部分根域干燥栽培条件下葡萄树体生长及根域土壤水分调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
部分根域干燥(PRD)是一种节水新技术,可显著提高作物水分利用效率,改善作物产品品质,降低营养生长量的同时减少田间工作量。为了广泛的推广和应用,应针对部分根域干燥下作物的根系生长、分布及树体生长势的特点,对不同作物品种和栽培条件下的适宜土壤水分调控方法进行研究。
     为了制定部分根域干燥栽培条件下适宜的灌水量和灌水下限的数量化指标,为PRD技术的定量化精确化灌溉施肥和推广应用提供依据,本试验以‘藤稔’(vitis vinifera L )葡萄为试验材料,研究了避雨栽培条件下部分根域干燥对葡萄生长过程中营养生长的生理指标、产量、果实品质、水分利用效率的影响,以及该条件下最适根域湿润容积,干湿区域灌水下限,根系生长及树体营养元素含量的变化。主要研究结果表明:
     1)部分根域干燥技术显著抑制了葡萄的营养生长:PRD处理植株新梢长度、新梢基部直径和单位新梢叶面积都与常规双侧灌溉有显著差异;PRD处理植株的果实品质显著提高:可溶性固形物含量增加,果酸含量降低;PRD处理的水分利用效率是常规双侧灌溉2倍,节约用水约50%。
     2)根域湿润容积对葡萄树体生长与根域土壤水分状况的影响表明:平均每1新梢(约0.6-0.7平米叶面积)拥有约25升的根域湿润容积处理,其灌溉水量是常规灌溉的一半,但湿区土壤水势、果实产量、品质与常规灌溉没有显著差异,可见约每平米叶面积拥有约40升的根域湿润容积能够满足部分根域干燥栽培葡萄生长发育的需要。
     3)果实成熟期,与常规灌溉相比,PRD处理湿区灌溉下限为-30kpa时,葡萄果实体积、产量下降均不显著,果实品质显著提高;当土壤灌水下限阈值为-15kpa时,在交替过程中,其干区土壤水势值变化较大,甚至达到了-80kpa的极度干旱状况。在综合考虑节水、不降低产量和提高水分利用效率等多种因素的基础上,部分根域干燥条件下,成熟期设施葡萄灌水下限应该控制在-30kpa左右为宜,即土壤饱和持水量的70%左右。
     4)部分根域干燥促进了吸收根系的生长;在部分根域干燥条件下,根系对NO3-吸收亲和力高于NH4+,对总氮的吸收量显著降低;根系与叶片当中的K+含量均显著提高,有助于提高植株的抗逆性,也有助于果实品质的改善。
As a new water-saving technology,PRD can improve the water use efficiency ,the taste and color and other fruit quality. By reducing the vegetative growth, it can also reduce the workload. In order to widely use ,there should be researches on the regulation methods for different crop and different cultivation conditions,such as wetting volume, irrigation low limit, alternate cycle,the best beginning and ending and optimal design of these above factors. In order to provide suitable irrigation water low limit and wetting volume for precision irrigation and fertilization under partial root-zone drying,in our research ,We studied the effect of partial root-zone drying to the vegetative growth,yield and quality of the fruits and water use efficiency. We also did some research on the most suitable water wetting volume,the low water limit of irrigation for the wet area and dry area and the roots growth and nutrient contents change.Our results showed:
     1)Compared to the conventional irrigation,partial root-zone drying reduced the vegetative growth of the grape significantly:the shoot length and total leaf area are smaller than that of conventional irrigation. The fruit quality of PRD also changed abviously :the content of soluble solid and ratio of solid-acid ratio increased. The fruit matured ahead of time. The water use efficiency was significantly increased and the water amount decreased by about 50% compared to conventional irrigation.
     2)The research of the effect of the wetting volume under partial root-zone drying to the vine growth and development and water status of root zone showed that,the treatment with 27L wetting volume for every one shoot(per 0.7m2 leaf areas ) has no difference with double irrigation treatment which had the same wetting volume on water potential of wet zone, fruit yield and quality,but increased the water use efficiency. The results suggest that 27L wetting volume per shoot or 40Lwetting volume per square meter leaf areas can meet the requirement of the growth and development of 'vitis vinifera L 'grapevine under partial root-zone drying.
     3)In the mature stage,the fruit bulk and quality had no different with the conventional irrigation when the irrigation low limit was -15kpa and -30kpa in the wet area,while the limti was -15kpa,the soil water potential became lower ,even down to -80kpa. Considered of water-saving,yield maintaining and improving water use efficiency and other factors, the water irrigation low limit should be set at about -30kpa, that is 70% of soil saturated water content.
     4)The partial root-zone drying has strongly changed the structure of the root system and promoted the growth of the roots. The absorbtion of NO3-is higher than that of NH4+in the roots,while the absorbtion of tota nitrogen decrease. The content of K+both in roots and leaves are higher than CK,which will help to improve plant resistance, also contribute to the improvement of fruit quality.
引文
[1]张正斌.中国旱地和高水效农业的研究与发展[M].北京:科学出版社,2006:5.
    [2]吴普特,冯浩,等.中国节水农业战略思考与研发重点[J].
    [3]张正斌,徐萍.中国水资源和粮食安全问题探讨[J].中国生态农业学报,2008,16(5):1305—1310.
    [4]张文慧.节水灌溉技术的现状及发展趋势[J].行业发展,2005,5:27-28.
    [5]罗玮.节水灌溉技术的发展现状及趋势[J].海河水利,2005,8:40-43.
    [6]程福厚.农艺和生物节水技术在果树上的研究进展[J].河北果树,2004,1:1-3.
    [7]田军仓,韩丙芳,等.精细地面灌溉技术的研究进展[J].宁夏农学院学报,2002,23(3):74-78.
    [8]钱卫鹏.大棚内膜下分根区交替滴灌不同灌溉下限对甜瓜生长及水分利用效率的影响[D].西北农业大学硕士研究生毕业论文,2007.
    [9]Chalmers DJ,et al.The physiology of growth control of peach and pear trees using Reduced irrigation[J].Acta Horticulture,1984,146.
    [10]Chalmers DJ,Burge P,Hand,Michell PD.The mechanism of regulation of'Bartlet' pear fruit and vegetative growth by irrigation with holding and regulated deficit irrigation[J].Journal of the American Society for Horticultural Science,1986,11(6).
    [11]丁三姐,魏钦平,徐凯.果树节水灌溉研究进展[J].河北果树,2006,1.
    [12]S. Poni,Tagliavini,etc. Influence of root pruning and water stress on growthand physiological factors of potted apple, grape, peach and pear trees[J].Scientia Horticulturae,1992(52),3.
    [13]史文娟,胡笑涛,康绍忠.干旱缺水条件下作物调亏灌溉技术研究状况与展望[J].干旱地区农业研究,1998,16.
    [14]Dry P R,Loveys B R. Factors influencing grapevine vigour and the potential for control with partial root zone drying[J].Journal of Grape and Wine Research,1998,4.
    [15]贾希友.金冠苹果根系修剪能增产[J].山西果树,1994 ,3.
    [16]潘建平,匡石滋,等.根系修剪对仙婆果荔枝生长的影响试验[J].广东农业科学。2006,3: 13-14.
    [17]王世平.葡萄根域限制栽培技术[J].河北林业科技,2004,10:82-85.
    [18]王世平.不同生态条件下葡萄根域限制栽培模式与管理[J].中国南方果树,2006,35(2):52-56.
    [19]王世平,张才喜,等.果树根域限制栽培研究进展[J].果树学报,2002,19(5):298-302.
    [20]朱丽娜,鲁华东,等.根域容积对藤稔葡萄幼树生长及营养元素吸收的影响[J].植物营养与肥料学报,2004,10(6):674-676.
    [21]Avner Carmi.Growth,,water transport and transpiration in root-restricted plants of bean and their relation to abscisic acid accumulation[J].Plant Science ,1995,107:69-76.
    [22]Mohd Razi Ismail ,Khuzaimah Mohd Noor,etc.Growth water relations and physiological processes of starfruit (Averrhoa carambola L) plants under root growth restriction.[J]Scientia Horticulturae,1996, 66:5 1-58.
    [23]Mohd Razi Ismail,W.J. Davies,etc.Root restriction affects leaf growth and stomatal response:the role of xylem sap ABA[J].Scientia Horticulturae,1998,74:257-268.
    [24]Mun S R,Sharp R E. Involvement of abscisic acid in controlling plant growth in soil of low water potential[J].Aust J Plant Physiol,1993,20.
    [25]Gomez—Cadenas A,Tadeo F R,Talon M ,eta1.Leaf abscission induced by ethylene in water stressed intact seedling of Cleopatra Mandarin requires previous abscisic acid accumulation in root[J].Plant Physiology,1996,42(17).
    [26]Tan C S,Cornelisse A,Buttery B R.Transpiration,stomatal conductance,and photosynthesis of tomato plants with various proportions of root system supplied with water[J].Journal of the American Society for Horticultural Science,1981,106(2).
    [27]Bielorai H.The effect of partial wetting of the root zone on yield and water use efficiency in a drip-and-sprinkle irrigated mature grapefruit grove[J].Irrigation science,1982(3).
    [28]梁宗锁,康绍忠,等.控制性分根交替灌水的节水效应[J].农业工程学报,1997,12:58-64.
    [29]史文娟,康绍忠,等.分根区垂向交替供水的节水机理及效应[J].农业工程学报,2000,16(5):11-16.
    [30]孙景生,康绍忠,等.控制性交替灌溉技术的研究进展[J].农业工程学报,2001,17(4):1-5.
    [31]康绍忠,潘英华,等.控制性作物根系分区交替灌溉的理论与试验[J].水利学报,2001,11:80-87.
    [32]杜太生,康绍忠,等.果树根系分区交替灌溉研究进展[J].农业工程学报,2005,21(2):172-179.
    [33]S.WILKINSON &,W. J. DAVIES.ABA-based chemical signalling:the co-ordination of responses to stress in plants[J]. Plant, Cell and Environment ,2002,25.
    [34] Wagdy Y.Sobeih,lan C.Dodd,etc.Long-distance signals regulating stomatal conductance and leaf growth in tomato(Lycopersicon esculentum) plants subjeted to partial root-zone drying[J].Journal of Experimental Botany,004,55(407):2353-2364.
    [35] H.MEDRANO,J.M.ESCALONA,ETC.Regulation of Photosynthesis of C3 Plant in Response toProgressive Drought:Stomatal Conductance as a Reference Paramater[J].Annals of Botany,2002,89:895-905.
    [36]Guzel R. Kudoyarova,Lidia B. Vysotskaya.Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves[J].Journal of Experimental Botany,2007,58(2):161–168.
    [37]Fulai Liu,Ri Song,etc. Measurement and modelling of ABA sgnalling in potao (Solanum tuberosum L.) during partial root-zone drying[J].Environmental and Experimental Botany, 2008,63 :385–391.
    [38]J.A. Zegbe-Dom?′nguez,M.H. Behboudian,etc.Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in‘Petopride’processing tomato (Lycopersicon esculentum,Mill.)[J].Scientia Horticulturae 2003,98:505–510.
    [39]William J. Davies,Sally Wilkinson,Brian Loveys.Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J].New Phytologist,2002,153:449–460.
    [40]康绍忠,张建华,梁宗锁,等.控制性交替灌溉一种新的农田节水调控思路[J].干旱地区农业研究,1997(15).
    [41] Guzel R. Kudoyarova, Lidia B. Vysotskaya,etc.Effect of partial rootzone drying on the concentration of zeatin-type cytokinins in tomato (Solanum lycopersicum L.) xylem sap and leaves[J]. Journal of Experimental Botany,2007 58(2).
    [42] North G B,Nobel P S. Radial hydraulic conductivity of individual root tissues of opuntia ficus-induica (L. ) miller as soil moisture varies[J]. Annuls of Botany (London),1996,77.
    [43] DRY P. R.,LOVEYS B. R.,etal.Partial drying of the rootzone of grape. II. Changes in the pattern of root development[J]. Vitis,2000(39).
    [44]S. Poni ,F. Bernizzoni,S. Civardi. Response of“Sangiovese”grapevines to partial root-zone drying:Gas-exchange,growth and grape composition[J].
    [45]魏永霞,张忠学,等.东北半干旱区大豆抗旱灌溉最佳供水模式的盆栽试验研究[J].灌溉排水学报,2006,25(3):34-38.
    [46]杨秀英,杜太生,等.干旱沙漠绿洲区地膜玉米控制性隔沟交替灌溉节水技术研究[J].干旱地区农业研究,2003,21(3):74-78.
    [47]胡笑涛,康绍忠,等.番茄垂向分根区交替控制滴灌室内试验及节水机理[J].农业工程学报,2005,21(7):1-5.
    [48]杜太生,康绍忠,等.根系分区交替滴灌对棉花产量和水分利用效率的影响[J].中国农业科学,2005,38(10):2061-2068.
    [49] Shaozhong Kang,Lu Zhang,etc.An improved water use efficiency for hot pepper grown under controlled alternate drip irrigation on partial roots[J].Scientia Horticulturae,2001,89:257-267.
    [50] Shaozhong Kang,Xiaotao Hu,etc.Soil water distribution,water use and yield response to partial root zone drying under a shallow groundwater table condition in a pear orchard[J].Scientia Horticulturae,2002,92:277-291.
    [51]李志军,张富仓,等.控制性根系分区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报,2005,21(8):17-22.
    [52]汪明霞,陈晓飞,等.控制性交替灌溉对大豆生长发育的影响[J].灌溉排水学报,2008,27(4):22-25.
    [53]李彩霞,陈晓飞,等.控制性交替灌溉对玉米生长发育的影响[J].干旱地区农业研究,2006,24(5):81-84.
    [54]Sladjana Savic, Radmila Stikic,etc.Comparative effects of regulated deficit irrigation (RDI) and partial root-zone drying (PRD) on growth and cell wall peroxidase activity in tomato fruits[J].Scientia Horticulturae,2008,117:15–20.
    [55]Brian Loveys,Jim Grant,Peter Dry,eta1.Progress in the development of partial rootzone drying[J].http://WWW.geoflow.com/agricuhure/prdi.htm.2003—10—26.
    [56]Claudia R.de Souza,Joao P.Maroco,Tiago P.dos Santos,eta1.Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field—grown grapevines(Vitis vinifera cv.Moscate1)[J].Functional Plant Biology,2003,30(6).
    [57]杜太生,康绍忠,等.滴灌条件下不同根区交替湿润对葡萄生长和水分利用的影响[J].农业工程学报,2005,21(11):43-48.
    [58]DRY P. R.,LOVEYS B. R,etal.Partial drying of the rootzone of grape. I.Transient changes in shoot growth and gas exchange[J]. Vitis,2000(39).
    [59]Gu S L David Z,Simon G,eta1.Effect of partial rootzone drying on vine water relations,vegetative growth,mineral nutrition,yield and fruit quality in field—grown mature sauvignon blanc grapevines[J].
    [60]Zegbe J A,Behboudian M H,Clothier B E.Partial rootzone drying is a feasible option for irrigating processing tomatoes[J].Agricultural Water Management,2004,68.
    [61]王志平,李昌伟,等.隔沟交替灌溉在甘蓝、青花菜和大白菜上的应用[J].中国蔬菜,2006,10:16-18.
    [62]汪耀富,蔡寒玉,等.分根交替灌溉对烤烟生理特性和烟叶产量的影响[J].干旱地区农业研究,2006,24(5):93-99.
    [63]Fulai Liu,Ali Shahnazari,etc.Physiological responses of potato (Solanum tuberosum L.) to partialroot-zone drying:ABA signalling,eaf gas exchange,and water use efficiency[J].Journal of Experimental Botany,2006,57,(14):3727–3735.
    [64]DaozhiGong,Shaozhong Kang,etc.Responses of canopy transpiration and canopy conductance of peach (Prunus persica) trees to alternate partial root zone drip irrigation[J].Hydrol. Process. 2005,19:2575–2590.
    [65]Shaozhong Kang,Xiaotao Hu,etc.The effects of partial rootzone drying on root, trunk sap flow and water balance in an irrigated pear (Pyrus communis L.) orchard[J].Journal of Hydrology 2003,280:192–206.
    [66]Li-Song Tang,,Yan Li,etc.Physiological and yield responses of cotton under partial root zone irrigation[J].Field Crops Research 2005,94:214–223.
    [67]K. Dorji, M.H. Behboudian,etc.Water relations, growth, yield,and fruit quality of hot pepper under deficit irrigation and partial rootzone drying[J].Scientia Horticulturae 2005,104:137–149.
    [68]M. Centritto,S. Wahbi,etc.Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climateII. Photosynthetic responses.[J]Agriculture,Ecosystems and Environment,2005 106:303–311.
    [69]Taisheng Du,Shaozhong Kang,etc.Yield and physiological responses of cotton to partial root-zone irrigation in the oasis field of northwest China[J].agricultura l water management,2006 ,84:41– 52.
    [70]Cafer Genc?og?lan, Hasibe Altunbey ,etc.Response of green bean (P. vulgaris L.) to subsurface drip irrigation and partial rootzone-drying irrigation[J].agricultural water management,2006,84:274– 280.
    [71]Ali Shahnazari ,Fulai Liu ,etc.Effects of partial root-zone drying on yield,tuber size and water use efficiency in potato under field conditions[J].Field Crops Research,2006.
    [72]韩艳丽,康绍忠.控制性分根交替灌溉对玉米养分吸收的影响[J].灌溉排水,2001,20(2):5-8.
    [73]邢维芹,王林权,等.半干旱区夏玉米的水肥空间耦合效应[J].农业现代化研究,2001,22(3):150-154.
    [74]Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions[J]?
    [75]H.Tahi,S.Wahbi,etc.Water relations,photosynthesis, growth and water-use efficiency in tomato plants subjected to partial rootzone drying and regulated deficit irrigation[J].Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology,2007(141).
    [76]R. Wakrim,S. Wahbi,etc.Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgarisL.)[J]. Agriculture,Ecosystems & Environment,2005(106).
    [77]张新宁,赵健,等.滴灌条件下葡萄根系分布的研究初报[J].中外葡萄与葡萄酒,2005,8:16-18.
    [78]林华,李疆.干旱荒漠地区葡萄滴灌试验.新疆农业大学学报[J].2003,26(4):62-64.
    [79]E. Salgado,R. Caut?′n.Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation[J].agricultural water management,008,95:817–824.
    [80]冯广龙,刘昌明.土壤水分对作物根系生长及分布的调控作用[J].生态农业研究,1996,4(3):5-10.
    [81]王世平,张才喜.葡萄根域限制栽培的适宜根域容积研究[J].中国园艺学会第九届学术年会论文集,166-170.
    [82]栾时雨.塑料大棚黄瓜的灌水始点[J].灌溉排水,1990,9(1):62-65.
    [83]田义,张玉龙,虞娜等.温室地下滴灌灌水控制下限对番茄生长发育、果实品质和产量的影响[J].干旱地区农业研究,2006:24(5):88-92.
    [84]孙华银,康绍忠,等.根系分区交替灌溉对温室甜椒不同灌水下限的相应[J].农业工程学报,2008,24(6):78-85.
    [85]李振勇.不同副梢处理对赤霞珠葡萄生长结果的影响[J].中外葡萄与葡萄酒,2005,4:34-38.
    [86]郁松林,宋于洋.主、副梢叶片之间的比例关系对葡萄浆果生长发育和品质的影响[J].石河子农学院学报,1996,33(1):26-32.
    [87]刘慧颖,娄春荣,等.葡萄叶面积非离体测定新方法[J].北方果树,2007,9:7-8.
    [88]高俊萍,牟鹏,等.葡萄新梢长度与叶面积的关系[J].果树学报,2004,21(1):70-72.
    [89]高俊萍,牟鹏,等.葡萄新梢长度、叶面积系数与合理负载量[J].葡萄栽培,26-29.
    [90]蔡昆争,吴学祝,等.不同生育期水分胁迫对水稻根系活力、叶片水势和保护酶活性的影响[J].华南农业大学学报,2008,29(2):7-11.
    [91]Shao Guang-Cheng, Zhang Zhan-Yu,etc.Comparative effects of deficit irrigation (DI) and partial rootzone drying (PRD)on soil water distribution,water use,growth and yield in greenhouse grown hot pepper[J].Scientia Horticulturae,2008,3011:6-12.
    [92]William J. Davies,Sally Wilkinson,etc.Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture[J].New Phytologist,2002,153:449–460.
    [93]R. Stikic,S. Popovic,etc.PARTIAL ROOT DRYING (PRD):A NEW TECHNIQUE FOR GROWING PLANTS THAT SAVES WATER AND IMPROVES THE QUALITY OF FRUIT[J].PLANT PHYSIOL.,2003:164–171.
    [94]梁银丽,康绍忠.节水灌溉对冬小麦光合速率和产量的影响[J].西北农业大学学报,1998,26(4):16-20.
    [95]梁宗锁,康绍忠,等.植物对土壤干旱信号的感知、传递及水分利用的控制[J].干旱地区农业研究,1999,17(2):72-79.
    [96]龚道枝,康绍忠,等.分根交替灌溉对土壤水分分布和桃树根茎液流动态的影响[J].水利学报,2004,10:112-119.
    [97]方志刚,马富裕,等.加工番茄膜下滴灌根系分布规律的研究[J].新疆农业科学,2008,45(1):15-20.
    [98]高照全,张显川,等.不同水分条件下桃树根系的分形特征[J].天津农业科学,2006,12(3):20-22.
    [99]王振华,郑旭荣,等.非充分灌溉对地下滴灌棉花根系生长分布影响的初步研究[J].节水灌溉,2008,4:20-23.
    [100]孙景生,康绍忠,等.沟灌夏玉米棵间土壤蒸发规律的试验研究[J].农业工程学报,2005,21(11):20-25.
    [101]潘英华,康绍忠.交替隔沟灌溉水分入渗特性[J].灌溉排水,2000,19(1):1-4.
    [102]徐小利,姬燕,等.叶面积对巨峰葡萄浆果重及品质的影响[J].河南农业大学学报,1992,26(3):315-320.
    [103]刘超,汪有科,等.土壤水分特征曲线在作物非充分灌溉适宜水分下限确定中的应用[J].灌溉排水学报,2007,26(6):76-79.
    [104]张胜利,魏永宁.离子色谱法测定银杏叶中无机阴离子[J].理化检验-化学分析,2008,44:166-169.
    [105]王金平.离子色谱法测定烟草中的10种阴、阳离子[J].化学分析计量,2006,15(3):03-06.
    [106]Steve R. Green, M.B. Kirkham,etc.Root uptake and transpiration:From measurements and models to sustai绍nable irrigation[J].agricultural water management,2006.
    [107]刘建福,倪书邦,等.水分胁迫对澳洲坚果叶片矿质元素含量的影响[J].热带农业科技,2004,27(1):1-3.
    [108]Tiantian Hu ,Shaozhong Kang,etc.Effects of partial root-zone irrigation on the nitrogen absorption and utilization of maize[J].agricultural water management,2008,2655:7-14.
    [109]Ali Shahnazari,Seyed Hamid Ahmadi,etc.Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes[J].Europ. J. Agronomy 2008,28:65–73.
    [110]S.Topcu,C.Kirda,etc.Yield response and N-fertiliser recovery of tomato grown under deficitirrigation[J].Europ. J. Agronomy,2006.
    [111]LI Jiu-sheng,JI Hong-yan,etc.Wetting Patterns and Nitrate Distributions in Layered-Textural Soils Under Drip Irrigation[J].Agricultural Sciences in China,2007,6(8):970-980.
    [112]诸葛玉平,张玉龙,李爱峰,等.保护地番茄栽培渗灌灌水指标的研究[J].农业工程学报,2002,l8(2):53-57.
    [113]蔡焕杰,康绍忠,张振华,等.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报,2000,16(3):24- 27.
    [114]黄明斌,明安.不同有效土壤水势下植物叶水势与蒸腾速率的关系[J].水利学报,1996,3(3):1-6.
    [115]邹桂花,梅捍卫,余新桥,等.不同灌水量对水、早稻营养生长和光合特性及其产量的影响[J].作物学报,2006,32(8):1179—1183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700