人免疫缺陷病毒包膜蛋白在母婴传播过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
I型人免疫缺陷病毒(HIV-1)母婴传播(MTCT)的现象在资源匮乏的地区仍然是个很严重的问题。在医疗并不发达的非洲撒哈拉以南地区尤为突出,15岁以下感染HIV-1的儿童超过90%都生活在这里,并且新感染HIV-1的患儿超过95%都在这里。此外,在这个地区C亚型HIV-1最为流行,其感染率已经超过60%。由于目前尚未存在预防MTCT的有效疫苗及这些发展中国家的抗病毒药物并不普及,因此探究MTCT过程中优先传播病毒的生物学特征对找到阻断MTCT的有效策略具有重要意义。
     我们前期研究表明在慢性感染母婴对中传播到婴儿的病毒和母亲的病毒相比具有更高的复制适应性,并且这个特征是由HIV-1包膜糖蛋白(Env)的V1-V5区决定的。为了确定慢性感染母婴对中传播病毒的高复制适应性是否由Env V1-V5区诱导了更高的病毒进入效率导致的,利用两种不同的研究Env介导细胞间融合的方法,对5对慢性感染和2对急性感染母婴对中母亲和婴儿病毒Env V1-V5区诱导细胞融合的能力进行了比较分析。结果表明,在1对慢性感染母婴对中发现了婴儿病毒Env V1-V5区具有更高的介导细胞融合的能力并且是由V4V5区决定的,而在其他母婴对中未得到一致的趋势和明显的差异。这些结果表明在HIV-1母婴传播过程中传播病毒的复制适应性和其Env V1-V5区诱导的进入效率并无显著的正相关性。母婴传播的方式和时间也可能参与影响病毒复制适应性的选择。
     对感染HIV-1的孕妇及新生儿进行抗病毒药物的治疗与预防能够有效的降低HIV-1的MTCT,但是随之带来的病毒耐药性问题也引起了人们的关注。小分子的CCR5拮抗剂代表了一类新的治疗HIV-1感染的药物。Maraviroc是这类药物中唯一被FDA批准的多应用于被R5嗜性病毒感染但对多种抗病毒药物出现耐药性的患者治疗中,并于最近批准进入一线临床药物。虽然病毒中存在的maraviroc原发性耐药位点会影响maraviroc将来在阻断MTCT中的临床应用,但对于maraviroc原发性耐药位点在母婴传播样本中的流行及传播鲜有报道。
     为了评价maraviroc原发性耐药位点在本文母婴传播样本中的流行及传播,并且分析各母婴对Env对maraviroc的敏感性,对6对慢性感染和3对急性感染母婴对Env进行了序列分析检测maraviroc原发性耐药位点的流行及传播,同时也分析了已有报道的另一种小分子CCR5拮抗剂-vicriviroc的原发性耐药位点。将其中4对慢性和2对急性感染母婴对Env构建到病毒骨架中形成重组病毒评价其对maraviroc的敏感性。结果表明Env中A316T突变(赋予对maraviroc的部分抗性)、T307I和R315Q突变(赋予对vicriviroc的部分抗性)在各母婴对母亲和婴儿病毒准种群中流行率很高,意味着母亲病毒准种群中的原发性耐药位点可以随母婴传播过程传播到婴儿。但传播的方式在急性感染和慢性感染样本中是有区别的,在急性感染样本中,在母亲中存在的突变位点趋于以复制的形式直接从母亲传到婴儿,而在慢性感染样本中,一些低频率的突变位点在母婴传播过程中丢失,只有高频率(接近100%)的突变位点才会被传播下来。此外,样本中母亲和婴儿病毒对maraviroc均敏感,但慢性感染样本中母亲和婴儿病毒比急性感染样本中母亲和婴儿病毒对maravirocc更为敏感。
     这些结果表明在母婴传播中原发性耐药位点的传播方式及样本对maraviroc的敏感性依赖于样本的感染类型,同时maraviroc在临床应用上对急性感染母婴对群体的应用剂量要高于慢性感染母婴对。
Mother-to-child transmission(MTCT) of the humanimmunodeficiency virus type1(HIV-1) remains a significant problem inthe resource-constrained settings. This is especially worse in sub-SaharanAfrica where more than90%of the infected children under the age of15are living and the majority (95%) of new pediatric infections occurred,and where therapeutic intervention is still not widely available. Moreover,the HIV-1subtype C is the most prevalent and account for more than60%of infections in that epidemic region. Given the absence of aprophylactic vaccine or universal access to preventive treatment in thesedeveloping countries, a clear understanding of the characteristics ofpreferentially transmitted viruses is critical to the development ofeffective measures to reduce rates of MTCT.
     Our previous study demonstrated that the newly transmitted viruses (in infant) of chronically infected mother-infant pairs (MIPs) were morefit in growth, as imparted by their envelope glycoproteins V1-V5regions,than those in their corresponding chronically infected mothers. In orderto investigate whether the higher fitness of transmitted viruses wasconferred by their higher entry efficiency directed by the V1-V5regionsduring perinatal transmission, we analyzed the fusogenicity of Envcontaining V1-V5regions derived from transmitted andnon-tranmsmitted viruses of five chronically infected MIPs and twoacutely infected MIPs via two different cell-to-cell fusion assays. Theresults showed that higher fusion efficiency induced by infant EnvV1-V5than their corresponding mothers was observed in one chronicallyinfected MIP. Moreover, the V4V5regions play an important role todiscriminate the transmitted and non-transmitted viruses in this pair.However, neither consistent pattern nor significant differences offusogenicity mediated by V1-V5regions between maternal and infant variants was observed in other MIPs. Our study suggests that there is noconsistent and significant correlation between viral fitness selection andentry efficiency directed by V1-V5regions during perinatal transmission.Other factors such as the route and timing of transmission may also beinvolved.
     Antiretroviral drugs (ARVs) for HIV-1-infected pregnant women andtheirinfants are highly effective in reducing MTCT of HIV-1, whereasconcerns have been raised about the public health implications of theemergence of resistance to antiretroviral drugs. Small molecular CCR5inhibitors represent a new class of drugs for treating HIV-1infection.Maraviroc was the only CCR5antagonist approved by the FDA to beutilized as a salvage therapy for multi-drug resistant patients with R5tropic virus but has been recently approved for first-line treatmentregimens. No studies have evaluated the prevalence and transmission ofnaturally occurring mutations associated with maraviroc during peranatal transmission since they may have a profound impact on the clinicalmanagement of maraviroc in MTCT in future.
     To evaluate the prevalence and transmission of natural resistancemutations to maraviroc during peranatal transmission and analyze thesensitivity of mother-infant pairs to maraviroc, six chronically infectedMIPs and three acutely infected MIPs were recruited to analyze theprevalence and transmission of natural resistance mutations to maravirocand another small molecular CCR5antagonist-vicriviroc. And fourrepresentative chronically infected MIPs and two acutely infected MIPswere employed to construct provirus clones and to analyze the sensitivityto maraviroc. Mutations A316T, conferring partial resistance tomaraviroc, and T307I and R315Q, both conferring partial resistance tovicriviroc are prevalent in mother and infant cohorts of either acutelyinfected MIPs or chronically infected MIPs, indicating the transmissionof natural resistance mutations during peranatal transmission. The mutations present at viral quasispecies of acutely infected mothers seemto directly transmit to their corresponding infants, while some mutationsespecially at low frequency of chronically infected mothers would be lostduring transmission except the very high frequency. Moreover, thesensitivities to maraviroc of maternal and infant viruses of acutelyinfected MIPs are less susceptive than chronically infected MIPsrespectively.
     Our study suggests that the transmission mode of natural resistancemutations and the sensitivity to maraviroc are dependent on infectionstate of MIPs either acutely infected or chronically infected. These resultsmay indicate that higher dose of maraviroc is indispensable for treatmentof acutely infected MIPs compared to chronically infected MIPs.
引文
[1] Delwart, E.L. Viral metagenomics. Rev Med Virol,2007,17(2):115-131.
    [2] Barre-Sinoussi, F., J.C. Chermann, F. Rey, et al. Isolation of aT-lymphotropic retrovirus from a patient at risk for acquiredimmune deficiency syndrome (AIDS). Science,1983,220(4599):868-871.
    [3] Temin, H.M. and D. Baltimore. RNA-directed DNA synthesis andRNA tumor viruses. Adv Virus Res,1972,17:129-186.
    [4] de Villiers, E.M., C. Fauquet, T.R. Broker, et al. Classification ofpapillomaviruses. Virology,2004,324(1):17-27.
    [5] Mayo, M.A. Developments in plant virus taxonomy since thepublication of the6th ICTV Report. International Committee onTaxonomy of Viruses. Arch Virol,1999,144(8):1659-1666.
    [6] van Regenmortel, M.H. and B.W. Mahy. Emerging issues in virustaxonomy. Emerg Infect Dis,2004,10(1):8-13.
    [7] St-Louis, M.C., M. Cojocariu, and D. Archambault. The molecularbiology of bovine immunodeficiency virus: a comparison withother lentiviruses. Anim Health Res Rev,2004,5(2):125-143.
    [8] Gallo, R.C., S.Z. Salahuddin, M. Popovic, et al. Frequent detectionand isolation of cytopathic retroviruses (HTLV-III) from patientswith AIDS and at risk for AIDS. Science,1984,224(4648):500-503.
    [9] Popovic, M., M.G. Sarngadharan, E. Read, et al. Detection,isolation, and continuous production of cytopathic retroviruses(HTLV-III) from patients with AIDS and pre-AIDS. Science,1984,224(4648):497-500.
    [10] Sarngadharan, M.G., M. Popovic, L. Bruch, et al. Antibodiesreactive with human T-lymphotropic retroviruses (HTLV-III) inthe serum of patients with AIDS. Science,1984,224(4648):506-508.
    [11] Coffin, J., A. Haase, J.A. Levy, et al. Human immunodeficiencyviruses. Science,1986,232(4751):697.
    [12] Kuznetsov, Y.G., J.G. Victoria, W.E. Robinson, Jr., et al. Atomicforce microscopy investigation of human immunodeficiency virus(HIV) and HIV-infected lymphocytes. J Virol,2003,77(22):11896-11909.
    [13] Cimarelli, A., S. Sandin, S. Hoglund, et al. Basic residues inhuman immunodeficiency virus type1nucleocapsid promotevirion assembly via interaction with RNA. J Virol,2000,74(7):3046-3057.
    [14] Ono, A. and E.O. Freed. Role of lipid rafts in virus replication.Adv Virus Res,2005,64:311-358.
    [15] Aloia, R.C., H. Tian, and F.C. Jensen. Lipid composition andfluidity of the human immunodeficiency virus envelope and hostcell plasma membranes. Proc Natl Acad Sci U S A,1993,90(11):5181-5185.
    [16] Freed, E.O. and M.A. Martin, eds. HIVs and Their Replication.5thed. Fields Virology, ed. D.M.H. Knipe, Peter M.2007, LippincottWilliams&Wilkins.
    [17] Ennifar, E., P. Walter, B. Ehresmann, et al. Crystal structures ofcoaxially stacked kissing complexes of the HIV-1RNAdimerization initiation site. Nat Struct Biol,2001,8(12):1064-1068.
    [18] Laughrea, M. and L. Jette. A19-nucleotide sequence upstream ofthe5' major splice donor is part of the dimerization domain ofhuman immunodeficiency virus1genomic RNA. Biochemistry,1994,33(45):13464-13474.
    [19] Skripkin, E., J.C. Paillart, R. Marquet, et al. Identification of theprimary site of the human immunodeficiency virus type1RNAdimerization in vitro. Proc Natl Acad Sci U S A,1994,91(11):4945-4949.
    [20] Emerman, M. and M.H. Malim. HIV-1regulatory/accessory genes:keys to unraveling viral and host cell biology. Science,1998,280(5371):1880-1884.
    [21] Peeters, M., C. Toure-Kane, and J.N. Nkengasong. Geneticdiversity of HIV in Africa: impact on diagnosis, treatment, vaccinedevelopment and trials. Aids,2003,17(18):2547-2560.
    [22] Robertson, D.L., J.P. Anderson, J.A. Bradac, et al. HIV-1nomenclature proposal. Science,2000,288(5463):55-56.
    [23] Roques, P., D.L. Robertson, S. Souquiere, et al. Phylogeneticcharacteristics of three new HIV-1N strains and implications forthe origin of group N. Aids,2004,18(10):1371-1381.
    [24] Berger, E.A., R.W. Doms, E.M. Fenyo, et al. A new classificationfor HIV-1. Nature,1998,391(6664):240.
    [25] Taha, T.E., S.M. Graham, N.I. Kumwenda, et al. Morbidity amonghuman immunodeficiency virus-1-infected and-uninfected Africanchildren. Pediatrics,2000,106(6): E77.
    [26] Deodhar, N.S. Review of the National HIV/AIDS ControlProgramme in India with a view to making it community-oriented,more effective, and sustainable. J Public Health Policy,2003,24(2):159-180.
    [27] Lehman, D.A. and C. Farquhar. Biological mechanisms of verticalhuman immunodeficiency virus (HIV-1) transmission. Rev MedVirol,2007,17(6):381-403.
    [28] Connor, E.M., R.S. Sperling, R. Gelber, et al. Reduction ofmaternal-infant transmission of human immunodeficiency virustype1with zidovudine treatment. Pediatric AIDS Clinical TrialsGroup Protocol076Study Group. N Engl J Med,1994,331(18):1173-1180.
    [29] De Cock, K.M., M.G. Fowler, E. Mercier, et al. Prevention ofmother-to-child HIV transmission in resource-poor countries:translating research into policy and practice. JAMA,2000,283(9):1175-1182.
    [30] Lewis, S.H., C. Reynolds-Kohler, H.E. Fox, et al. HIV-1introphoblastic and villous Hofbauer cells, and haematologicalprecursors in eight-week fetuses. Lancet,1990,335(8689):565-568.
    [31] Fazely, F., P.L. Sharma, C. Fratazzi, et al. Simianimmunodeficiency virus infection via amniotic fluid: a model tostudy fetal immunopathogenesis and prophylaxis. J AcquirImmune Defic Syndr,1993,6(2):107-114.
    [32] Mohlala, B.K., T.J. Tucker, M.J. Besser, et al. Investigation ofHIV in amniotic fluid from HIV-infected pregnant women at fullterm. J Infect Dis,2005,192(3):488-491.
    [33] Lagaye, S., M. Derrien, E. Menu, et al. Cell-to-cell contact resultsin a selective translocation of maternal human immunodeficiencyvirus type1quasispecies across a trophoblastic barrier by bothtranscytosis and infection. J Virol,2001,75(10):4780-4791.
    [34] Mwapasa, V., S.J. Rogerson, J.J. Kwiek, et al. Maternal syphilisinfection is associated with increased risk of mother-to-childtransmission of HIV in Malawi. AIDS,2006,20(14):1869-1877.
    [35] Biggar, R.J., T.E. Taha, D.R. Hoover, et al. Higher in utero andperinatal HIV infection risk in girls than boys. J Acquir ImmuneDefic Syndr,2006,41(4):509-513.
    [36] Drake, A.L., G.C. John-Stewart, A. Wald, et al. Herpes simplexvirus type2and risk of intrapartum human immunodeficiencyvirus transmission. Obstet Gynecol,2007,109(2Pt1):403-409.
    [37] Chen, K.T., M. Segu, L.H. Lumey, et al. Genital herpes simplexvirus infection and perinatal transmission of humanimmunodeficiency virus. Obstet Gynecol,2005,106(6):1341-1348.
    [38] John-Stewart, G.C., R.W. Nduati, C.M. Rousseau, et al. Subtype CIs associated with increased vaginal shedding of HIV-1. J InfectDis,2005,192(3):492-496.
    [39] Group, I.P.H. Duration of ruptured membranes and verticaltransmission of HIV-1: a meta-analysis from15prospective cohortstudies. AIDS,2001,15(3):357-368.
    [40] Kwiek, J.J., V. Mwapasa, D.A. Milner, Jr., et al. Maternal-fetalmicrotransfusions and HIV-1mother-to-child transmission inMalawi. PLoS Med,2006,3(1): e10.
    [41] John-Stewart, G., D. Mbori-Ngacha, R. Ekpini, et al.Breast-feeding and Transmission of HIV-1. J Acquir ImmuneDefic Syndr,2004,35(2):196-202.
    [42] Nduati, R., G. John, D. Mbori-Ngacha, et al. Effect ofbreastfeeding and formula feeding on transmission of HIV-1: arandomized clinical trial. JAMA,2000,283(9):1167-1174.
    [43] Richardson, B.A., G.C. John-Stewart, J.P. Hughes, et al.Breast-milk infectivity in human immunodeficiency virus type1-infected mothers. J Infect Dis,2003,187(5):736-740.
    [44] Rousseau, C.M., R.W. Nduati, B.A. Richardson, et al. Associationof levels of HIV-1-infected breast milk cells and risk ofmother-to-child transmission. J Infect Dis,2004,190(10):1880-1888.
    [45] Farquhar, C., D.A. Mbori-Ngacha, M.W. Redman, et al. CC andCXC chemokines in breastmilk are associated with mother-to-childHIV-1transmission. Curr HIV Res,2005,3(4):361-369.
    [46] Kazmi, S.H., J.R. Naglik, S.P. Sweet, et al. Comparison of humanimmunodeficiency virus type1-specific inhibitory activities insaliva and other human mucosal fluids. Clin Vaccine Immunol,2006,13(10):1111-1118.
    [47] Wu, X., A.B. Parast, B.A. Richardson, et al. Neutralization escapevariants of human immunodeficiency virus type1are transmittedfrom mother to infant. J Virol,2006,80(2):835-844.
    [48] Kuhn, L., D. Trabattoni, C. Kankasa, et al. Hiv-specific secretoryIgA in breast milk of HIV-positive mothers is not associated withprotection against HIV transmission among breast-fed infants. JPediatr,2006,149(5):611-616.
    [49] Pillay, T., H.T. Zhang, J.W. Drijfhout, et al. Unique acquisition ofcytotoxic T-lymphocyte escape mutants in infant humanimmunodeficiency virus type1infection. J Virol,2005,79(18):12100-12105.
    [50] Farquhar, C., T.C. VanCott, D.A. Mbori-Ngacha, et al. Salivarysecretory leukocyte protease inhibitor is associated with reducedtransmission of human immunodeficiency virus type1throughbreast milk. J Infect Dis,2002,186(8):1173-1176.
    [51] Johnson, D.C., E.J. McFarland, P. Muresan, et al. Safety andimmunogenicity of an HIV-1recombinant canarypox vaccine innewborns and infants of HIV-1-infected women. J Infect Dis,2005,192(12):2129-2133.
    [52] McFarland, E.J., D.C. Johnson, P. Muresan, et al. HIV-1vaccineinduced immune responses in newborns of HIV-1infected mothers.AIDS,2006,20(11):1481-1489.
    [53] Meyerhans, A., R. Cheynier, J. Albert, et al. Temporal fluctuationsin HIV quasispecies in vivo are not reflected by sequential HIVisolations. Cell,1989,58(5):901-910.
    [54] Coffin, J.M. HIV population dynamics in vivo: implications forgenetic variation, pathogenesis, and therapy. Science,1995,267(5197):483-489.
    [55] Joag, S.V., Z. Li, L. Foresman, et al. Chimeric simian/humanimmunodeficiency virus that causes progressive loss of CD4+Tcells and AIDS in pig-tailed macaques. J Virol,1996,70(5):3189-3197.
    [56] Mansky, L.M. and H.M. Temin. Lower in vivo mutation rate ofhuman immunodeficiency virus type1than that predicted from thefidelity of purified reverse transcriptase. J Virol,1995,69(8):5087-5094.
    [57] Perelson, A.S., A.U. Neumann, M. Markowitz, et al. HIV-1dynamics in vivo: virion clearance rate, infected cell life-span, andviral generation time. Science,1996,271(5255):1582-1586.
    [58] Shankarappa, R., J.B. Margolick, S.J. Gange, et al. Consistent viralevolutionary changes associated with the progression of humanimmunodeficiency virus type1infection. J Virol,1999,73(12):10489-10502.
    [59] Domingo, E. and J.J. Holland. RNA virus mutations and fitness forsurvival. Annu Rev Microbiol,1997,51:151-178.
    [60] Domingo, E., C. Escarmis, N. Sevilla, et al. Basic concepts inRNA virus evolution. FASEB J,1996,10(8):859-864.
    [61] Domingo, E., L. Menendez-Arias, M.E. Quinones-Mateu, et al.Viral quasispecies and the problem of vaccine-escape anddrug-resistant mutants. Prog Drug Res,1997,48:99-128.
    [62] Goudsmit, J., A. De Ronde, D.D. Ho, et al. Humanimmunodeficiency virus fitness in vivo: calculations based on asingle zidovudine resistance mutation at codon215of reversetranscriptase. J Virol,1996,70(8):5662-5664.
    [63] Quinones-Mateu, M.E. and E.J. Arts. Virus fitness: concept,quantification, and application to HIV population dynamics. CurrTop Microbiol Immunol,2006,299:83-140.
    [64] Quinones-Mateu, M.E., S.C. Ball, A.J. Marozsan, et al. A dualinfection/competition assay shows a correlation between ex vivohuman immunodeficiency virus type1fitness and diseaseprogression. J Virol,2000,74(19):9222-9233.
    [65] Weber, J., H.R. Rangel, B. Chakraborty, et al. A novel TaqManreal-time PCR assay to estimate ex vivo human immunodeficiencyvirus type1fitness in the era of multi-target (pol and env)antiretroviral therapy. J Gen Virol,2003,84(Pt8):2217-2228.
    [66] Ball, S.C., A. Abraha, K.R. Collins, et al. Comparing the ex vivofitness of CCR5-tropic human immunodeficiency virus type1isolates of subtypes B and C. J Virol,2003,77(2):1021-1038.
    [67] Kong, X., J.T. West, H. Zhang, et al. The humanimmunodeficiency virus type1envelope confers higher rates ofreplicative fitness to perinatally transmitted viruses than tonontransmitted viruses. J Virol,2008,82(23):11609-11618.
    [68] Bour, S., R. Geleziunas, and M.A. Wainberg. The humanimmunodeficiency virus type1(HIV-1) CD4receptor and itscentral role in promotion of HIV-1infection. Microbiol Rev,1995,59(1):63-93.
    [69] Maddon, P.J., A.G. Dalgleish, J.S. McDougal, et al. The T4geneencodes the AIDS virus receptor and is expressed in the immunesystem and the brain. Cell,1986,47(3):333-348.
    [70] Sattentau, Q.J. and J.P. Moore. Conformational changes induced inthe human immunodeficiency virus envelope glycoprotein bysoluble CD4binding. J Exp Med,1991,174(2):407-415.
    [71] Thali, M., J.P. Moore, C. Furman, et al. Characterization ofconserved human immunodeficiency virus type1gp120neutralization epitopes exposed upon gp120-CD4binding. J Virol,1993,67(7):3978-3988.
    [72] Kwong, P.D., R. Wyatt, J. Robinson, et al. Structure of an HIVgp120envelope glycoprotein in complex with the CD4receptorand a neutralizing human antibody. Nature,1998,393(6686):648-659.
    [73] Wyatt, R., P.D. Kwong, E. Desjardins, et al. The antigenicstructure of the HIV gp120envelope glycoprotein. Nature,1998,393(6686):705-711.
    [74] Alkhatib, G., C. Combadiere, C.C. Broder, et al. CC CKR5: aRANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor formacrophage-tropic HIV-1. Science,1996,272(5270):1955-1958.
    [75] Choe, H., M. Farzan, Y. Sun, et al. The beta-chemokine receptorsCCR3and CCR5facilitate infection by primary HIV-1isolates.Cell,1996,85(7):1135-1148.
    [76] Deng, H., R. Liu, W. Ellmeier, et al. Identification of a majorco-receptor for primary isolates of HIV-1. Nature,1996,381(6584):661-666.
    [77] Feng, Y., C.C. Broder, P.E. Kennedy, et al. HIV-1entry cofactor:functional cDNA cloning of a seven-transmembrane, Gprotein-coupled receptor. Science,1996,272(5263):872-877.
    [78] Endres, M.J., P.R. Clapham, M. Marsh, et al. CD4-independentinfection by HIV-2is mediated by fusin/CXCR4. Cell,1996,87(4):745-756.
    [79] Martin, K.A., R. Wyatt, M. Farzan, et al. CD4-independentbinding of SIV gp120to rhesus CCR5. Science,1997,278(5342):1470-1473.
    [80] Potempa, S., L. Picard, J.D. Reeves, et al. CD4-independentinfection by human immunodeficiency virus type2strain ROD/B:the role of the N-terminal domain of CXCR-4in fusion and entry.J Virol,1997,71(6):4419-4424.
    [81] Lapham, C.K., J. Ouyang, B. Chandrasekhar, et al. Evidence forcell-surface association between fusin and the CD4-gp120complex in human cell lines. Science,1996,274(5287):602-605.
    [82] Trkola, A., T. Dragic, J. Arthos, et al. CD4-dependent,antibody-sensitive interactions between HIV-1and its co-receptorCCR-5. Nature,1996,384(6605):184-187.
    [83] Wu, L., N.P. Gerard, R. Wyatt, et al. CD4-induced interaction ofprimary HIV-1gp120glycoproteins with the chemokine receptorCCR-5. Nature,1996,384(6605):179-183.
    [84] Hoffman, T.L., C.C. LaBranche, W. Zhang, et al. Stable exposureof the coreceptor-binding site in a CD4-independent HIV-1envelope protein. Proc Natl Acad Sci U S A,1999,96(11):6359-6364.
    [85] Kolchinsky, P., T. Mirzabekov, M. Farzan, et al. Adaptation of aCCR5-using, primary human immunodeficiency virus type1isolate for CD4-independent replication. J Virol,1999,73(10):8120-8126.
    [86] Paxton, W.A., S.R. Martin, D. Tse, et al. Relative resistance toHIV-1infection of CD4lymphocytes from persons who remainuninfected despite multiple high-risk sexual exposure. Nat Med,1996,2(4):412-417.
    [87] Dean, M., M. Carrington, C. Winkler, et al. Genetic restriction ofHIV-1infection and progression to AIDS by a deletion allele ofthe CKR5structural gene. Hemophilia Growth and DevelopmentStudy, Multicenter AIDS Cohort Study, Multicenter HemophiliaCohort Study, San Francisco City Cohort, ALIVE Study. Science,1996,273(5283):1856-1862.
    [88] Huang, Y., W.A. Paxton, S.M. Wolinsky, et al. The role of amutant CCR5allele in HIV-1transmission and disease progression.Nat Med,1996,2(11):1240-1243.
    [89] Liu, R., W.A. Paxton, S. Choe, et al. Homozygous defect in HIV-1coreceptor accounts for resistance of some multiply-exposedindividuals to HIV-1infection. Cell,1996,86(3):367-377.
    [90] Samson, M., F. Libert, B.J. Doranz, et al. Resistance to HIV-1infection in caucasian individuals bearing mutant alleles of theCCR-5chemokine receptor gene. Nature,1996,382(6593):722-725.
    [91] Geijtenbeek, T.B., D.S. Kwon, R. Torensma, et al. DC-SIGN, adendritic cell-specific HIV-1-binding protein that enhancestrans-infection of T cells. Cell,2000,100(5):587-597.
    [92] Geijtenbeek, T.B. and Y. van Kooyk. DC-SIGN: a novel HIVreceptor on DCs that mediates HIV-1transmission. Curr TopMicrobiol Immunol,2003,276:31-54.
    [93] Garcia, E., M. Pion, A. Pelchen-Matthews, et al. HIV-1traffickingto the dendritic cell-T-cell infectious synapse uses a pathway oftetraspanin sorting to the immunological synapse. Traffic,2005,6(6):488-501.
    [94] McDonald, D., L. Wu, S.M. Bohks, et al. Recruitment of HIV andits receptors to dendritic cell-T cell junctions. Science,2003,300(5623):1295-1297.
    [95] Freed, E.O., D.J. Myers, and R. Risser. Characterization of thefusion domain of the human immunodeficiency virus type1envelope glycoprotein gp41. Proc Natl Acad Sci U S A,1990,87(12):4650-4654.
    [96] Freed, E.O. and D.J. Myers. Identification and characterization offusion and processing domains of the human immunodeficiencyvirus type2envelope glycoprotein. J Virol,1992,66(9):5472-5478.
    [97] Bosch, M.L., P.L. Earl, K. Fargnoli, et al. Identification of thefusion peptide of primate immunodeficiency viruses. Science,1989,244(4905):694-697.
    [98] Dubay, J.W., S.J. Roberts, B. Brody, et al. Mutations in the leucinezipper of the human immunodeficiency virus type1transmembrane glycoprotein affect fusion and infectivity. J Virol,1992,66(8):4748-4756.
    [99] Wild, C., T. Oas, C. McDanal, et al. A synthetic peptide inhibitorof human immunodeficiency virus replication: correlation betweensolution structure and viral inhibition. Proc Natl Acad Sci U S A,1992,89(21):10537-10541.
    [100] Caffrey, M., M. Cai, J. Kaufman, et al. Three-dimensional solutionstructure of the44kDa ectodomain of SIV gp41. EMBO J,1998,17(16):4572-4584.
    [101] Chan, D.C., D. Fass, J.M. Berger, et al. Core structure of gp41from the HIV envelope glycoprotein. Cell,1997,89(2):263-273.
    [102] Tan, K., J. Liu, J. Wang, et al. Atomic structure of a thermostablesubdomain of HIV-1gp41. Proc Natl Acad Sci U S A,1997,94(23):12303-12308.
    [103] Weissenhorn, W., A. Dessen, S.C. Harrison, et al. Atomic structureof the ectodomain from HIV-1gp41. Nature,1997,387(6631):426-430.
    [104] Bullough, P.A., F.M. Hughson, J.J. Skehel, et al. Structure ofinfluenza haemagglutinin at the pH of membrane fusion. Nature,1994,371(6492):37-43.
    [105] Furuta, R.A., C.T. Wild, Y. Weng, et al. Capture of an earlyfusion-active conformation of HIV-1gp41. Nat Struct Biol,1998,5(4):276-279.
    [106] Bowers, K., A. Pelchen-Matthews, S. Honing, et al. The simianimmunodeficiency virus envelope glycoprotein contains multiplesignals that regulate its cell surface expression and endocytosis.Traffic,2000,1(8):661-674.
    [107] Wyss, S., A.S. Dimitrov, F. Baribaud, et al. Regulation of humanimmunodeficiency virus type1envelope glycoprotein fusion by amembrane-interactive domain in the gp41cytoplasmic tail. J Virol,2005,79(19):12231-12241.
    [108] Huang, C.C., M. Tang, M.Y. Zhang, et al. Structure of aV3-containing HIV-1gp120core. Science,2005,310(5750):1025-1028.
    [109] Brugger, B., B. Glass, P. Haberkant, et al. The HIV lipidome: araft with an unusual composition. Proc Natl Acad Sci U S A,2006,103(8):2641-2646.
    [110] Hug, P., H.M. Lin, T. Korte, et al. Glycosphingolipids promoteentry of a broad range of human immunodeficiency virus type1isolates into cell lines expressing CD4, CXCR4, and/or CCR5. JVirol,2000,74(14):6377-6385.
    [111] Jolly, C. and Q.J. Sattentau. Human immunodeficiency virus type1virological synapse formation in T cells requires lipid raftintegrity. J Virol,2005,79(18):12088-12094.
    [112] Cambi, A., F. de Lange, N.M. van Maarseveen, et al.Microdomains of the C-type lectin DC-SIGN are portals for virusentry into dendritic cells. J Cell Biol,2004,164(1):145-155.
    [113] Kilby, J.M., S. Hopkins, T.M. Venetta, et al. Potent suppression ofHIV-1replication in humans by T-20, a peptide inhibitor ofgp41-mediated virus entry. Nat Med,1998,4(11):1302-1307.
    [114] Lalezari, J.P., K. Henry, M. O'Hearn, et al. Enfuvirtide, an HIV-1fusion inhibitor, for drug-resistant HIV infection in North andSouth America. N Engl J Med,2003,348(22):2175-2185.
    [115] Rimsky, L.T., D.C. Shugars, and T.J. Matthews. Determinants ofhuman immunodeficiency virus type1resistance to gp41-derivedinhibitory peptides. J Virol,1998,72(2):986-993.
    [116] Derdeyn, C.A., J.M. Decker, J.N. Sfakianos, et al. Sensitivity ofhuman immunodeficiency virus type1to the fusion inhibitor T-20is modulated by coreceptor specificity defined by the V3loop ofgp120. J Virol,2000,74(18):8358-8367.
    [117] Tachibana, K., S. Hirota, H. Iizasa, et al. The chemokine receptorCXCR4is essential for vascularization of the gastrointestinal tract.Nature,1998,393(6685):591-594.
    [118] Zhou, Q., D. Chen, E. Pierstorff, et al. Transcription elongationfactor P-TEFb mediates Tat activation of HIV-1transcription atmultiple stages. EMBO J,1998,17(13):3681-3691.
    [119] Marozsan, A.J., S.E. Kuhmann, T. Morgan, et al. Generation andproperties of a human immunodeficiency virus type1isolateresistant to the small molecule CCR5inhibitor, SCH-417690(SCH-D). Virology,2005,338(1):182-199.
    [120] Hallenberger, S., V. Bosch, H. Angliker, et al. Inhibition offurin-mediated cleavage activation of HIV-1glycoprotein gp160.Nature,1992,360(6402):358-361.
    [121] Freed, E.O., D.J. Myers, and R. Risser. Mutational analysis of thecleavage sequence of the human immunodeficiency virus type1envelope glycoprotein precursor gp160. J Virol,1989,63(11):4670-4675.
    [122] McCune, J.M., L.B. Rabin, M.B. Feinberg, et al. Endoproteolyticcleavage of gp160is required for the activation of humanimmunodeficiency virus. Cell,1988,53(1):55-67.
    [123] Leonard, C.K., M.W. Spellman, L. Riddle, et al. Assignment ofintrachain disulfide bonds and characterization of potentialglycosylation sites of the type1recombinant humanimmunodeficiency virus envelope glycoprotein (gp120) expressedin Chinese hamster ovary cells. J Biol Chem,1990,265(18):10373-10382.
    [124] Boge, M., S. Wyss, J.S. Bonifacino, et al. A membrane-proximaltyrosine-based signal mediates internalization of the HIV-1envelope glycoprotein via interaction with the AP-2clathrinadaptor. J Biol Chem,1998,273(25):15773-15778.
    [125] Ohno, H., R.C. Aguilar, M.C. Fournier, et al. Interaction ofendocytic signals from the HIV-1envelope glycoprotein complexwith members of the adaptor medium chain family. Virology,1997,238(2):305-315.
    [126] Dorfman, T., F. Mammano, W.A. Haseltine, et al. Role of thematrix protein in the virion association of the humanimmunodeficiency virus type1envelope glycoprotein. J Virol,1994,68(3):1689-1696.
    [127] Freed, E.O. and M.A. Martin. Virion incorporation of envelopeglycoproteins with long but not short cytoplasmic tails is blockedby specific, single amino acid substitutions in the humanimmunodeficiency virus type1matrix. J Virol,1995,69(3):1984-1989.
    [128] Freed, E.O. and M.A. Martin. Domains of the humanimmunodeficiency virus type1matrix and gp41cytoplasmic tailrequired for envelope incorporation into virions. J Virol,1996,70(1):341-351.
    [129] Mammano, F., E. Kondo, J. Sodroski, et al. Rescue of humanimmunodeficiency virus type1matrix protein mutants by envelopeglycoproteins with short cytoplasmic domains. J Virol,1995,69(6):3824-3830.
    [130] Lodge, R., H. Gottlinger, D. Gabuzda, et al. The intracytoplasmicdomain of gp41mediates polarized budding of humanimmunodeficiency virus type1in MDCK cells. J Virol,1994,68(8):4857-4861.
    [131] Owens, R.J., J.W. Dubay, E. Hunter, et al. Humanimmunodeficiency virus envelope protein determines the site ofvirus release in polarized epithelial cells. Proc Natl Acad Sci U SA,1991,88(9):3987-3991.
    [132] Murakami, T. and E.O. Freed. Genetic evidence for an interactionbetween human immunodeficiency virus type1matrix andalpha-helix2of the gp41cytoplasmic tail. J Virol,2000,74(8):3548-3554.
    [133] Murakami, T. and E.O. Freed. The long cytoplasmic tail of gp41isrequired in a cell type-dependent manner for HIV-1envelopeglycoprotein incorporation into virions. Proc Natl Acad Sci U S A,2000,97(1):343-348.
    [134] Zhu, P., E. Chertova, J. Bess, Jr., et al. Electron tomographyanalysis of envelope glycoprotein trimers on HIV and simianimmunodeficiency virus virions. Proc Natl Acad Sci U S A,2003,100(26):15812-15817.
    [135] Cantin, R., J.F. Fortin, G. Lamontagne, et al. The presence ofhost-derived HLA-DR1on human immunodeficiency virus type1increases viral infectivity. J Virol,1997,71(3):1922-1930.
    [136] Cosma, A., D. Blanc, J. Braun, et al. Enhanced HIV infectivity andchanges in GP120conformation associated with viralincorporation of human leucocyte antigen class I molecules. AIDS,1999,13(15):2033-2042.
    [137] Martin, G., Y. Beausejour, J. Thibodeau, et al. Envelopeglycoproteins are dispensable for insertion of host HLA-DRmolecules within nascent human immunodeficiency virus type1particles. Virology,2005,335(2):286-290.
    [138] Esser, M.T., D.R. Graham, L.V. Coren, et al. Differentialincorporation of CD45, CD80(B7-1), CD86(B7-2), and majorhistocompatibility complex class I and II molecules into humanimmunodeficiency virus type1virions and microvesicles:implications for viral pathogenesis and immune regulation. J Virol,2001,75(13):6173-6182.
    [139] Giguere, J.F., S. Bounou, J.S. Paquette, et al. Insertion ofhost-derived costimulatory molecules CD80(B7.1) and CD86(B7.2) into human immunodeficiency virus type1affects the viruslife cycle. J Virol,2004,78(12):6222-6232.
    [140] Beausejour, Y. and M.J. Tremblay. Interaction between thecytoplasmic domain of ICAM-1and Pr55Gag leads to acquisitionof host ICAM-1by human immunodeficiency virus type1. J Virol,2004,78(21):11916-11925.
    [141] Bounou, S., J.E. Leclerc, and M.J. Tremblay. Presence of hostICAM-1in laboratory and clinical strains of humanimmunodeficiency virus type1increases virus infectivity andCD4(+)-T-cell depletion in human lymphoid tissue, a major site ofreplication in vivo. J Virol,2002,76(3):1004-1014.
    [142] Tardif, M.R. and M.J. Tremblay. Presence of host ICAM-1inhuman immunodeficiency virus type1virions increases productiveinfection of CD4+T lymphocytes by favoring cytosolic delivery ofviral material. J Virol,2003,77(22):12299-12309.
    [143] Saifuddin, M., C.J. Parker, M.E. Peeples, et al. Role ofvirion-associated glycosylphosphatidylinositol-linked proteinsCD55and CD59in complement resistance of cell line-derived andprimary isolates of HIV-1. J Exp Med,1995,182(2):501-509.
    [144] Tanaka, M., T. Ueno, T. Nakahara, et al. Downregulation of CD4is required for maintenance of viral infectivity of HIV-1. Virology,2003,311(2):316-325.
    [145] Chertova, E., O. Chertov, L.V. Coren, et al. Proteomic andbiochemical analysis of purified human immunodeficiency virustype1produced from infected monocyte-derived macrophages. JVirol,2006,80(18):9039-9052.
    [146] Meerloo, T., M.A. Sheikh, A.C. Bloem, et al. Host cell membraneproteins on human immunodeficiency virus type1after in vitroinfection of H9cells and blood mononuclear cells. Animmuno-electron microscopic study. J Gen Virol,1993,74(Pt1):129-135.
    [147] Pelchen-Matthews, A., B. Kramer, and M. Marsh. InfectiousHIV-1assembles in late endosomes in primary macrophages. JCell Biol,2003,162(3):443-455.
    [148] Hemler, M.E. Tetraspanin functions and associated microdomains.Nat Rev Mol Cell Biol,2005,6(10):801-811.
    [149] Stipp, C.S., T.V. Kolesnikova, and M.E. Hemler. Functionaldomains in tetraspanin proteins. Trends Biochem Sci,2003,28(2):106-112.
    [150] Checkley, M.A., B.G. Luttge, and E.O. Freed. HIV-1envelopeglycoprotein biosynthesis, trafficking, and incorporation. J MolBiol,2011,410(4):582-608.
    [151] Kitadokoro, K., D. Bordo, G. Galli, et al. CD81extracellulardomain3D structure: insight into the tetraspanin superfamilystructural motifs. EMBO J,2001,20(1-2):12-18.
    [152] Min, G., H. Wang, T.T. Sun, et al. Structural basis for tetraspaninfunctions as revealed by the cryo-EM structure of uroplakincomplexes at6-A resolution. J Cell Biol,2006,173(6):975-983.
    [153] Seigneuret, M., A. Delaguillaumie, C. Lagaudriere-Gesbert, et al.Structure of the tetraspanin main extracellular domain. A partiallyconserved fold with a structurally variable domain insertion. J BiolChem,2001,276(43):40055-40064.
    [154] Charrin, S., S. Manie, C. Thiele, et al. A physical and functionallink between cholesterol and tetraspanins. Eur J Immunol,2003,33(9):2479-2489.
    [155] Nydegger, S., S. Khurana, D.N. Krementsov, et al. Mapping oftetraspanin-enriched microdomains that can function as gatewaysfor HIV-1. J Cell Biol,2006,173(5):795-807.
    [156] Odintsova, E., T.D. Butters, E. Monti, et al. Gangliosides play animportant role in the organization of CD82-enriched microdomains.Biochem J,2006,400(2):315-325.
    [157] Ono, M., K. Handa, S. Sonnino, et al. GM3ganglioside inhibitsCD9-facilitated haptotactic cell motility: coexpression of GM3andCD9is essential in the downregulation of tumor cell motility andmalignancy. Biochemistry,2001,40(21):6414-6421.
    [158] Jolly, C. and Q.J. Sattentau. Human immunodeficiency virus type1assembly, budding, and cell-cell spread in T cells take place intetraspanin-enriched plasma membrane domains. J Virol,2007,81(15):7873-7884.
    [159] Lobritz, M.A., A.N. Ratcliff, and E.J. Arts. HIV-1Entry, Inhibitors,and Resistance. Viruses,2010,2(5):1069-1105.
    [160] Dragic, T., A. Trkola, D.A. Thompson, et al. A binding pocket fora small molecule inhibitor of HIV-1entry within thetransmembrane helices of CCR5. Proc Natl Acad Sci U S A,2000,97(10):5639-5644.
    [161] Tsamis, F., S. Gavrilov, F. Kajumo, et al. Analysis of themechanism by which the small-molecule CCR5antagonistsSCH-351125and SCH-350581inhibit human immunodeficiencyvirus type1entry. J Virol,2003,77(9):5201-5208.
    [162] Veazey, R.S., P.J. Klasse, T.J. Ketas, et al. Use of a small moleculeCCR5inhibitor in macaques to treat simian immunodeficiencyvirus infection or prevent simian-human immunodeficiency virusinfection. J Exp Med,2003,198(10):1551-1562.
    [163] Veazey, R.S., M.S. Springer, P.A. Marx, et al. Protection ofmacaques from vaginal SHIV challenge by an orally deliveredCCR5inhibitor. Nat Med,2005,11(12):1293-1294.
    [164] Dorr, P., M. Westby, S. Dobbs, et al. Maraviroc (UK-427,857), apotent, orally bioavailable, and selective small-molecule inhibitorof chemokine receptor CCR5with broad-spectrum anti-humanimmunodeficiency virus type1activity. Antimicrob AgentsChemother,2005,49(11):4721-4732.
    [165] Kondru, R., J. Zhang, C. Ji, et al. Molecular interactions of CCR5with major classes of small-molecule anti-HIV CCR5antagonists.Mol Pharmacol,2008,73(3):789-800.
    [166] Fatkenheuer, G., M. Nelson, A. Lazzarin, et al. Subgroup analysesof maraviroc in previously treated R5HIV-1infection. N Engl JMed,2008,359(14):1442-1455.
    [167] Gulick, R.M., J. Lalezari, J. Goodrich, et al. Maraviroc forpreviously treated patients with R5HIV-1infection. N Engl J Med,2008,359(14):1429-1441.
    [168] Araujo, L.A., D.M. Junqueira, R.M. de Medeiros, et al. Naturallyoccurring resistance mutations to HIV-1entry inhibitors insubtypes B, C, and CRF31_BC. J Clin Virol,2012,54(1):6-10.
    [169] Crabb, C. GlaxoSmithKline ends aplaviroc trials. AIDS,2006,20(5):641.
    [170] Westby, M., C. Smith-Burchnell, J. Mori, et al. Reduced maximalinhibition in phenotypic susceptibility assays indicates that viralstrains resistant to the CCR5antagonist maraviroc utilizeinhibitor-bound receptor for entry. J Virol,2007,81(5):2359-2371.
    [171] Ogert, R.A., L. Wojcik, C. Buontempo, et al. Mapping resistanceto the CCR5co-receptor antagonist vicriviroc using heterologouschimeric HIV-1envelope genes reveals key determinants in theC2-V5domain of gp120. Virology,2008,373(2):387-399.
    [172] Tsibris, A.M., M. Sagar, R.M. Gulick, et al. In vivo emergence ofvicriviroc resistance in a human immunodeficiency virus type1subtype C-infected subject. J Virol,2008,82(16):8210-8214.
    [173] Alcantara, K.C., J.B. Lins, M. Albuquerque, et al. HIV-1mother-to-child transmission and drug resistance among Brazilianpregnant women with high access to diagnosis and prophylacticmeasures. J Clin Virol,2012,54(1):15-20.
    [174] Steain, M.C., B. Wang, and N.K. Saksena. Analysis of HIV-1sequences vertically transmitted to infants in Kisumu, Kenya. JClin Virol,2006,36(4):298-302.
    [175] Ahmad, N. The vertical transmission of human immunodeficiencyvirus type1: molecular and biological properties of the virus. CritRev Clin Lab Sci,2005,42(1):1-34.
    [176] Luzuriaga, K. Mother-to-child transmission of HIV: a globalperspective. Curr Infect Dis Rep,2007,9(6):511-517.
    [177] Hoffmann, F.G., X. He, J.T. West, et al. Genetic variation inmother-child acute seroconverter pairs from Zambia. AIDS,2008,22(7):817-824.
    [178] Zhang, H., F. Hoffmann, J. He, et al. Characterization of HIV-1subtype C envelope glycoproteins from perinatally infectedchildren with different courses of disease. Retrovirology,2006,3:73.
    [179] Abrahamyan, L.G., R.M. Markosyan, J.P. Moore, et al. Humanimmunodeficiency virus type1Env with an intersubunit disulfidebond engages coreceptors but requires bond reduction afterengagement to induce fusion. J Virol,2003,77(10):5829-5836.
    [180] Gordon-Alonso, M., M. Yanez-Mo, O. Barreiro, et al. TetraspaninsCD9and CD81modulate HIV-1-induced membrane fusion. JImmunol,2006,177(8):5129-5137.
    [181] Weng, J., D.N. Krementsov, S. Khurana, et al. Formation ofsyncytia is repressed by tetraspanins in human immunodeficiencyvirus type1-producing cells. J Virol,2009,83(15):7467-7474.
    [182] Zhang, L.Q., P. MacKenzie, A. Cleland, et al. Selection forspecific sequences in the external envelope protein of humanimmunodeficiency virus type1upon primary infection. J Virol,1993,67(6):3345-3356.
    [183] Zhu, T., H. Mo, N. Wang, et al. Genotypic and phenotypiccharacterization of HIV-1patients with primary infection. Science,1993,261(5125):1179-1181.
    [184] Wolinsky, S.M., C.M. Wike, B.T. Korber, et al. Selectivetransmission of human immunodeficiency virus type-1variantsfrom mothers to infants. Science,1992,255(5048):1134-1137.
    [185] Barin, F., G. Jourdain, S. Brunet, et al. Revisiting the role ofneutralizing antibodies in mother-to-child transmission of HIV-1. JInfect Dis,2006,193(11):1504-1511.
    [186] Dickover, R., E. Garratty, K. Yusim, et al. Role of maternalautologous neutralizing antibody in selective perinataltransmission of human immunodeficiency virus type1escapevariants. J Virol,2006,80(13):6525-6533.
    [187] Wei, X., J.M. Decker, S. Wang, et al. Antibody neutralization andescape by HIV-1. Nature,2003,422(6929):307-312.
    [188] Lamers, S.L., J.W. Sleasman, J.X. She, et al. Persistence ofmultiple maternal genotypes of human immunodeficiency virustype I in infants infected by vertical transmission. J Clin Invest,1994,93(1):380-390.
    [189] Narwa, R., P. Roques, C. Courpotin, et al. Characterization ofhuman immunodeficiency virus type1p17matrix protein motifsassociated with mother-to-child transmission. J Virol,1996,70(7):4474-4483.
    [190] van Opijnen, T., R.E. Jeeninga, M.C. Boerlijst, et al. Humanimmunodeficiency virus type1subtypes have a distinct longterminal repeat that determines the replication rate in ahost-cell-specific manner. J Virol,2004,78(7):3675-3683.
    [191] Russell, E.S., J.J. Kwiek, J. Keys, et al. The genetic bottleneck invertical transmission of subtype C HIV-1is not driven by selectionof especially neutralization-resistant virus from the maternal viralpopulation. J Virol,2011,85(16):8253-8262.
    [192] Troyer, R.M., K.R. Collins, A. Abraha, et al. Changes in humanimmunodeficiency virus type1fitness and genetic diversity duringdisease progression. J Virol,2005,79(14):9006-9018.
    [193] Marozsan, A.J., D.M. Moore, M.A. Lobritz, et al. Differences inthe fitness of two diverse wild-type human immunodeficiencyvirus type1isolates are related to the efficiency of cell binding andentry. J Virol,2005,79(11):7121-7134.
    [194] Rangel, H.R., J. Weber, B. Chakraborty, et al. Role of the humanimmunodeficiency virus type1envelope gene in viral fitness. JVirol,2003,77(16):9069-9073.
    [195] Ceballos, A., G. Andreani, C. Ripamonti, et al. Lack of viralselection in human immunodeficiency virus type1mother-to-childtransmission with primary infection during late pregnancy and/orbreastfeeding. J Gen Virol,2008,89(Pt11):2773-2782.
    [196] Zhang, H., M. Rola, J.T. West, et al. Functional properties of theHIV-1subtype C envelope glycoprotein associated withmother-to-child transmission. Virology,2010,400(2):164-174.
    [197] Martinez-Picado, J., J.G. Prado, E.E. Fry, et al. Fitness cost ofescape mutations in p24Gag in association with control of humanimmunodeficiency virus type1. J Virol,2006,80(7):3617-3623.
    [198] Chen, B., E.M. Vogan, H. Gong, et al. Structure of an unligandedsimian immunodeficiency virus gp120core. Nature,2005,433(7028):834-841.
    [199] Pancera, M., S. Majeed, Y.E. Ban, et al. Structure of HIV-1gp120with gp41-interactive region reveals layered envelope architectureand basis of conformational mobility. Proc Natl Acad Sci U S A,2010,107(3):1166-1171.
    [200] Gray, L., J. Sterjovski, P.A. Ramsland, et al. Conformationalalterations in the CD4binding cavity of HIV-1gp120influencinggp120-CD4interactions and fusogenicity of HIV-1envelopesderived from brain and other tissues. Retrovirology,2011,8:42.
    [201] Rossi, F., B. Querido, M. Nimmagadda, et al. The V1-V3region ofa brain-derived HIV-1envelope glycoprotein determinesmacrophage tropism, low CD4dependence, increased fusogenicityand altered sensitivity to entry inhibitors. Retrovirology,2008,5:89.
    [202] Sterjovski, J., M.J. Churchill, A. Ellett, et al. Asn362in gp120contributes to enhanced fusogenicity by CCR5-restricted HIV-1envelope glycoprotein variants from patients with AIDS.Retrovirology,2007,4:89.
    [203] Sterjovski, J., M.J. Churchill, M. Roche, et al. CD4-binding sitealterations in CCR5-using HIV-1envelopes influencinggp120-CD4interactions and fusogenicity. Virology,2011,410(2):418-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700