~1227
    [39] Amri A, El Bouhssini M, Jeibene M, Cox T S, and Hachett J H.1992. Evaluation of Aegilops andTriticum species for resistance to the Moroccan Hessian fly (Diptera: Cecidomyiidae). Al Awamia,77:109~118.
    [40] Anderson K G, and Harris M O.2006. Does R gene resistance allow wheat to prevent plant growtheffects associated with Hessian fly (Diptera: Cecidomyiidae) attack? J. Econ. Entomol.,99:1842~1853.
    [41] Anderson K G, Harris M O.2008. Leaf growth signals the onset of effective plant resistance againstHessian fly larvae. Entomol. Exp. Appl.,128:184~195.
    [42] Andersson M N, Haftmann J, Hillbur Y, Stuart J J, Cambron S E, Harris M O, Foster S P, Franke S,and Franke W.2009. Identification of sex pheromone components of the Hessian fly, Mayetioladestructor. J. Chem. Ecol.,35:81~95.
    [43] Anilkumar, K J., Pusztai-carey M, and Moar W J.2008. Fitness costs associated withCry1Ac-resistant Helicoverpa zea (Lepidoptera: Noctuidae): a factor countering selection forresistance to Bt cotton? J. Econ. Entomol.,101:1421~1431.
    [44] Arias, A, and Bote M.1992. Estimate of attack and losses produced by the Hessian fly Mayetioladestructor Say in the south-east of Badajoz. Bol. San. Veg. Plagas,18:161~173.
    [45] Barnes H F.1956. Gall Midges of Economic Importance to Cereal Crops. Crosby Lockwood,London.
    [46] Behura S K, Valicente F H, Rider Jr S D, Chen M S, Jackson S, and Stuart J J.2004. A physicallyanchored genetic map and linkage to avirulence reveals recombination suppression over the proximalregion of Hessian fly chromosome A. Genetics,167:343~355.
    [47] Bent A F, and Mackey D.2007. Elicitors, effectors and R genes: the new paradigm and a lifetimesupply of questions. Annu. Rev. Phytopathol.,45:399~436.
    [48] Bergelson J.1994. The effects of genotype and the environment on costs of resistance in lettuce. Am.Nat.143:349~359.
    [49] Bergh J C, Harris M O, and Rose S.1990. Temporal pattern of emergence and reproductive behaviorof the Hessian fly (Diptera: Cecidomyiidae). Annu. Entomol. Soc. Am.,83:998~1004.
    [50] Bergh J C, Harris M O, and Rose S.1992. Factors inducing mated behavior in female Hessian flies(Diptera: Cecidomyiidae). Ann. Entomol. Soc. Amer.,85:224~233.
    [51] Bernays E A, and Chapman R F.1994. Host Plant Selection by Phytophagous Insect. Chapman&Hall. New York.
    [52] Berzonsky W A, Ding H J, Haley S D, Harris M O, Lamb R J, McKenzie R I H, Ohm H W,Patterson F L, Peairs F B, Porter D R, Ratcliffe R H, and Shanower T G.2003. Breeding wheat forresistance to insects. Plant Breed Rev.,22:221~296.
    [53] Berzonsky W A, Shanower T G, Lamb R J, McKenzie R I H, Ding H, Harris M O, Peairs F, Haley S,Porter D, Ratcliffe R H, Ohm H, and Patterson F.2003. Breeding wheat for resistance to insects.Plant Breed. Rev.,22:221~297.
    [54] Birch P B J, Boevink P C, Gilroy E M, Hein I, Pritchard L, and Whisson S C.2008. OoomyceteRXLR effectors: delivery, functional redundancy and durable disease resistance. Curr. Opin. PlantBiol.,11:373~379.
    [55] Bird L J, and Akhurst R J.2004. Relative fitness of Cry1A-resistant and-susceptible Helicoverpaarmigera (Lepidoptera: Noctuidae) on conventional and transgenic cotton. J. Econ. Entomol.,97:1699~1709.
    [56] Bird L J, and Akhurst R J.2005. The fitness of Cry1A-resistant and-susceptible Helicoverpaarmigera (Lepidoptera: Noctuidae) on transgenic cotton with reduced levels of Cry1Ac. J. Econ.Entomol.,98:1311~1319.
    [57] Bittencourt-Rodrigues R de S, and Zucoloto F S.2005. Effect of host age on the oviposition andperformance of Ascia monuste Godart (Lepidopter: Pieridae). Neotrop. Entomol.,34(2):169~175.
    [58] Black W C IV, Hatchett J H, and Krchma L J.1990. Allozyme variation among populations of theHessian fly (Mayetiola destructor) in the United States. J. Hered.,81(4):331~337.
    [59] Blanckenhorn W U.2000. The evolution of bodysize: what keeps organisms small? Q. Rev. Biol.75:385~407.
    [60] Bouktila D, Mezghani M, Marrakchi M, and Makni H.2005. Identification of wheat sources resistantto Hessian fly, Mayetiola destructor (Diptera: Cecidomyiidae) in Tunisia. Int. J. Agri. Biol.,7(5):799~803.
    [61] Bouktila D, Mezghani M, Marrakchi M, and Makni H.2006. Characterization of wheat randomamplified polymorphic DNA markers associated with the H11Hessian fly resistance gene. J. Integr.Plant Bio.48(8):958~964
    [62] Bourguet D, Guillemaud T, Chevillon C, and Raymond M.2004. Fitness costs of insecticideresistance in natural breeding sites of the mosquito Culex pipiens. Evolution,58:128~135
    [63] Bronner R.1992. The role of the nutritive tissue in the nutrition of cynipids and cecidomyiids. In:Shorthouse J, and Rohfritsch O. Biology of Insectinduced Gall. Oxford University Press, New York:118~141.
    [64] Bullock D G, Bosque-Pérez N A, Johnson J B, and Merickel F W.2004. Species composition anddistribution of Hessian fly (Diptera: Cecidomyiidae) parasitoids in northern Idaho. J. Kans. Entomol.Soc.,77:174~180.
    [65] Buntin G D, and Chapin J W.1990. Biology of Hessian fly (Diptera: Cecidomyiidae) in thesoutheastern United States: Geographic variation and temperature-dependent phenology. J. Econ.Entomol.,83:1015~1024.
    [66] Buntin G D, Bruckner P L, Johnson J W, and Foster J E.1990. Effectiveness of selected genes forHessian fly resistance in wheat. J. Agric. Entomol.,2:284~291.
    [67] Buntin G D.1992. Assessment of a microtube injection system for applying systemic insecticides atplanting for Hessian fly control in winter wheat. Crop Prot.,11:366~370.
    [68] Buntin G D.1999. Hessian fly (diptera: Cecidomyiidae) injury and loss of winter wheat grain yieldand quality. J. Econ. Entomol.,92(5):1190~1197.
    [69] Burdon J J, and Thrall P H.2003. The fitness costs to plants of resistance to pathogens. Genome Biol.,4(9):227.
    [70] Byers R A, and Gallun R L.1972. Ability of the Hessian fly to stunt winter wheat.1. Effect of larvalfeeding on elongation of leaves. J. Econ. Entomol.,65:955~959.
    [71] Calcagno V, Thomas Y, and Bourguet D.2007. Sympatric host races of the European cornborer:adaptation to host plants and hybrid performance. J. Evol. Biol.,20:1720~1729.
    [72] Calder W A III.1984. Size, Function, and Life History. Harvard University Press, Cambridge,Massachusetts.
    [73] Caldwell R M, Cartwright W B, and Compton L E.1946. Inheritance of Hessian fly resistancederived from W38and durum P.I.94587. J. Am. Soc. Agron.38:398~409.
    [74] Calvo D, and Molina J M.2005. Fecundity–body size relationship and other reproductive aspects ofStreblote panda (Lepidoptera: Lasiocampidae). Ann. Entomol. Soc. Am.,98(2):191~196.
    [75] Cambron S E, Buntin G D, Weisz R, Holland J D, Flanders K L, Schemerhorn B J, and Shukle R H.2010. Virulence in Hessian fly (Diptera: Cecidomyiidae) field collections from the southeasternUnited States to21resistance genes in wheat. J. Econ. Entomol.,103(6):2229~2235.
    [76] Cambron S E, Patterson F L, Ohm H W, Ratcliffe R H, and Safranski G G.1995. Genetic analyses ofHessian fly resistance in eight durum wheat introductions. Crop Sci.,35:708~714.
    [77] Cardoze Y J, Mcauslaneh J, Webb S E.2000. Effect of leaf age and silverleaf symptoms onoviposition site selection and development of Bemisia argentifolii (Homoptera: Aleyrodidae) onzucchini. Environ. Entomol.,29(2):220~225.
    [78] Carrière Y, Ellers-Kirk C, Biggs R W, Sims M A, Dennehy T J, and Tabashnik B E.2007. Effects ofresistance to Bt cotton on diapause in the pink bollworm, Pectinophora gossypiella. Insect. Sci.7(49):1~12.
    [79] Carrière Y, Ellers-Kirk C, Biggs R, Degain B, Holley D, Yafuso C, Evans P, Dennehy T J, andTabashnik B E.2005. Effects of cotton cultivar on fitness costs associated with resistance of pinkbollworm (Lepidoptera: Gelechiidae) to Bt cotton. J. Econ. Entomol.,98:947~954.
    [80] Carrière Y, Ellers-Kirk C, Patin A L, Sims M A, Meyer S, Liu Y B, Dennehy T J, and Tabashnik B E.2001a. Overwintering cost associated with resistance to transgenic cotton in the pink bollworm(Lepidoptera: Gelechiidae). J. Econ. Entomol.,94:935~941.
    [81] Carrière Y, Ellers-Kirk C, Liu Y B, Sims M A, Patin A L, Dennehy T J, and Tabashnik B E.2001b.Fitness costs and maternal effects associated with resistance to transgenic cotton in the pinkbollworm. J. Econ. Entomol.,94:1571~1576.
    [82] Cartwright W B, and Jones E T.1953. The Hessian fly and how losses from it can be avoided.USDA Farmer's Bulletin#1627.
    [83] Cartwright W B, Caldwell R W, and Compton L E.1959. Response of resistant and susceptiblewheats to Hessian fly attack. Agronomy J.51:529~531.
    [84] Castagnone-Sereno P, Bongiovanni M, and Wajnberg E.2007. Selection and parasite evolution: areproductive fitness cost associated with virulence in the parthenogenetic nematode Meloidogyneincognita. Evol. Ecol.,21:259~270.
    [85] Cervantes D E., Eigenbrode S D, Ding H J, and Bosque-Pérez N A.2002. Oviposition responses byHessian fly, Mayetiola destructor, to wheats varying in surface waxes. J. Chem. Ecol.,28:193~210.
    [86] Chen B H, Foster J E, Taylor P L, Araya J E, and Kudagamage C.1990. Determination of frequencyand distribution of Hessian fly (Diptera: Cecidomyiidae) biotypes in the Northeastern soft wheatregion. Gt. Lakes Entomol.,23:217~221.
    [87] Chen M S, Echegaray E, Whitworth R J, Want H, Solderbeck P E, Knutson A, Giles K L, and RoyerT A.2009. Virulence analysis of Hessian fly populations from Texas, Oklahoma, and Kansas. J. Econ.Entomol.,102:774~780.
    [88] Chen M S, Fellers J P, Start J J, Reese J C, and Liu X.2004. A group of related cDNAs encodingsecreted proteins from Hessian fly [Mayetiola destructor (Say)] salivary glands. Insect Mol. Biol.,13:101~108
    [89] Chen M S, Liu X, Yang Z, Zhao H, Shukle R H, Stuart J J, and Hulbert S.2010. Unusualconservation among genes encoding small secreted salivary gland proteins from a gall midge. BMCEvol. Biol.,10:296~306.
    [90] Chen M S.2008. Inducible direct plant defense against insect herbivores: a review. Insect Sci.15(2):101~114.
    [91] Chown S L, Le Lagadec M D, and Schotz C H.1999. Partitioning variance in a physiological trait:desiccation resistance in keratin beetles (Coleoptera, Trogidae). Funct. Ecol.13:838~844.
    [92] Clement S L, Elberson L R, Young F L, Alldridge J R, Ratcliffe R H, and Hennings C.2003. VariableHessian fly (Diptera: Cecidomyiidae) populations in cereal production systems in easternWashington. J. Kansas Entomol. Soc.,76:567~577.
    [93] Cox T S, and Hatchett J H.1994. Hessian fly resistance gene H26transferred from Triticum tauschiito common wheat. Crop Sci.,34:958~960.
    [94] Cox T S, and Hatchett J H.1986. Genetic model for wheat Hessian fly (Diptera: Cecidomyiidae)interaction: Strategies for deployment of resistance genes in wheat cultivars. Environ. Entomol.15:24~31.
    [95] Craig T P, Itami J K, and Craig J V.2007. Host plant genotype influences survival of Hybridsbetween Eurosta solidaginis host races. Evolution,61-11:2607~2613.
    [96] Crill P.1977. An assessment of stabilizing selection in crop variety development. Ann. Rev.Phytopathol.,15:185~202.
    [97] Dang J L, and Jones J D G.2001. Plant pathogens and integrated defence responses to infection.Nature,411:826~833.
    [98] Dangl J L, and McDowell J M.2006. Two modes of pathogen recognition by plants. Proc. Natl.Acad. Sci. USA103:8575~8576.
    [99] Del Conte S C C, Bosque-Perez N A, Schotzko D J, and Guy S O.2005. Impact of tillage practiceson Hessian fly-susceptible and resistant spring wheat cultivars. J. Econ. Entomol.,98(3):805~813.
    [100] Delibes A, Del Moral J, Martín-Sanchez J A, Mejias A, Gallego M, Casado D, Sin E, andL pez-Brana I.1997. Hessian fly-resistance gene transferred from chromosome4Mv of Aegilopsventricosa to Triticum aestivum. Theor. Appl. Genet.,94(6-7):858~864.
    [101] Dicke M.1999. Are herbivore-induced plant volatiles reliable indica tors of herbivore identity toforaging carnivorous arthropods? Entomol. Exp. Appl.,91:131~142.
    [102] Diehl S R, and Bush G L.1984. An evolutionary and applied perspective of insect biotypes. Annu.Rev. Entomol.,29:471~504.
    [103] Dodds K A, Clancy K M, Leyva K J, Greenberg D, and Price P W.1996. Effects of Douglas-firfoliage age class on western spruce budworm oviposition choice and larval performance. Great BasinNat.,56:135~141.
    [104] Dweikat I, Ohm H, Patterson F, and Cambron S.1997. Identification of RAPD markers for11Hessian fly resistance genes in wheat. Theor. Appl. Genet.,94:419~423.
    [105] Dweikat I, Zhang W, and Ohm H.2002. Development of STS markers linked to Hessian flyresistance gene H6in wheat. Theor. Appl. Genet.,105(5):766~770.
    [106] EI Bouhssini M, Chen M, Lhaloui S, Zharmukhamedova G, and Rihawi F.2008. Virulence ofHessian fly (Diptera: Cecidomyiidae) in the fertile crescent. J. Appl. Entomol.,133:381~385.
    [107] El Bouhssini M, Hatchett J H, Cox T S, and Wilde G E.1992. Genotypic interaction betweenresistance genes in wheat and virulence genes in the Hessian fly Mayetiola destructor (Diptera:Cecidomyiidae). Bull. Entomol. Res.,91(5):327~331.
    [108] El Bouhssini M, Hatchett J H, Cox T S, and Wilde G E.1999. Hessian fly (Diptera: Cecidomyiidae)larval survival as affected by wheat resistance alleles, temperature, and larval density. J. Agric.Urban Entomol.,16:245~254.
    [109] Ellis J G, Dodds P N, and Lawrence G J.2007. Flax rust resistance gene specificity is based on directresistanceavirulence protein interactions. Annu. Rev. Phytopathol.,45:289~306.
    [110] Ellis J G, Rafiqi M, Gan P, Chakrabarti A, and Dodds P N.2009. Recent progress in discovery andfunctional analysis of effector proteins of fungal and oomycete plant pathogens. Curr. Opin. PlantBiol.,12:399~405.
    [111] Evenden M L, Lopez M S, and Keddie B A.2006. Body size, age, and disease influence femalereproductive performance in Choristoneura conflictana (Lepidoptera: Tortricidae). Ann. Entomol.Soc. Am.,99(5):837~844.
    [112] Flor H H.1955. Host-parasite interactions in flax-its genetics and other implications.Phytopathology,45:680~685.
    [113] Flor H H.1971. Current status of the gene-for-gene concept. Annu Rev Phytopathol.,9:275~296.
    [114] Formusoh E S, Hatchett J H, Black IV W C, and Stuart J J.1996. Sex-linked inheritance of virulenceagainst wheat resistance gene H9in the Hessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am.,89:428~434.
    [115] Foster J E, Araya J E, Safranski G G, Cambron S E, and Taylor P L.1988. Rearing Hessian fly foruse in the development of resistance wheat. Purdue Agr. Expt. Sta. Bul.536. West Lafayette, IN.
    [116] Foster J E, Ohm H, Patterson F, and Taylor P.1991. Effectiveness of deploying single gene resistancein wheat for controlling damage by the Hessian fly (Diptera: Cecidomyiidae). Environ. Entomol.,20:964~969.
    [117] Foster S P, and Harris M O.1992. Foliar chemicals of wheat and related grasses influencingoviposition by Hessian fly, Mayetiola destructor. J. Chem. Ecol.,18:1965~80.
    [118] Foster S P, Bergh J, Rose S, and Harris M O.1991. Aspects of pheromone biosynthesis in theHessian fly, Mayetiola destructor (Say). J. Insect Physiol.12:899~906.
    [119] Foster S P, Harrington R, Devonshire A L, Denholm I, Clark S J, and Mugglestone M.A.1997.Evidence for a possible fitness trade-off between insecticide resistance and the low temperaturemovement that is essential for survival of UK populations of Myzus persicae (Hemiptera: Aphididae).Bull. Entomol. Res.87:573~579.
    [120] Fox C W, and Czesak M E.2000. Evolutionary ecology of progeny size in arthropods. Annu. Rev.Entomol.,45:341~369.
    [121] Fraser R S S.1992. The genetics of plant-virus interactions: implications for plant breeding.Euphytica,63(1-2):175~185.
    [122] Friebe B, Hatchett J H, Gill B S, Mukai Y, and Sebesta E E.1991. Transfer of Hessian fly resistancefrom rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor.Appl. Genet.,83:33~40.
    [123] Friebe B, Hatchett J H, Sears R G, and Gill B S.1990. Transfer of Hessian fly resistance from‘Chaupon’ rye to hexaploid wheat via a2BS/2RL wheat-rye chromosome translocation, Theor. Appl.Genet.,79:385~389.
    [124] Friebe B, Kynast R G, Hatchett J H, Sears R G, Wilson D L, and Gill B S.1999. Transfer ofwheat-rye translocation chromosomes conferring resistance to Hessian fly from bread wheat intodurum wheat. Crop Sci.,39(6):1692~1696.
    [125] Gagné R J, and Hatchett J H.1989. Instars of the Hessian fly (Diptera: Cecidomyiidae). Ann.Entomol. Soc. Am.,82:73~79.
    [126] Gagné R J.1989. The Plant-Feeding Gall Midges of North America. Cornell University Press, Ithaca,NY.
    [127] Gallun R L, and Hatchett J H.1969. Genetic evidence of elimination of chromosomes in the Hessianfly. Ann. Entomol. Soc. Am.,62:1095~1101.
    [128] Gallun R L, and Patterson F L.1977. Genetic basis of Hessian fly epidemics. Ann. New yorkAcad.Sci.287:223~229.
    [129] Gallun R L, Deay H O, and Cartwright W B.1961. Four race s of Hessian fly selected and developedfrom an Indiana population. Purdue University Agriculture Experiment Station Research Bulletin,732, West lafayette,Ind.
    [130] Gallun R L.1977. Genetic basis of Hessian fly epidemics. Ann.N.Y. Acad. Sci.287:222~229.
    [131] Gallun R L.1978. Genetics of biotypes B and C of the Hessian fly. Ann. Entomol. Soc. Am.,71:481~486.
    [132] Gassmann A J, Carrière Y, and Tabashnik B E.2009. Fitness costs of insect resistance to Bacillusthuringiensis. Annu. Rev. Entomol.,54:147~163.
    [133] Gassmann A J, Stock S P, Carriere Y, Tabashnik B E.2006. Effect of entomopathogenic nematodeson the fitness cost of resistance to Bt toxin Cry1Ac in pink bollworm (Lepidoptera:Gelechiidae). J.Econ. Entomol.,99:920~926.
    [134] Gassmann A J, Stock S P, Sisterson M S, Carrière Y, Tabashnik B E,2008. Synergism betweenentomopathogenic nematodes and Bacillus thuringiensis crops: integrating biological control andresistance management. Appl. Ecol.,45(3):957~966.
    [135] Gazave L, Chevillon C, Lenormand T, Marquine M, and Raymond M.2001. Dissecting the cost ofinsecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity,87:441~448.
    [136] Gill B S, Hatchett J H, and Raupp W J.1987. Chromosomal mapping of Hessian fly-resistance geneH13in the D genome of wheat. J. Hered.,78(2):97~100.
    [137] Giovanini M P, Saltzmann K D, Puthoff D P, Gonzalo M, Ohm H W, and Williams C E.2007. Anovel wheat gene encoding a putative chitin-binding lectin is associated with resistance againstHessian fly. Mol. Plant Pathol.,8:69~82.
    [138] Giovanini M P, Puthoff D P, Nemacheck J A, Mittapalli O, Saltzmann K D, Ohm H W, Shukle R H,and Williams C E.2006. Gene-for-gene defense of wheat against the Hessian fly lacks a classicaloxidative burst. Mol. Plant Microbe In.,19:1023~1033.
    [139] Glynn C, and Larsson S.2000. Rapid host adaptation in a gall midge to a resistant willow genotype.Agric. For. Entomol.,2(2):115~121.
    [140] Gould F, Cohen M B, Bentur J S, Kennedy G G, and van Duyn J.2006. Impact of small fitness costson pest adaptation to crop varieties with multiple toxins: a heuristic model. J. Econ. Entomol.,99:2091~2099.
    [141] Gould F.1986. Simulation models for predicting durability of insect-resistant germ plasm: Hessianfly (Diptera: Cecidomyiidae)-resistant winter wheat. Environ. Entomol.,15:11~23.
    [142] Gould F.1988. Evolutionary biology and genetically engineered crops. Biol. Sci.,38:26~33.
    [143] Gould F.1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics andecology. Annu. Rev. Entomol.,43:701~726.
    [144] Groeters F R, Tabashnik B E, Finson N, Johnson M W.1993. Resistance to Bacillus thuringiensisaffects mating success of the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol.,86(4):1035~1039.
    [145] Grover Jr P B.1995. Hypersensitive response of wheat to the Hessian fly. Entomol. Exp. Appl.,74:283~294.
    [146] Grover, P. B., R. H, Shukle and Foster J E.1989. Interactions of Hessian fly (Diptera: Cecidomyiidae)biotypes on resistant wheat. Environ. Entomol.,18:687~690.
    [147] Gu H N, Hughes J, and Dorn S. Trade-off between mobility and fitness in Cydia pomonella L.(Lepidoptera: Tortricidae). Ecol. Entomol.,31:68~74.
    [148] Hahn D A, Martin A R, and Porter S D.2008. Body size, but not cooling rate, affects supercoolingpoints in the red imported fire ant, Solenopsis invicta. Environ. Entomol.,37(5):1074~1080.
    [149] Harris M O, and Rose S.1989. Temporal changes in the egglaying behavior of the Hessian fly.Entomol. Exploration and Application,53:17~29.
    [150] Harris M O, and Rose S.1990. Chemical, color, and tactile cues influencing oviposition behavior ofthe Hessian fly (Diptera: Cecidomyiidae). Environ. Entomol.,19:303~308.
    [151] Harris M O, Freeman T P, Anderson K G, Moore J A, Payne S A, Anderson K M, and Rohfritsch O.2010. H gene-mediated resistance to Hessian fly exhibits features of penetration resistance to fungi.Phytopathology,100:279~289.
    [152] Harris M O, Freeman T P, Rohfritsch O, Anderson K G, Payne S A, and Moore J A.2006. VirulentHessian fly (Diptera: Cecidomyiidae) larvae induce a nutritive tissue during compatible interactionswith wheat. Annu. Entomol. Soc. Am.,99:305~316.
    [153] Harris M O, Rose S, and Malsch P.1993. The role of vision in the host-plant finding behaviour of theHessian fly. Physiol. Entomol.18:31~42.
    [154] Harris M O, Sandanayaka M, and Griffin W.2001. Oviposition preference of the Hessian fly andtheir consequences for the survival and reproductive potential of offspring. Ecol. Entomol.,26(5):473~486.
    [155] Harris M O, Stuart J J, Mohan M, Nair S, Lamb R J, and Rohfritsch O.2003. Grass and gall midges:plant defense and insect adaptation. Annu. Rev. Entomol.,48:549~577.
    [156] Harris M O.1993. Virulence of a Manawatu population of the Hessian fly to several wheat cultivars.N. Z. Plant Prot.,46:334~337.
    [157] Hatchett J H, and Gallun R L.1970. Genetics of the ability of Hessian fly, Mayetiiola destructor, tosurvive on wheat having different genes for resistance. Ann. Entomol. Soc. Am.,63:1400~1407.
    [158] Hatchett J H, and Gill B S.1983. Expression and genetics of resistance to Hessian fly in Triticumtauschii (Cross) Schmal. Proc.6th Int. Wheat Genetics Symp.,807~811.
    [159] Hatchett J H, Kreitner G L. and Elzinga R J.1990. Larval mouthparts and feeding mechanism of theHessian fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am.,83:1137~1147.
    [160] Hatchett J H, Martin T J, and Livers R V.1981. Expression and inheritance of resistance to Hessianfly in synthetic hexaploid wheats derived from Triticum tauschii (Coss.) Schal. Crop Sci.,21:731~734.
    [161] Hatchett J H, Starks K J, and Webster J A.1987. Insect and mite pests of wheat. In: Heyneg E G (ed).Wheat and Wheat Improvement. Agronomy Monograph no.13(2nd edn). ASA-CSSA-SSSA,Madison,625~675.
    [162] Hellqvist S.2001. Biotypes of Dasineura tetensi, differing in ability to gall and develop on blackcurrant genotypes. Entomol. Exp. Appl.,98:85~94.
    [163] Higginson D M, Morin S, Nyboer M E, Biggs R W, Tabashnik B E, Carriere Y.2005. Evolutionarytrade-offs of insect resistance to Bacillus thuringiensis crops, fitness cost affecting paternity.Evolution,59:915~920.
    [164] Hogenhout S A, Van der Hoorn R A L, Terauchi R, and Kamoun S.2009. Emerging concepts ineffector biology of plant-associated organisms. Mol. Plant Microbe Interact.,22:115~122.
    [165] Honek A.1993. Intraspecific variation in body size and fecundity in insects: a general relationship.Oikos66:483~492.
    [166] Hudson R D, Bunting G D, and Isenhour D J.1991. Small grain insects. In: Douce G K, andMcpherson R M [Eds.]. Summary of Losses from Insect Damage and Costs of Control in Georgia,1989. Georgia Agric. Exp. Stn. Spec. Publ. No.70:29
    [167] Hunter B.2001. Rage for Grain: Flour Milling in the Mid-Atlantic. PhD thesis. Univ. Delaware.1750~1815.
    [168] Hunter M D, and McNeil J N.1997. Host-plant quality influences diapause and voltinism in apolyphagous insect herbivore. Ecology,78:977~986.
    [169] Janmaat A F, and Myers J H.2005. The cost of resistance to Bacillus thuringiensis varies with thehost plant of Trichoplusia ni. Proc. R. Soc. London Sci. Ser. B.272(1567):1031~1038.
    [170] Kaloshian I.2004. Gene-for-gene disease resistance: bridging insect pest and pathogen defense. J.Chem. Ecol.,30:2419~2438.
    [171] Kamata N, and Igarashi M.1995. Relationship between temperature, number of instars, larvalgrowth, body size, and adult fecundity of Qualcalcarifera punctatella (Lepidoptera: Notodontidae):cost-benefit relationship. Environ. Entomol.,24:648~656.
    [172] Kanno H, and Harris M O.2002. Avoidance of occupied hosts by the Hessian fly: ovipositionbehaviour and consequences for larval survival. Ecol. Entomol.,27(2):177~188.
    [173] Kappers I F, Aharoni A, van Herpen T W J M, Luckerhoff L L P, Dicke M, and Bouwmeester H J.2005. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science,309:2070~2072.
    [174] Keen N T.1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet.,24:447~463.
    [175] Kessler A, and Baldwin I T.2002. Plant responses to insect herbivory. Annu Rev. Plant Bio.,53:299~328.
    [176] Kim K C, and McPheron B A.1993. Evolution of Insect Pest: Pattern of Variation. John Wiley&Sons, INC, New York.
    [177] Klingenberg C P, and Spence J R.1997. On the role of body size for life-history evolution. Ecol.Entomol.,22:55~68.
    [178] Knutson A E, Rojas E A, Marshal D, and Gilstrap F E.2002. Interaction of parasitoids and resistantcultivars of wheat on Hessian fly, Mayetiola destructor Say (Cecidomyiidae). Southwest. Entomol.,27(1):1~10.
    [179] Kombrink and Somssich1995. Kombrink E, and Somssich I E.1995. Defense responses of plants topathogens. In: Advances in Botanical Research, Vol.21. Andrews J H and Tommerup I C(eds).Academic Press, London:1~34.
    [180] Kosma D K, Nemacheck J A, Jenks M A, and Williams C E.2010. Changes in properties of wheatleaf cuticle during interactions with Hessian fly. Plant J.,63:31~43.
    [181] Kraaijeveld A R, and Godfray H C J.1997. Trade-off between parasitoid resistance and larvalcompetitive ability in Drosophila melanogaster. Nature,389:278~280.
    [182] Krombein K V, Hord P D, Smith Jr D R, and Burks B D.1979. Catalog of Hymenoptera in Amiricanorth of Mexico. Smithsonian Institution Press, Washington, DC.
    [183] Kudagamage C, Foster J E, Taylor P L, and Chen B H.1990. Biotypes of the Hessian fly (Diptera:Cecidomyiidae) identified in the southeastern United States. J. Entomol. Sci.,25:575~580.
    [184] Kusano T.1982. Postmetamorphic growth, survival, and age at first reproduction of the salamander,Hynobius nebulosus tokyoensis Tago in relation to a consideration on the optimal timing of firstreproduction. Res. Popul. Ecol.,24:329~344.
    [185] Larsson S, and Ohmart C P.1988. Leaf age and larvae performance of the leaf beetle Paropsisatomaria. Ecol. Entomol.,13:19~24.
    [186] Leach J E, Vera Cruz C M, Bai J F, and Leung H.2001. Pathogen fitness penalty as a predictor ofdurability of disease resistance genes. Annu. Rev. Phytopathol.,39:187~224.
    [187] Lhaloui S, Buschman L, El Bouhassini M, Starks K, Keith D, and El Hossaini K.1992. Control ofMayetiola species (Diptera: Cecidomyiidae) with carbofuran in bread wheat, durum wheat andbarley with yield loss assessment and its economic analysis. Al Awamia,77:55~73.
    [188] Liang G M, Wu K M, Rector B, and Guo Y Y.2007. Diapause, cold hardiness and flight ability ofCry1Ac-resistantand-susceptible strains of Helicoverpa armigera (Lepidoptera: Noctuidae). Eur. J.Entomol.,104:699~704.
    [189] Lidell M C, and Schuster M F.1990. Hessian fly biotypes and virulence to wheat cultivars. TexasAgric. Exp. Stn. PR-4531.
    [190] Lingenberg C P, and Spence J R.1997. On the role of body size for life-history evolution Ecol.Entomol.,22:55~68.
    [191] Littell R C, Milliken G A, Stroup W W, Wolfinger R D, and Schabenberber O.2006. SAS for mixedmodels,2nd ed. SAS Institute, Cary, NC.
    [192] Liu D G, and Trumble J T.2007. Comparative fitness of invasive and native populations of thepotato psyllid (Bactericera cockerelli). Entomol. Exp. Appl.,123:35~42.
    [193] Liu X M, Fritz A K, Reese J C, Wilde G E, Gill B S, and Chen M S.2005a. H9, H10, and H11compose a cluster of Hessian fly-resistance genes in the distal gene-rich region of wheatchromosome1AS. Theor. Appl. Genet.,110:1473~1480.
    [194] Liu X M, Gill B S, and Chen M S.2005b. Hessian fly resistance gene H13is mapped to a distalcluster of resistance genes in chromosome6DS of wheat. Theor. Appl. Gene.,111:243~249.
    [195] Liu X M, Brown-Guedira G L, Hatchett J H, Owuoche J O, and Chen M S.2005c. Geneticcharacterization and molecular mapping of a Hessian fly-resistance gene transferred from T.turgidum ssp. dicoccum to common wheat. Theor. Appl. Genet.,111:1308~1315.
    [196] Liu Y B, Tabashnik B E, Dennehy T J, Patin A L, and Bartlett A C.1999. Development time andresistance to Bt crops. Nature,400(6744):519.
    [197] Liu Y B, Tabashnik B E, Dennehy T J, Patin A L, Sims M A, Meyer S K, and Carrière.2001. Effectsof Bt cotton and Cry1Ac toxin on survival and development of pink bollworm (Lepidoptera:Gelechiidae). J. Econ. Entomol.,94(5):1237~1242.
    [198] Ma Z Q, Gill B S, Sorrells M E, and Tanksley S D.1993. RELP markers linked to two Hessianfly-resistance genes in wheat (Triticum aestivum L.) from Triticum tauschii (coss.) Schmal. Theor.Appl. Genet.,85(6-7):750~754.
    [199] Maas III F B, Patterson F L, Foster J E, and Hatchett J H.1987. Expression and inheritance ofresistance of’Marquillo’ wheat to Hessian fly biotype D. Crop Sci.,27:49~52.
    [200] Maas III F B, Patterson F L, Foster J E, and Ohm H W.1989. Expression and inheritance ofresistance of ELS6404-160durum wheat to Hessian fly biotype D. Crop Sci.,29:23~28.
    [201] Magalh es S, Blanchet E, Egas M, and Olivieri I.2009. Are adaptation costs necessary to build up alocal adaptation pattern? BMC Evol. Biol.,3(9):182.
    [202] Magalhaes S, Fayard J, Janssen A, Carbonell D, and Olivieri I.2007. Adaptation in a spider mitepopulation after long-term evolution on a single host plant. J. Evol. Biol.,20:2016~2027.
    [203] Martin-Sanchez J A, Gomez-Colmenarejo M, Del Moral J, Sin E, Montes M J, Gonzalez-BelinchonC, Lopez-Brana I, and Delibes A.2003. A new Hessian fly resistance gene (H30) transferred fromthe wild grass Aegilops triuncialis to hexaploid wheat. Theor. Appl. Genet.,106:1248~1255.
    [204] Maxwell F G, Jenkins J N, and Parrott W L.1972. Resistance of plants to insects. Adv. Agron.,24:187~251.
    [205] Mcbride D K, Knopp D D, and Nyegaard C W.1996. Wheat stem insect pests and managementpractices. North Dakota State University Extension Bulletin E-680, Fargo.
    [206] McColloch J W, and Yuasa H.1917. Notes on the migration of the Hessian fly larvae. Anim. Behav.,7:307~323.
    [207] McColloch J W.1923. The Hessian fly in Kansas. Technical Bulletin Kansas AgriculturalExperiment Station,11,96pp
    [208] McColloch J.1917. Wind as a factor in the dispersion of the Hessian fly. J. Econ. Entomol.,10:162~170.
    [209] McDonald B A, and Linde C.2002. Pathogen population genetics, evolutionary potential, anddurable resistance. Annu. Rev. Phytopathol.,40:349~379.
    [210] McIntosh R A, Yamazaki Y, Devos K M, Dubcovsky J, Rogers J, and Appels R.2003. Catalogue ofgene symbols for wheat. Mac-Gene2003(http://www.grs.nig.ac.jp/wheat/komugi/genes/download.jsp)
    [211] McKenzie J A.1994. Selection at the diazinon resistance locus in overwintering populations ofLucilia cuprina (the Australian sheep blowfly). Heredity,73:57~64.
    [212] Miller B S, and Swain T.1960. Chromatographic analyses of the free amino acids, organic acids andsuggars in wheat plant wxtracts. J. Sci. Food Agr.,6:344~348.
    [213] Miller B S, Roberson R J, Johnson J A, and Ponnaiya B W X.1960. Studies on the realtion betweensilica in wheat plantand resistance to Hessian fly attack. J. Econ. Entomol.,53:995~999.
    [214] Morgan G, Sansone C, and Knutson A.2007. Texas cooperative extensions. The Texas A&MUniversity System. E-350.
    [215] Murphy S M.2007. The effect of host plant on larval survivorship of the Alaskan swallowtailbutterfly (Papilio machaon aliaska). Entomol. Exper. Appl.,122:109~115.
    [216] Newton A C, and Andrivon D.1995. Assumptions and implications of current gene-for-genehypotheses. Plant Pathol.,44(4):607~618.
    [217] Nimchuk Z, Eulgem T, Holt B F, and Dangl J L.2003. Recognition and response in the plantimmune system. Annu. Rev. Genet.,37:579~609.
    [218] Noble W B.1943. Differentiation of the two genetic factors for resistance to the Hessian fly inDawson wheat. J. Agric. Res.,67:1~32.
    [219] Ohgushi T.1996. Consequences of adult size for survival and reproductive performance in aherbivorous ladybird beetle. Ecol. Entomol.21:47~55.
    [220] Ohm H W, Ratcliffe R H, Patterson F L, and Cambron S.1997. Resistance to Hessian fly conditionedby gene H19and proposed gene H27of durum wheat line PI422297. Crop Sci.,37:113~115.
    [221] Ohm H W, Sharma H C, Patterson F L, Ratcliffe R H, and Obanni M.1995. Linkage relationshipsamong genes on wheat chromosome5A that condition resistance to Hessian fly. Crop Sci.,35:1603~1607.
    [222] Ollerstam O, Rohfritsch O, Hoglund S, and Larsson S.2002. A rapid hypersensitive responseassociated with resistance in the willow Salix viminalis against the gall midge Dasineuramarginemtorquens. Entomol. Exp. Appl.,102:153~162.
    [223] Oppert B, Hammel R, Thorne J E, and Kramer K J.2000. Fitness costs of resistance to Bacillusthuringiensis in the Indian meal moth, Plodia interpunctella. Entomol. Exp. Appl.,96(3):281~87.
    [224] Packard C M.1928. The Hessian fly in California. USDA Tech. Bull.81.25p.
    [225] Painter R H.1930. Biological strains of Hessian fly. J. Econ. Entomol.,23:322~326.
    [226] Painter R H.1951. Insect Resistance in Crop Plants. New York: Macmillan.
    [227] Parlevliet J E.2002. Durability of resistance against fungal, bacterial and viral pathogens: presentsituation. Euphytica,124:147~156.
    [228] Patterson F L, and Gallun R L.1973. Inheritance of resistance ofSeneca wheat to race E of theHessian fly. In: Sears E R and Sears L M S (eds). Proceedings of the4th International WheatGenetics Symposium. Missouri Agricultural Experiment Station, Columbia, Mo.445~449.
    [229] Patterson F L, Foster J E, Ohm H W, Hatchett J E, and Taylor P L.1992. Proposed system ofnomenclature for biotypes of Hessian fly (Diptera: Cecidomyiidae) in North America. J. Econ.Entomol.,85:307~311.
    [230] Patterson F L, Maas III F B, Foster J E, Ratcliffe R H, Cambron S, Safranski G G, Taylor P L, andOhm H W.1994. Registration of eight Hessian fly resistant common wheat germplasm lines (Carol,Erin, Flynn, Iris, Joy, Karen, Lola, and Molly). Crop Sci.,34:315~316.
    [231] Patterson F L, R. L. Gallun, Stebbins N B, and Carlson S K.1982. Registration od ‘Stella’ and ‘Ella’common wheat germplasm lines. Crop Sci.,22:902~903.
    [232] Pedigo L.1999. Entomology and Pest Management. Prentice Hall, Upper Saddle River, NJ.742.
    [233] Perry J.1990. The genetic relationship between resistance in wheat, Triticum aestivum L., andbiotypes C and L of the Hessian fly, Mayetiola destructor (Say). Department of Entomology, PurdueUniversity, West Lafayette, Ind.
    [234] Peters R H.1983. The Ecological Implications of Body Size. Cambridge University Press,Cambridge.
    [235] Pike K, Veseth R, Miller B, Schirman R, Smith L, and Homan H.1993. Hessian fly management inconservation tillage systems for the Inland Pacific Northwest. Pacific Northwest ConservationTillage Handbook Series. Chap.8, No.15. PNW Extension publication in Idaho, Oregon andWashington. University of Idaho, Moscow, ID, Washington State University, Pullman, WA, andOregon State University, Corvallis, OR.(http://pnwsteep. wsu.edu/tillagehandbook/chapter8/081593.htm).
    [236] Porter D, Burd J, Shufran K, Webster J, and Teetes G.1997. Greenbug (Homoptera: Aphididae)biotypes: selected by resistant cultivars or preadapted opportunists? J. Econ. Entomol.,90:1055~1065.
    [237] Porter D, Harris M O, Hesler L S, and Puterka G J.2009. Insects which challenge global wheatproduction. In: Carver B (ed.). Wheat: Science and Trade. Blackwell Publishing, Ames, IA.189~201.
    [238] Ramachandran S, Bunting G D, All J N, Tabashnik B E, Rayner P L, Adang M J, Pulliam D A, andStewart Jr C N.1998. Survival, development, and oviposition of resistant diamondback moth(Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J. Econ.Entomol.,91:1239~1244.
    [239] Ratcliffe R H, and Hatchett J H.1997. Biology and genetics of the Hessian fly and resistance inwheat. In: Bondari K(ed.). New Developments in Entomology. Research Signpost, ScientificInformation Guild, Trivandurm, India.47~56.
    [240] Ratcliffe R H, Cambron S E, Flanders K L, Bosque-Perez N A, Clement S L, and Ohm H W.2000.Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the southeastern,midwestern, and northwestern United States and virulence to resistance genes in wheat. J. Econ.Entomol.,93:1319~1328.
    [241] Ratcliffe R H, Ohm H W, Patterson F L, Cambron S E, and Safranski G G.1996. Response ofresistance genes H9-H19in wheat to Hessian fly (Diptera: Cecidomyiidae) laboratory biotypes andfield populations from the eastern United States. J. Econ. Entomol.,87:1113~1121.
    [242] Ratcliffe R H, Patterson F L, Cambron S E, and Ohm H W.2002. Resistance in durum wheat sourcesto Hessian fly (Diptera: Cecidomyiidae) populations in eastern USA. Crop Sci.,42:1350~1356.
    [243] Ratcliffe R H, Safranski G G, Patterson F L, Ohm H W, and Taylor P L.1994. Biotype status ofHessian fly (Diptera: Cecidomyiidae) populations from the eastern United States and their responseto14Hessian fly resistance genes. J. Econ. Entomol.,87:1113~1121.
    [244] Raupp W J, Amri A, Hatchett J H, Gill B S, Wilson D L, and Cox T S.1993. Chromosomal locationof Hessian fly-resistance genes H22, H23, and H24derived from Triticum tauschii in the D genomeof wheat. J. Hered.,84:142~145.
    [245] Rausher M D.2001. Co-evolution and plant resistance to natural enemies. Nature,411:857-864.
    [246] Raymond B, Sayyed A H, and Wright D J.2005. Genes and environment interact to determine thefitness costs of resistance to Bacillus thuringiensis. Proc. R. Soc. B.,272:1519~1524.
    [247] Raymond B, Sayyed A H, and Wright D J.2007a. Host plant and population determine the fitnesscosts of resistance to Bacillus thuringiensis. Biol. Lett.,3(1):82~85.
    [248] Raymond B, Sayyed A H, Hails R S, and Wright D J.2007b. Exploiting pathogens and their impacton fitness costs to manage the evolution of resistance to Bacillus thuringiensis. J. Appl. Ecol.,44:768~80.
    [249] Refai F Y, Miller B S, Jones E T, and Wolfe J E.1956. The feeding mechanism of Hessian fly larvae.J. Econ. Entomol.,49:182~185.
    [250] Reim C, Teuschel Y, and Blanckenhorn W U.2006. Size-dependent effects of temperature and foodstress on energy reserves and starvation resistance in yellow dung flies. Evol. Ecol. Res.,8:1215~1234.
    [251] Rider S D, Sun W, Ratcliffe R H, and Stuart J J.2002. Chromosome landing near avirulence genevH13in the Hessian fly. Genome,45:812~822.
    [252] Roberts J J, and Gallun R L.1984. Chromosomes location of the H5gene for resistance to theHessian fly in wheat. J. Hered.,75:147~148.
    [253] Roberts J J, Gallun R L, Patterson F L, and Foster J E.1979. Effects of wheat leaf pubescence on theHessian fly. J. Econ. Entomol.,72:211~214.
    [254] Roff D A.2000. Trade-offs between growth and reproduction: an analysis of the quantitative geneticevidence. J. Evol. Biol.,13:434~445.
    [255] Rohfritsch O.1992. Patterns in gall development. In: Shorthouse J and Rohfritsch O (eds.). Biologyof insect-induced gall. Oxford University Press, New York:102~117.
    [256] Rojas E A, Knutson A E, and Gilstrap F E.2000. Release of Platygaster hiemalis Forbes(Platygasteridae) in Texas for biological control of the Hessian fly, Mayetiola destructor Say(Cecidomyiidae). Southwest. Entomol.,25(3):175~184.
    [257] Rowe L, and Scudder G G E.1990. Reproductive rate and longevity in the waterstrider, Gerrisbuenoi. Can. J. Zool.,68,399~402.
    [258] Saltzmann K D, Giovanini M P, Zheng C, and Williams C E.2008. Virulent Hessian fly larvaemanipulate the free acid content of host wheat plants. J. Chem. Ecol.,34:1401~1410.
    [259] Sardesai N, Nemacheck J A, Subramanyam S, and Williams C E.2005. Identification and mappingof H32, a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet.,111:1167~1173.
    [260] SAS Institute.2003. SAS/STAT software, version9.1.3, SAS Institute, Cary, NC.
    [261] Saxena, R. C., and A. A. Barrion.1983. Biotypes of the brown planthopper, Nilaparvata lugens (Stal).Korean J. Plant Prot.,22:52~66
    [262] Schulte S J, Rider S D, Hatchett J H, and Stuart J J.1999. Molecular genetic mapping of threeX-linked avirulence genes, vH6, vH9and vH13, in the Hessian fly. Genome,42:821~828
    [263] Schweitzer D F.1979. Effects of foliage age on body weight and survival in larvae of tribeLithophanini (Lepidoptera:Noctuidae). Oikos32:403~408.
    [264] Scriber J M, and Slansky Jr F.1981. The nutritional ecology of immature insects. Annu. Rev.Entomol.,26:183~211.
    [265] Seo Y W, Johnson J W, and Jarret R L.1997. A molecular marker associated with the H21Hessianfly resistance gene in wheat. Mol. Breeding,3(3):177~181.
    [266] Shaner G, Stromberg E L, Lacy G H, Barker K R, and Pirone T P.1992. Nomenclature and conceptsof pathogenicity and virulence. Ann. Rev. Phytopath.,30:47~66.
    [267] Shukle R H, Grover Jr P B, and Mocelin G.1992. Responses of susceptible and resistant wheatassociated with Hessian fly (Diptera: Cecidomyiidae) infestations. Environ. Entomol.,21:845~853.
    [268] Shukle R H, Grover Jr P B, and Foster J E.1990. Feeding of Hessian fly (Diptera: Cecidomyiidae)larvae on resistant and susceptible wheat. Environ. Entomol.,19:494~500.
    [269] Smiley R W, Gourlie J A, Whittaker R G, Easley S A, and Kidwell K K.2004. Economic impact ofHessian fly (Diptera: Cecidomyiidae) on spring wheat in Oregon and additive yield losses withFusarium crown rot and Lesion nematode. J. Econ. Entomol.,97(2):397~408.
    [270] Smith C M, Khan Z R, and Pathak M D.1994. Techniques for Evaluating Insect Resistance in CropPlants. CRC Press, Boca Raton, FL.
    [271] Smith C M.2005. Plant resistance to arthropods. Springer, Dordrecht, The Netherlands.
    [272] Somssich I, and Hahlbrock K.1998. Pathogen defence in plants--a paradigm of biologicalcomplexity. Trends Plant Sci.3:86~90.
    [273] Sosa O Jr, Foster J E.1976. Temperature and the expression of resistance in wheat to the Hessian fly.Environ. Entomol.,5(2):333~336.
    [274] Sosa O Jr.1978. Biotype L, ninth biotype of the Hessian fly. J. Econ. Entomol.,71:458~460.
    [275] Sosa O Jr.1979. Hessian fly: resistance of wheat as affected by temperature and duration of exposure.Environ. Entomol.,8:280~281.
    [276] Sosa O Jr.1981. Biotypes J and L of Hessian fly discovered in an Indiana wheat field. J. Econ.Entomol.,74:180~182.
    [277] Stamp N E, and Bowers M D.1990. Phenology of nutritional differences between new and matureleaves and its effect on caterpillar growth. Ecol. Entomol.,15:447~454.
    [278] Starks K J, and Burton R L.1972. Greenbugs: Determining biotypes, culturing, and screening forplant resistance. USDA-ARS Tech. Bull. No.1556.12pp.
    [279] Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, and Jones J D G.1995. Molecular genetics ofplant disease resistance. Science,268:661~667.
    [280] Stearns S C.1992. The Evolution of Life Histories. Oxford University Press, Oxford.127.
    [281] Stebbins N B, Patterson F L, and Gallun R L.1982. Interrelationships among wheat genes H3, H6,H9, and H10for Hessian fly resistance. Crop Sci.,22:1029~1032.
    [282] Stergiopoulos I, and de Wit P J G M.2009. Fungal effector proteins. Annu. Rev. Phytopathol.,47:233~263
    [283] Stockhoff B A.1991. Starvation resistance of gypsy moth, Lymantria dispar (L.)(Lepidoptera;Lymantriidae): tradeoffs among growth, body size, and survival. Oecologia,88:422~429.
    [284] Stokes B M.1957. Observations and experiments on the Hessian fly (Mayetiola destructor Say). Ann.Appl. Biol.,45:122~132.
    [285] Stuart J J, and Hatchett J H.1987. Morphogenesis and cytology of the salivary gland of the Hessianfly, Mayetiola destructor (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am.,80:475~82.
    [286] Stuart J J, and Hatchett J H.1991. Genetics of sex determination in the Hessian fly, Mayetioladestructor. J. Hered.,82:43~52.
    [287] Stuart J J, Chen M S, and Harris M O.2008. Hessian fly. In: Kole Cand Hunter W (eds.). GenomeMapping and Genomics in Arthropods. Springer, Berlin, Germany:93~102.
    [288] Subramanyam S, Saltzmann K, Shukle J T, Shukle R H, Williams C E.2007. Hessian fly larvalattack induces cell permeability in wheat. Plant and Animal Genomes XV Conference P313(abstractavailable at: http://www.intl-pag.org/15/abstracts/PAG15_P05c_313.html).
    [289] Subramanyam S, Smith D F, Clemens J C, Webb M A, Sardesai N, Williams C E.2008. Functionalcharacterization of HFR1, a high-mannose N-glycan-specific wheat lectin induced by Hessian flylarvae. Plant Physiol,147:1412~1426.
    [290] Suneson C A.1950. Further differentiation of genentic factors in wheat for resistance to the Hesssianfly. USDA Tech. Bul.10048pp.
    [291] Tabashnik B E, Carrière Y, Dennehy T J, Morin S, Sisterson M S, R T. Rouse, Shelton A M, andZhao J Z.2003. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J.Econ. Entomol.,96:1031~1038.
    [292] Tabashnik B E.1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol.,39:47~79.
    [293] Tang J D, Collins H L, Roush R T, Metz T D, Earle E D, and Shelton A M.1999. Survival, weightgain, and oviposition of resistant and susceptible Plutella xylostella (L.) on broccoli expressingCry1Ac toxin of Bacillus thuringiensis. J. Econ. Entomol.,92(1):47~55.
    [294] Tellier A, and Brown J K M.2008. The relationship of host-mediated induced resistance topolymorphism in gene-for-gene relationships. Phytopathology,98:128~136.
    [295] Thrall P H, and Burdon J J.2003. Evolution of virulence in a plant host-pathogen metapopulation.Science,299:1735~1737.
    [296] Togashi K.2007. Effect of host age on the oviposition and performance of Ascia monuste Godart(Lepidoptera: Pieridae). Appl. Entomol. Zool.,42(4):549~556.
    [297] Tooker J F, and De Moraes C M.2007. Feeding by Hessian fly [Mayetiola destructor (Say)] larvaedoes not induce plant indirect defences. Ecol. Entomol.,32(2):153~161.
    [298] Trisyono A, and Whalon M E.1997. Fitness costs of resistance to Bacillus thuringiensis in Coloradopotato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol.90:267~271.
    [299] Tyler J M, and Hatchett J H.1983. Temperature influence on expression of resistance to Hessian fly(Diptera: Cecidomyiidae) in wheat derived from Tricticum taushii. J. Econ. Entomol.,76:323~326.
    [300] Valkoun J J.2001. Wheat pre-breeding using wild progenitors. Euphytica,119:17~23.
    [301] Van de Weg W E.1997. A gene-for-gene model to explain interactions between cultivars ofstrawberry and races of Phytophthora fragariae var. fragariae. Theor. Appl. Genet.94(3-4):445~451.
    [302] Van Loon J J A, de Boer G, and Dicke M.2000. Parasitoid–plant mutualism: parasitoid attack ofherbivore increases plant reproduction. Entomol. Exp. Appl.,97:219~227.
    [303] Vera Cruz C M, Bai J, Oňa I, Leung H, Nelson R J, Mew T W, and Leach J E.2000. Predictingdurability of a disease resistance gene based on an assessment of the fitness loss and epidemiologicalconsequences of avirulence gene mutation. Proc. Natl. Acad. Sci. USA97:13500~13505.
    [304] Veseth R, Guy S, Thill D, Hammel J, Fiez T, and Yenish J.1997. New minimum tillage systems forlegume-winter wheat cropping sequence. Pacific Northwest Conservation Tillage Handbook Series,Chap.2, No.20. PNW Extension publication in Idaho, Oregon and Washington. University of Idaho,Moscow, ID, Washington State University, Pullman, WA, and Oregon State University, Corvallis, OR.(http://pnwsteep.wsu.edu/tillagehandbook/chapter2/022097.htm).
    [305] Via S.1990. Ecological genetics and host adaptation in herbivorous insects: the experimental studyof evolution in natural and agricultural systems. Annu. Rev. Entomol.,35:421~446.
    [306] Vleeshouwers V G, Reitman H, Krenek P, Champouret N, Young C, Oh S K, Wang M, BouwmeesterK, Vosman B, Visser R G, Jacobsen E, Govers F, Kamoun S, Van der Vossen E A.2008. Effectorgenomics accelerates discovery and functional profiling of potato disease resistance andPhytophthora infestans avirulence genes. PLoS ONE3: e2875.
    [307] Walken H H.1945. Reproductive capacity of the Hessian fly. J. Econ. Entomol.,38:56~58.
    [308] Walling L L.2000. The myriad plant responses to herbivores. J. Plant Growth Regul.19:195~216.
    [309] Wang T, Xu S S, Harris M O, Hu J G, Liu L W, and Cai X W.2006. Genetic characterization andmolecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat.Theor. Appl. Genet.,113:611~618.
    [310] Watanabe M, Nozato K, and Kiritani K.1986. Studies on ecology and behavior of Japanese blackswallowtail butterflies (Lepidoptera: Papilionidae) V. Fecundity in summer generations. Appl.Entomol. Zool.,21:448~453.
    [311] Webster F M.1915. The Hessian fly. U.S. Dep. Agric. Farmer’s Bulletin No.640. United StatesDepartment of Agriculture, Washington, DC.
    [312] Wellso S G.1991. Aestivation and phenology of the Hessian fly (Diptera: Cecidomyiidae) in Indiana.Environ. Entomol.,20(3):795~801.
    [313] Wenes A L, Bourguet D, Andow D A, Courtin C, Carre G, Lorme P, Sanchez L, and Augustin S.2006.Frequency and fitness cost of resistance to Bacillus thuringiensis in Chrysomela tremulae(Coleoptera: Chrysomelidae). Hered.97:127~134.
    [314] Whitham T G.1983. Host manipulation of parasites: within-plant variation as a defense againstrapidly evolving pests. Variable Plants and Herbivores in Natural and Managed Systems (ed. by R. F.Denno and M. S. McClure), pp.14~41. Academic Press. New York.
    [315] Whitman D W.2008. The significance of body size in the orthoptera: a review. J. OthopteraRes.17(2):117~134.
    [316] Wilhoit L R.1992. Evolution of virulence to plant resistance: Influence of variety mixtures. In: FritzR S, and Simms E L (Eds.). Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, andGenetics, University of Chicago Press, Chicago:91~119.
    [317] Williams C E, Collier C C, Sardesai N, Ohm H W, and Cambron S E.2003. Phenotypic assessmentand mapped markers for H31, a new wheat gene conferring resistance to Hessian fly (Diptera:Cecidomyiidae). Theor. Appl. Genet.,107:1516~1523.
    [318] Williams C E, Nemacheck J A, Shukle J T, Subramanyam S, Saltzmann K D, and Shukle R H.2011.Induced epidermal permeability modulates resistance and susceptibility of wheat seedlings toherbivory by Hessian fly larvae. J. Exp. Bot.,62(13):4521~4531.
    [319] Wise I L, Lamb R J, McKenzie R I H, and Whistlecraft J W.2006. Resistance to Hessian fly (Diptera:Cecidomyiidae) in a Canadian spring wheat cultivar. Can. Entomol.,138(5):638~646.
    [320] Wise I L.2007. The effect of seeding date on the development of Hessian fly, Mayetiola destructor(Say)(Diptera: Cecidomyiidae), on spring wheat. Proc. Entomol. Soc.,63:8~22.
    [321] Withers T M, and Harris M O.1997. Influence of wind on Hessian fly (Diptera: Cecidomyiidae)flight and egglaying behavior. Environ. Entomol.,42(2):327~333.
    [322] Wu J X, Liu X M, Zhang S Z, Zhu Y C, Whitworth R J, and Chen M S.2008. Differential responsesof wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attacks during compatible andincompatible interactions. J. Chem. Ecol.,34:1005~1012.
    [323] Xu S S, Chu C G, Harris M O, and Williams C E.2011. Comparative analysis of genetic backgroundin eight near-isogenic wheat lines with different H genes conferring resistance to Hessian fly.Genome,81~89.
    [324] Yadav J, and Singh B N.2007. Evolutionary genetics of Drosophila ananassae: evidence fortrade-offs among several fitness traits. Biol. J. Linn. Soc.,90:669~685.
    [325] Yu G T, Cai X, Harris M O, Gu Y, Luo M, and S. S. Xu.2009. Saturation and comparative mappingof the genomic region harboring Hessian fly resistance gene H26in wheat. Theor. Appl. Genet.,118:1589~1599.
    [326] Zantoko L, and Shukle R H.1997. Genetics of virulence in the Hessian fly to resistance gene H13inwheat. J. Hered.,88:120~123.
    [327] Zeiss M R, Rrandenburg R L, and van Duyn J W.1993. Suitability of seven grass weeds as Hessianfly (Diptera: Cecidomyiidae) hosts. J. Agric. Entomol.,10:107~119.
    [328] Zhang H, Anderson K M, Reber J, Stuart J J, Cambron S, and Harris M O. A reproductive fitness costassociated with Hessian fly (Diptera: Cecidomyiidae) virulence to wheat's H gene-mediatedresistance. J. Econ. Entomol.,104(3):1055~1064.
    [329] Zhao X C, Wu K M, Liang G M, Guo Y Y.2008. Altered mating behaviour in a Cry1Ac-resistantstrain of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Appl. Entomol.,132:360~365.
    [330] Zhu L, Liu X, Jeannotte R, Reese J C, Harris M O, Stuart J J, and Chen M S.2008. Hessian fly(Mayetiola destructor) attack causes a dramatic shift in carbon and nitrogen metabolism in wheat.Mol. Plant Microbe Interact.,21:70~78.
    [331] Zohary D.1970. Centers of diversity and centers of origin. In: Frankel O H, and Bennet E(eds).Genetic Resources in Plants–Their Exploration and Conservation. Blackwell Publishing,Oxford:33~44.
    [332] Zupan J, Muth T R, Draper O, and Zambryski P.2000. The transfer of DNA from Agrobacteriumtumefaciens into plants: a feast of fundamental insights. Plant J.23:11~28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700