多能源互补回收CO_2的化学链燃烧机理与动力系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统解决能源利用与环境污染之间矛盾的思路往往局限于“先污染,后治理”的链式思路,即化石燃料燃料采用简单的直接燃烧方式转换成热能,然后再组织热力循环实现热转功。对于化石燃料燃烧产生的污染物则采用基本独立于热转功过程之外的化工分离过程进行处理。由于化石燃料在能源系统中转化利用后所排放的C02浓度很低,而且CO2的处理量大,导致CO2减排能耗过高,减排成本居高不下。
     本论文围绕多能源互补回收CO2的化学链燃烧,以太阳能与燃料化学能综合梯级利用为突破口,将中温太阳能热化学过程与化学链燃烧过程相结合,从太阳能驱动化石燃料转化与CO2产生源头着手,实现中温太阳能高效热发电和动力系统中C02零能耗捕集。本文从太阳能与化石燃料互补回收CO2的化学链燃烧机理研究、实验验证和新型氧载体的制备与系统集成三个方面开展了相关工作。
     在燃料化学能梯级利用与CO2分离一体化理论的基础上,建立了燃料转化过程Gibbs自由能变化、燃料化学能梯级利用程度和CO2浓度富集度的关联式,探索了化学链燃烧过程的能量释放机理;通过与燃烧前分离CO2的能量释放过程的对比,指出化学链燃烧过程具有燃料化学能梯级利用与CO2零能耗捕集的一体化特征。探讨了中温太阳能热化学过程与化学链燃烧过程的耦合作用机制,阐明了化学链燃烧过程对中温太阳能集热品位的内在提升作用,揭示了太阳能与化石能源互补回收CO2的综合效应。
     对化学链燃烧过程进行了相关实验研究,采用溶解法制备了基于Fe、Ni、Co的不同氧载体材料,分析比较了各氧载体的反应性能,分析了反应温度、反应气组分、氧载体粒径等关键参数对CoO/CoAl2O4氧载体反应性能的影响,研究了反应气加湿对积碳的抑制作用以及氧载体的循环再生能力,拓展了化学链燃烧在替代燃料和新能源领域中的利用。为进一步提高氧载体的反应速率,缩短反应时间,通过考察不同助剂对氧载体反应性能的影响,研究制备了一种中温条件下具有高还原反应性能的新型氧载体材料(CoO+PtO21.0%)/CoAl2O4。研究结果表明,新材料与DME还原反应过程的表观活化能为85kJ/mol,相比CoO/CoAl2O4材料降低了43kJ/mol,还原反应速率相应地提高了近4倍之多,通过对助剂含量对氧载体反应特性影响的研究发现,(CoO+PtO2)/CoAl2O4氧载体中助剂PtO2的理想含量应为1.0%,新材料与DME还原反应的最佳加湿比为H2O/DME=1.0,低于CoO/CoAl2O4还原反应过程的加湿比(H2O/DME=2.0)。
     基于中低温太阳能和燃料化学能综合互补利用的原则,提出了一种利用中低温太阳热能驱动甲醇化学链燃烧动力系统,探讨了燃料化学能与物理能综合梯级利用的多能源互补动力系统的集成机制,揭示了中低温太阳能集热品位提升和热转功效率提高的本质,分析了新系统特性规律和关键参数对循环性能的影响。
     本论文的研究上作为从多能源互补综合梯级利用和新型燃烧方式耦合的角度实现低能耗回收CO2提供了理论和实验支撑。
The traditional solution for the problem of energy utilization and environmental pollution often follows the way of'treatment after pollution', where the chemical energy of the fossil fuel is converted into thermal energy through direct combustion with air to drive the thermal cycle, and the produced pollutants are treated with chemical separation method independent of the energy conversion process. This direct combustion of fossil fuel causes CO2diluted by N2, resulting in a large amount of flue gas to be treated, and leading to the increase in the energy penalty and the cost for CO2reduction.
     This dissertation focuses on the research of CO2control with multi-energy input, and originally integrates the mid-temperature solar thermochemical process with the chemical-looping combustion (CLC) to simultaneously achieve a high net solar-to-electric efficiency and zero energy penalty for CO2separation in the power cycle. The research work was carried out from three aspects including the mechanism study, the experimental validation and the system integration.
     Based on the principle of the chemical energy cascade utilization integrated CO2capture, the correlationship among the Gibbs free energy change△G, the degree of chemical energy cascade utilization k and the relative enrichment of CO2concentration λ was built, and the mechanism of fuel chemical energy release in CLC was explored. By comparing with the energy conversion process with CO2separation before combustion, it was proved that the CLC process can realize the cascade utilization of fuel chemical energy integrated CO2separation with minus energy penalty. The coupling of mid-temperature solar thermal chemical process and CLC was also explored, a phenomenon of the upgrade of the energy level of the mid-temperature solar thermal energy was found, and the synthetic effect of CO2control with hybridization of solar thermal energy and fossil fuel was revealed.
     Experiments on the CLC process were carried out on the TGA reactor. Oxygen carriers, with Fe2O3, NiO, and CoO as solid reactants and Al2O3, MgAl2O4, and YSZ as binders, were prepared by dissolution method. The reactivity of the oxygen carriers was compared, and the effects of the reaction temperature, the gas composition and the particle size were studied. Carbon deposition in the reduction process of DME with CoO/CoAl2O4was completely suppressed by adding water vapor to the gaseous reactant, and the optimal value of H2O/DEM is around2.0. These research findings validate the feasibility of the integration of mid-temperature solar thermochemical process and CLC, and bring the CLC technology into utilization of renewable energy and alternative fuel for CO2mitigation.
     The effects of different additives on the reactivity of the oxygen carrier CoO/CoAl2O4were studied, and a new kind of oxygen carrier (CoO+1.0%PtO2)CoAl2O4was developed. Compared with CoO/CoAl2O4, the activation energy of the reduction of (CoO+1.0%PtO2)/CoAl2O4with DME was lowered by about43kJ/mol, and the reaction rate was dramatically improved by about4times. The effect of PtO2content on reactivity showed that the suitable PtO2content was1.0%. By adding water vapor into the fuel reactor, carbon deposition was completely avoided, and the appropriate mole ratio of H2O/DEM was around1.0. This value was lower than that of CoO/CoAl2O4, which can significantly reduce the water consumption, as well as the energy consumption of the CLC process.
     Based on the synthetic utization of the solar thermal energy and the chemical energy of fossil fuel, a new solar-hybrid thermal cycle, integrating CLC with mid-and-low temperature solar thermal energy has been proposed. The thermodynamic performance of the proposed cycle was evaluated, the characteristics were identified with the aid of graphical exergy methodology, and the effects of the key parameters on the system performance were analysed. The results showed that, the exergy efficiency of the proposed solar thermal cycle would be expected to be58.4%at a turbine inlet temperature (TIT) of1673K, and the net solar-to-electric efficiency can reach as high as30.1%. The promising results obtained here indicate that this solar-hybrid combined cycle not only offers a new approach for highly efficient use of middle-and-low temperature solar thermal energy to generate electricity, but also provides the possibility of simultaneously utilizing renewable energy and alternative fuel for CO2capture with low energy penalty.
     The research work of this dissertation offers both theoretical and experimental support for CO2control with the synthetic cascade utilization of multi-energy.
引文
[1]Intergovernmental Panel on Climate Change (IPCC). Climate change 2007:synthesis report. IPCC Press,2008.
    [2]金红光,张希良,高林,岳立,何建坤,蔡睿贤.控制CO2排放的能源科技战略综合研究.中国科学E辑:技术科学,2008,38(9):1495-1506.
    [3]吴家桦.串行流化床中固体燃料化学链燃烧过程机理研究.东南大学博士学位论文,2010.
    [4]International Energy Agency. International Energy Outlook 2007, May 2007.
    [5]U.S. Department of Energy. Vision 21 Program Plan-Clean Energy Plants for the 21st Century, April 1999.
    [6]W. Iwasaki. Magnetic refrigeration technology for an international clean energy network using hydrogen energy (WE-NET). International Journal of Hydrogen Energy,2003,28(5):559-567.
    [7]发改委.中国在10大方面采取措施实现2020年二氧化碳减排目标.资源节约与环保,2011,(4):27.
    [8]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统.北京:科学出版社,2008.
    [9]O. Bolland, P. Mathieu. Comparison of two CO2 removal options in combined cycle power plants. Energy Conversion and Management,1998,39(16-18):1653-1663.
    [10]G. Lozza, P. Chiesa. Natural gas decarbonization to reduce CO2 emission from combined cycles-part I:partial oxidation. Transaction of the ASME, Journal of Engineering for Gas Turbines and Power,2002,124:82-88.
    [11]G. Lozza, P. Chiesa. Natural gas decarbonization to reduce CO2 emission from combined cycles-part Ⅱ:steam-methane reforming. Transaction of the ASME, Journal of Engineering for Gas Turbines and Power,2002,124:89-95.
    [12]P. Mathieu, R. Nihart. Zero-emission MATIANT cycle. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power,1999,121:116-120.
    [13]W. Sanz, H. Jericha, F. Luckel, E. Gottlich, F. Heitmeir. A further step towards a Graz cycle power plant for CO2 capture. ASME Turbo Expo, Reno-Tahoe, Nevada, USA, 2005.
    [14]J. D. Figueroa, T. Fout, S. Plasynski, H. Mcllvried. Advances in CO2 capture technology - The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control,2008,2:9-20.
    [15]H. J. Richter, K. F. Knoche. Reversibility of combustion processes. ACS Symposium Series,1983,235:71-85.
    [16]M. Ishida, H. Jin. A new advanced power-generation system using chemical-looping combustion, Energy,1994,19(4):415-422.
    [17]M. Ishida, H. Jin. A Novel Chemical-looping combustor without NOX formation. Industrial and Engineering Chemistry Research,1996,35:2469-2472.
    [18]M. Ishida, H. Jin. CO2 recovery in a power plant with chemical looping combustion. Energy Conversion and Management,1997,38:S187-S192.
    [19]B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer. Carbon dioxide capture and storage. Special Report, Intergovernmental Panel on Climate Change, Cambridge University Press,2005.
    [20]A. Lyngfelt, B. Kronberger, J. Adanez, J. X. Morin, P. Hurst. Development of oxygen carrier particles for chemical-looping combustion. Design and operation of a 10 k W chemical-looping combustor, In 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada,2004.
    [21]T. Mattisson, F. Garcia-Labiano, B. Kronberger, A. Lyngfelt, J. Adanez, H. Hofbauer. CO2 capture from coal combustion using chemical-looping combustion. In: Proceeding of the 8th International Conference on Greenhouse Gas Control Technologies (GHGT-8), Trondheim, Norway,2006.
    [22]T. Mattisson, F. Garcia-Labiano, B. Kronberger, A. Lyngfelt, J. Adanez, H. Hofbauer. Chemical-looping combustion using syngas as fuel. International Journal of Greenhouse Gas Control,2007,1:158-169.
    [23]http://www.sintef.no/Projectweb/BIGCO2/Project-overview/Task-G-Chemical-Loopi ng-Combustion---BIGCLC/
    [24]P. Kolbitsch, T. Proll, J. Bolhar-Nordenkampf, H. Hofbauer. Design of a chemical looping combustor using a dual circulating fluidized bed reactor system. Chemical Engineering & Technology,2009,32:1-7.
    [25]Fluidized bed based looping processes for carbon capture. CCS - Workshop organized by British Embassy, Nov.16,2010.
    [26]ALSTOM's chemical looping combustion prototype for CO2 capture from existing pulverized coal-fired power plants. Alstom Power. NETL project NT0005286.
    [27]Development of computational approaches for simulation and advanced controls for hybrid combustion-gasification chemical looping. Alstom Power. NETL project NT43095.
    [28]H. Jin, M. Ishida. A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion. International Journal of Hydrogen Energy,2000,25:1209-1215.
    [29]O. Brandvoll, O. Bolland, S. Vestol. Chemical looping combustion-fuel energy conversion with inherent CO2 capture. In Proceedings of the International Conference Power Generation and Sustainable Development, Liege, Belgium,2001.
    [30]O. Brandvoll, O. Bolland. Inherent CO2 capture using chemical looping combustion in a natural gas fired power cycle. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power,2004,126:316-321.
    [31]O. Brandvoll. Chemical looping combustion-fuel conversion with inherent CO2 capture. Doctorial Theses,2005.
    [32]R. Naqvi, O. Bolland,O. Brandvoll, K. Helle. Chemical looping combustion analysis of natural gas fired power cyclewith inherent CO2 capture. ASME Turbo Expo, Vienna,2004.
    [33]M. Anheden, G. Svedberg. Exergy analysis of chemical-looping combustion systems. Energy Conversion and Management,1998,39:1967-1980.
    [34]M. Anheden. Analysis of gas turbine systems for sustainable energy conversion. Doctorial Theses,2000.
    [35]J. Wolf. CO2 mitigation in advanced power cycles, In Department of Chemical Engineering and Technology,2004, Royal Institute of Technology:Stockholm.
    [36]J. Wolf, J. Yan. Parametric study of chemical looping combustion for tri-generation of hydrogen, heat, and electrical power with CO2 capture. International Journal of Energy Research,2005,29:739-753.
    [37]R. Naqvi, J. Wolf, O. Bolland. Part-load analysis of a chemical looping combustion (clc) combined cycle with CO2 capture. Energy,2007,32:360-370.
    [38]H. Jin, M. Ishida. A new advanced IGCC power plant with chemical-looping combustion. Proceedings of TAIES'97, Beijing,1997.
    [39]L. Fan, F. Li, S. Ramkumar. Utilization of chemical looping strategy in coal gasification processes. Particuology,2008,6(3):131-142.
    [40]王逊,张世铮,蔡睿贤.采用化学链式燃烧的燃料电池联合循环及其性能分析.工程热物理学报,1999,20:274-277.
    [41]王逊,张世铮.采用化学链式燃烧器的固体氧化物燃料电池发电系统优化.工程热物理学报,2000,21:551-553.
    [42]李振山,韩海锦,蔡宁生.化学链燃烧的研究现状及进展.动力工程,2006,26:538-543.
    [43]刘黎明,赵海波,郑楚光.化学链燃烧方式中氧载体的研究进展.煤炭转化,2006,29(3):83-93.
    [44]秦翠娟,沈来宏,肖军,高正平.化学链燃烧技术的研究进展.锅炉技术,2008,39(5):64-73.
    [45]卢玲玲,王树众,姜峰,胡昕.化学链燃烧技术的研究现状及进展.现代化工,2007,27(8):17-22.
    [46]T. Mattisson, A. Lyngfelt. Capture of CO2 using chemical-looping combustion, First Biennial Meeting of the Scandinavian-Nordic Section of the Combustion Institute, 2011 April 18-20, Goteborg, Sweden.
    [47]E. Jerndal, T. Mattisson, A. Lynfelt. Thermal analysis of chemical-looping combustion. Chemical Engineering Research and Design,2006,84(A9):795-806.
    [48]T. Mattisson, A. Lyngfelt, P. Cho. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel,2001, 80(13):1953-1962.
    [49]M. H. Mohammad, I. de L. Hugo. Chemical-looping combustion (CLC) for inherent CO2 separations-a review. Chemical Engineering Science,2008,63:4433-4451.
    [50]P. Cho, T. Mattisson, A. Lyngfelt. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial & Engineering Chemistry Research,2005,44:668-676.
    [51]M. Ishida, H. Jin, T. Okamoto. Kinetic behavior of solid particle in chemical-looping combustion:suppressing carbon deposition in reduction. Energy & Fuels,1998,12: 223-229.
    [52]H. Jin, T. Okamoto, M. Ishida. Development of a novel chemical-looping combustion: synthesis of a solid looping material of NiO/NiAl2O4 Industrial & Engineering Chemistry Research,1999,38:126-132.
    [53]H. Jin, T. Okamoto, M. Ishida. Development of a novel chemical-looping combustion: synthesis of a looping material with a double metal oxide of CoO-NiO. Energy & Fuels,1998,12:1272-1277.
    [54]J. Adanez, L.F. de Diego, F. Garcia-Labiano, P. Gayan, A. Abad. Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels,2004,18:371-377.
    [55]P. Cho, T. Mattisson, A. Lyngfelt. Comparison of iron-, nickel-, copper-, and manganese-based oxygen carriers for chemical-looping combustion. Fuel,2004,83: 1225-1245.
    [56]T. Mattisson, M. Johansson, M. Lyngfelt. Reactivity of some metal oxides supported on alumina with alternating and oxygen-application of chemical looping combustion. Energy & Fuel,2003,17:643-651.
    [57]A. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego. Progress in chemical-looping combustion and reforming technologies. Progress in Energy and Combustion Science,2012,38:215-282.
    [58]M. Ishida, H. Jin, T. Okamoto. A fundamental study of a new kind of medium material for chemical-looping combustion. Energy & Fuels,1996,10:958-963.
    [59]H. Jin, M. Ishida. Reactivity study on a novel hydrogen fueled chemical-looping combustion. International Journal of Hydrogen Energy,2001,26:889-894.
    [60]M. Ishida, M. Yamamoto, T. Ohba. Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200℃. Energy Conversion and Management,2002,43:1469-1478.
    [61]P. Gayan, L. F. de Diego, F. Garcia-Labiano, J. Adanez, A. Abad, C. Dueso. Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion. Fuel,2008,87:2641-2650.
    [62]P. Erri, A. Varma. Solution combustion synthesized oxygen carriers for chemical looping combustion. Chemical Engineering Science,2007,62:5682-5687.
    [63]R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini. Ni based mixed oxide materials for CH4 oxidation under redox cycle conditions. Journal of Molecular Catalysis A:Chemical,2003,204-205:637-646.
    [64]T. Mattisson, M. Johansson, A. Lyngfelt. The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel,2006,85:136-141.
    [65]K. E. Sedor, M. M. Hossain, H. I. de Lasa. Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC). Chemical Engineering Science,2008,63:2994-3007.
    [66]M. Johansson, T. Mattisson, A. Lyngfelt, A. Abad. Using continuous and pulse experiments to compare two promising nickel-based oxygen carriers for use in chemical-looping technologies. Fuel,2008,87:988-1001.
    [67]P. Cho, T. Mattisson, A. Lyngfelt. Defluidization conditions for a fluidized bed of iron oxide-, nickel oxide-, and manganese oxide-containing oxygen carriers for chemical-looping combustion. Industrial & Engineering Chemistry Research,2006, 45:968-977.
    [68]L. F. de Diego, F. Garcla-Labiano, J. Adanez, P. Gayan, A. Abad, B. M. Corbella, J. M. Palacios. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel,2004,83:1749-1757.
    [69]F. Garcia-Labiano, L. F. de Diego, J. Adanez, A. Abad, P. Gaya'n. Reduction and oxidation kinetics of a copper-based oxygen carrier prepared by impregnation for chemical-looping combustion. Industrial & Engineering Chemistry Research,2004, 43:8168-8177.
    [70]L. F. de Diego, F. Garcla-Labiano, P. Gayan, J. Celaya, J. M. Palacios, J. Adanez. Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier. Fuel,2007,86:1036-1045.
    [71]S. Y. Chuang, J. S. Dennis, A. N. Hayhurst, S. A. Scott. Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combustion and Flame,2008,154(1-2):109-121.
    [72]B. M. Corbella, L. de Diego, F. Garcla-Labiano, J. Adanez, J. M. Palacios. Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion of methane. Energy & Fuels,2006,20:148-154.
    [73]T. Mattission, A. Lyngfelt, P. Cho. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2. Fuel,2001, 80:1953-1962.
    [74]T. Mattisson, M. Johansson, A. Lyngfelt. Multicycle reduction and oxidation of different types of iron oxide particless application to chemical-looping combustion. Energy & Fuels,2004,18:628-637.
    [75]P. Cho, T. Mattisson, A. Lyngfelt. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial & Engineering Chemistry Research,2005,44:668-676.
    [76]A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson. The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel,2007,86:1021-1035.
    [77]M. Johansson, T. Mattisson, A. Lyngfelt. Investigation of Mn3O4 with stabilized ZrO2 for chemical-looping combustion. Chemical Engineering Research and Design,2006, 84 (A9):807-818.
    [78]刘杨先,张军,盛昌栋,张永春,袁士杰.化学链燃烧技术中载氧体的最新研究进展.现代化工,2008,28(9):27-32.
    [79]J. Adanez, F. Garcia-Labiano, L.F. de Diego, P. Gayan, J. Celaya, A. Abad. Nickel-copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion. Industrial & Engineering Chemistry Research,2006, 45:2617-2625.
    [80]J.E. Readman, A. Olafsen, Y. Larring, R. Blom. La0.8Sr0.2Co0.2Feo.8O3- δas a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study. Journal of Materials Chemistry,2005,15:1931-1937.
    [81]M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson. Ilmenite with addition of NiO as oxygen carrier for chemical-looping combustion. Fuel,2010,89: 3523-3533.
    [82]丁宁,郑瑛,罗聪,郑楚光.助剂对CaSO4载氧体化学链燃烧的影响.中国电机工程学报,2011,31(5):40-47.
    [83]郑瑛,王保文,宋侃,郑楚光.化学链燃烧技术中新型氧载体CaSO4的特性研究. 工程热物理学报,2006,27(3):531-533.
    [84]沈来宏,肖军,肖睿,张辉.基于CaSO4载氧体的煤化学链燃烧分离CO2研究.中国电机工程学报,2007,27(2):69-74.
    [85]L. Shen, M. Zheng, J. Xiao, R. Xiao. A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion. Combustion and Flame,2008, 154(3):489-506.
    [86]J. Wang, E. J. Anthony. Clean combustion of solid fuels. Applied Energy,2008,85: 73-79.
    [87]H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson. The use of ilmenite as an oxygen carrier in chemical-looping combustion. Chemical Engineering Research and Design,2008,86(9):1017-1026.
    [88]B. Koronberger, A. Lyngfelt, G. Loffler, H. Hofbauer. Design and fluid dynamic analysis of a bench-scale combustion system with CO2 separation chemical-looping combustion. Industrial & Engineering Chemistry Research,2005,44:546-556.
    [89]B. M. Corbella, L. Dediego, F. Garcla-Labiano, J. Adanez, J. Palacios. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Environmental Science & Technology,2005,39:5796-5803.
    [90]B. M. Corbella, L. Dediego, F. Garcla-Labiano, J. Adanez, J. Palacios. Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane in multicycle tests. Industrial & Engineering Chemistry Research,2006,45:157-165.
    [91]A. Lyngfelt, B. Leckner, T. Mattisson. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science,2001,56:3101-3113.
    [92]E. Johansson, A. Lyngfelt, T. Mattisson, F. Johnsson. Gas leakage measurements in a cold model of an interconnected fluidized bed for chemical-looping combustion. Powder Technology,2003,134:210-217.
    [93]A. Lyngfelt, H. Thunman. Construction and 100 h of operational experience of a 10-kW chemical-looping combustor. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results from the CO2 Capture Project,2005,1:625-645.
    [94]A. Abad, T. Mattisson, A. Lyngfelt, M. Ryden. Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel,2006,85:1174-1185.
    [95]H. Ryu, G. Jin, D. Bae, C. Yi. Continuous operation of a 50 kWth chemical-looping combustor:long-term operation with Ni-and Co-based oxygen carrier particles. In: Proc 5th China-Korea Joint Workshop on Clean Energy Technology. Qingdao University,2004.
    [96]J. Colin, D. Pavone, N.A.M. ten Asbroek, Geerdink, E.E.B. Meuleman. Public summary report based on the Del.4.3.6 and the Del.4.3.7. http://www.encapco2.org.
    [97]I. M. Dahl, E. Bakken, Y. Larring, A.I. Spjelkavik, S.F. Hakonsen, R. Blom. On the development of novel reactor concepts for chemical looping combustion. Energy Procedia,2009,1:1513-1519.
    [98]J. Bennetsen, I.M. Dahl, Y. Larring, E. Bakken, R. Blom. Development of new CLC processes for natural gas. The 4th Trondheim Conference on CO2 Capture, Transport and Storage, Trondheim, Norway,2007.
    [99]H. Jin, M. Ishida. A new type of coal gas fueled chemical-looping combustion. Fuel, 2004,83:2411-2417.
    [100]黄振,何方,李海滨,赵增立.固体燃料化学链燃烧技术的研究进展.煤炭转化,2010,33(4):83-89.
    [101]王国贤,王树众,罗明.固体燃料化学链燃烧技术的研究进展.化工进展,2010,29(8):1443-1450.
    [102]N. Berguerand, A. Lyngfelt. Design and operation of a 10 kWth chemical-looping combustor for solid fuels-testing with South African coal. Fuel,2008,87: 2713-2726.
    [103]N. Berguerand, A. Lyngfelt. The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor. International Journal of Greenhouse Gas Control,2008, 2:169-179.
    [104]H. Leion, T. Mattisson, A. Lyngfelt. Solid fuels in chemical-looping combustion. International Journal of Greenhouse Gas Control,2008,2:180-193.
    [105]L. Shen, J. Wu, J. Xiao. Experiments on chemical looping combustion of coal with a NiO based oxygen carrier. Combustion and Flame,2009,156:721-728.
    [106]L. Shen, J. Wu, Z. Gao, J. Xiao. Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor. Combustion and Flame,2009,156:1377-1385.
    [107]L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao. Chemical looping combustion of biomass in a 10 kWth reactor with iron oxide as oxygen carrier. Energy & Fuels,2009, 23:2498-2505.
    [108]http://www.netl.doe.gov/publications/factsheets/project/Proj293.pdf
    [109]A. Steinfeld, R. Palumbo. Solar thermochemical process technology. Encyclopedia of Physical Science & Technology,2001,15:237-256.
    [110]A. Steinfeld. Solar thermochemical production of hydrogen - a review. Solar Energy,2005,78:603-615.
    [111]张占涛,王黎,张睿.太阳能热化学反应循环制氢技术及其最新发展.化工中间体,2005,(1):1-5.
    [112]T. Kodama, A. Aoki, T. Shimizu, Y. Kitayama, S. Komarneni. Efficient thermochemical cycle for CO2 gasification of coal using a redox system of reactive iron-based oxide. Energy & Fuels,1998,12:775-781.
    [113]J. Matunami, S. Yoshida, Y. Oku, O. Yokota, Y. Tamaura, M. Kitamura. Coal gasification by CO2 gas bubbling in molten salt for solar/fossil energy hybridization. Solar Energy,2000,68(3):257-261.
    [114]J. Matunami, S. Yoshida, Y. Oku, O. Yokota, Y. Tamaura, M. Kitamura. Coal gasification with CO2 in molten salt for solar thermal/chemical energy conversion. Energy,2000,25:71-79.
    [115]K-H. Funken, E. Liipfert, M. Hermes, K. Bruhne, B. Pohlmann. Oxidation rates of carbon black particles exposed to concentrated sunlight. Solar Energy,1999,65(1): 15-19.
    [116]D. Fraenkel, R. Levitan, M. Levy. A solar thermochemical pipe based on the CO2-CH4 system. International Journal of Hydrogen Energy,1986,11(4):267-277.
    [117]M. Bohmer, U. Langnickel, M. Sanchez. Solar steam reforming of methane. Solar Energy Material,1991,24:441-448.
    [118]R. Levitan, H. Rosin, M. Levy. Chemical reactions in a solar furnace-direct heating of the reactor in a tubular receiver. Solar Energy,1989,42(3):267-272.
    [119]H. Hong, H. Jin, B. Liu. A novel solar-hybrid gas turbine combined cycle with inherent CO2 separation using chemical-looping combustion by solar heat source. Journal of Solar Energy Engineering,2006,128:275-284.
    [120]洪慧,金红光,杨思.低温太阳热能与化学链燃烧相结合控制CO2分离动力系统,工程热物理学报,2006,27:729-732.
    [121]何鹏,洪慧,金红光,喻之昂.低温太阳热与甲醇化学链整合能量释放机理实验初探.工程热物理学报,2007,28:181-184.
    [122]张国强.基于化学能梯级利用与CO2分离一体化原理的化工动力多联产系统集成研究.工程热物理研究所博士论文,2010.
    [123]王宝群.IGCC系统控制CO2的过程机理与一体化集成.工程热物理研究所博士论文,2004.
    [124]金红光,洪慧,王宝群,韩巍,林汝谋.化学能与物理能综合梯级利用原理.中国科学E辑,工程科学,材料科学,2005,35(3):299-313.
    [125]朱明善.能量系统的火用分析.北京:清华大学出版社,1988.
    [126]M. Lee, S. Seo, J. Chung, Y. Joo, D. Ahn. Combustion performance test of a new fuel DME to adapt to a gas turbine for power generation. Fuel,2008,87:2162-2167.
    [127]吴海燕.加快发展清洁替代燃料二甲醚的政策研究.发展论坛,2006,4:34-37.
    [128]G. R. Jones, H. Holm-Larson, D. Romani, R. A. Sills. DME for power generation fuel:supplying India's southern region. PETROTECH Conference, New Delhi, India, 2001.
    [129]C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita. The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines:A review. Fuel, 2008,87:1014-1030.
    [130]天津大学物理化学教研室.物理化学.北京:高等教育出版社,2009.
    [131]魏永刚,王华,何方.氧化铁作为氧载体在无烟燃烧技术中反应活化能的确定.工业加热,2007,36(2):16-18.
    [132]P. F. Gay, M. W. Travers, Trans. On the thermal decomposition of dimethyl ether. Transactions of the Faraday Society,1937,33:756-770.
    [133]K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi. Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina. Applied Catalysis B:Environmental,2007,74: 144-151.
    [134]W. Li, J. Feng, K. Xie. Studies on catalysts of anti-carbon deposition for CH4 reforming with CO2. Reaction Kinetics and Catalysis Letters,1998,64:381-388.
    [135]高群仰,吕功煊Pt, Pd助剂对Ni基催化剂中Ni的分散度及抗积碳性能的影响.分子催化,2008,22(4):294-301.
    [136]M. Ryden, E. Cleverstam, M. Johansson, A. Lyngfelt, T. Mattisson. Fe2O3 on Ce-, Ca-, or Mg-stabilized ZrO2 as oxygen carrier for chemical-looping combustion using NiO as additive. AlChE Journal,2010,56(8):2211-2220.
    [137]M. Ryden, E. Cleverstam, A. Lyngfelt, T. Mattisson. Waste products from the steel industry with NiO as additive as oxygen carrier for chemical-looping combustion. International Journal of Greenhouse Gas Control,2009,3:693-703.
    [138]王幸宜.催化剂表征.上海:华东理工大学出版社,2008.
    [139]M. Kraum. Fischer-Tropsch synthesis on supported cobalt-based catalysts: influence of various preparation methods and supports on catalyst activity and chain growth probability. Doctor Thesis,1999.
    [140]魏昭彬,陈怡萱,李文钊Pd-CuO/TiO2的还原和再氧化行为的研究.物理化学学报,1988,4(1):8-13.
    [141]S. Vyazovkin. Kinetic concept of thermally stimulated reactions in solids:a review from a historical perspective. International Reviews in Physical Chemistry, 2000,19:45-60.
    [142]胡荣祖,史启祯.热分析动力学.北京:科学出版社,2001.
    [143]张启俭,杜凤,何欣欣,周迎春,刘忠文.二甲醚部分氧化重整制氢中的部分氧化催化剂的考察.催化学报,2009,30(6):519-524.
    [144]A. Steinfeld, A. Frei, P. Kuhn, D. Wuillemin. Solar thermal production of zinc and syngas via combined ZnO-reduction and CH4 reforming process. International Journal of Hydrogen Energy,1995,20:793-804.
    [145]A. Steinfeld, M. Brack, A. Meier, A. Weidenkaff, D. Wuillemin. A solar chemical reactor for Co-production of zinc and synthesis gas. Energy,1998,23:803-814.
    [146]S. Abanades, G. Flamant. Hydrogen production from solar thermal dissociation of methane in a high-temperature fluid-wall chemical reactor. Chemical Engineering and Processing,2008,47:490-498.
    [147]A. Segal, M. Epstein. Solar ground reformer. Solar Energy,2003,75:479-490.
    [148]张勇,司训练,郑承献.基于燃料甲醇的煤基替代燃料行业发展分析.应用化工,2005,34(8):455-459.
    [149]S. Consonni, G. Lozza, G. Pelliccia, S. Rossini, F. Saviano. Chemical-looping combustion for combined cycles with CO2 capture. ASME-Journal of Engineering for Gas Turbines and Power,2006,128:525-534.
    [150]徐玉杰.部分煤气化与C02捕获的能源动力系统研究.工程热物理研究所博士论文,2008.
    [151]V. E. Dudley, G. J. Kolb, M. Sloan, D. Kearney. SEGS LS-2 Solar Collector. SAND94-1884,1994.
    [152]M. Ishida, J. Ji. Graphical exergy study on single stage absorption heat transformer. Applied Thermal Engineering,1999,19:1191-1206.
    [153]P. Riemer, Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage, and future activities of the IEA greenhouse gas R&D program. Energy Conversion and Management,1996,37:665-670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700