基于LED照明的MEMS光栅光调制器的光学投影系统分析与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着数字技术的发展,将MEMS技术与空间光调制器相结合,开发基于MEMS技术的光调制器已经成为投影显示领域的研究热点;另一方面,大功率LED由于其突出的优点在近些年发展迅速,将大功率LED作为微投影显示系统的新光源正在被积极研究中。目前,市场上主要微投影显示产品的核心技术大都受到国外专利保护,因此,开发具有自主知识产权的基于MEMS技术的光调制器,并利用LED光源的优势设计相应的光学系统进行投影显示,对打破国外产品的技术垄断,提升我国在显示技术的水平和核心竞争力方面具有重要的科学意义。
     本文分析和研究的出发点是针对课题组提出的新型光栅光调制器,设计用LED作为其光源的光学投影系统,通过仿真设计和实验来分析研究这一投影显示系统。本文作者在课题组前期工作的基础上进一步详细分析了用LED作为光栅光调制器照明光源的可行性;设计了在LED照明下的光栅光调制器的照明聚光系统和投影成像系统,并对设计作出评价;利用设计结果搭建了实验平台,验证了理论和设计的正确性。具体研究内容包括:
     1)在光栅光调制器调制原理的基础上进一步分析了器件的表面弯曲度和周期性结构对器件调制特性的影响,优化了光栅光调制器的理论光学模型,为光栅光调制器的设计及加工工艺提出了改进方案。
     2)利用部分相干光理论分析了将LED作为光栅光调制器照明光源用于投影显示的可行性。讨论了光源的尺寸、光谱带宽、表面结构对器件调制特性的影响,分别从频谱面的衍射光强分布,像面的光场分布和调制对比度等角度进行说明,分析了LED光源照明下的两种光学信息处理系统,从理论上证明了LED用于光栅光调制器照明光源进行投影显示的可行性,并以此指导光学投影系统的设计。
     3)利用色度学原理分析了LED光源的色度学特性,分析了RGB三基色LED光源的数目之比、光源带宽变化对显示质量的影响,得到了在三基色LED光源照明下光源的最佳配比方案,并进一步通过显色指数说明LED用于投影显示的性能优异性。
     4)利用Tracepro、Codev等光学软件,设计了一种自由曲面TIR透镜实现LED光能量的收集;通过直形光棒和梯形光棒两种方案实现了光场的均匀化,并对两种光棒在实现光场均匀化和改善出射光出射角方面进行比较;利用一套结构紧凑的聚光透镜组实现光能量的高效会聚,实现了大发散角的LED光能量的有效收集,并达到了器件的均匀照明。
     5)依据光栅光调制器的光学调制原理和光学成像原理,确定了投影物镜的类型,利用Zemax、Codev软件设计了两种不同结构的投影物镜组,实现了光栅光调制器的信息处理和投影成像,并通过像差评价对两种结构的投影成像系统进行比较。利用X棱镜实现了三基色LED的彩色合成,最终实现了结构小巧的基于LED光源的光栅光调制器的光学投影系统的计算机仿真设计、建模和评价,掌握了光学投影系统设计的理论基础及关键技术问题的解决方法。
     6)利用基于MEMS技术加工得到的光栅光调制器,从实验上验证了器件的弯曲度和周期性结构对调制特性的影响,说明理论分析的正确性;根据光学投影系统设计思想搭建实验平台,得到了LED照明下器件的衍射图样分布,并利用一个静态的MEMS光栅光调制器成像,在屏幕上得到该器件的投影图像,用三基色LED搭建了光栅光调制器的彩色投影系统,实现了LED光源照明下的彩色投影显示,说明了理论分析的正确性及仿真设计的合理性。从而率先在国内根据自主研制的基于MEMS技术的光栅光调制器结合LED光源的优势设计了一套全新的光学投影成像系统。
With the development of digital technique, it has become a research focus in the area of projected display, which combines MEMS-technique with spatial light modulator to develop light modulators based on MEMS-technique; on the other hand, high-power LED has developed rapidly because of its notable virtue, and using high power LED as new light source for micro-projection display system is being researched actively. Nowadays, the major core technology of micro-projection display system in market is restricted by international patents, so it is quite necessary to develop a novel MEMS-based light modulator with independent intellectual property rights, taking advantages of LED to design corresponding light system for projection display, breaking up the monopoly of techniques of abroad products, and advancing the level and core-competitiveness in the area of display technique of our country.
     Based on a novel grating light modulator put forward by project’s team, in this paper, an optical projection system is designed when LED is used as its light source, the system is analyzed and researched by simulations and experiments. On the basis of previous foundation of project’s team, author analyzed the feasibility in detail when LED is used as the light source of grating light modulator, designed and evaluated the light condenser system and projection system with LED light source, built the experimental platform utilizing the result of design and proved the validity of theory and design. The main works of this paper are follows:
     ①Based on the principle of grating light modulator, the optical model is optimized after the effects of the surface bending and the periodic structure of grating light modulator on the performance are analyzed, and an optimized precept for design and processing technique is brought forward.
     ②The feasibility is analyzed by partial coherent light theory when LED is used as light source of the grating light modulator for projection display. The influences of the size, bandwidth and surface structure of LED on the modulating performance of the modulator are discussed. That are indicated by the light distribution on the spectrum and image plane and modulated contrast respectively. Two kinds of light information processing systems with LED light source are analyzed, the feasibility when LED is used as the light source of the grating light modulator for projection display is proved theoretically. That could direct the design of optical projection system.
     ③The colorimetric property of LED is analyzed with colorimetric theory, the influence of the ratio of the number of RGB light source and variety of bandwidth of light source on display quality are analyzed, and the optimal ratio of RGB light source is deduced with the irradiation of LED, and the high performance is illuminated further by color discrimination index when LED is used to projection display.
     ④A TIR lens with free-form surface for light gather is designed by Tracepro and Codev software. The light field is uniformed by straight light pipe and terraced light pipe, which are compared and discussed in the matter of achieving light field uniform and improving angle of emergence light. A compact condensing lens is designed to realize high efficient converging of light, realize efficient gather of large angle of divergence of LED and uniform irradiation on modulator.
     ⑤The type of projection objective lens is ascertained based on the theory of light modulation of the grating light modulator and the theory of optical imaging. Two different structures of projection objective lens are designed by Zeamx and Codev software, and the information processing and projection imaging of the grating light modulator are realized, the aberration valuation is used to compare the two types of projection imaging systems. The color of RGB LED is composed by X cube, and the simulation, modeling and estimate of compact optical projection system for grating light modulator with LED light source are realized, the theoretical principle of designing for optical engine system and solution for key technical matters are grasped.
     ⑥Utilizing the manufactured grating light modulator based on MEMS technique, the influence of surface bending and periodic structure on the optical performance is testified by experiment, which indicated the validity of theoretical analysis. The experiment platform is built with the design philosophy, and utilizing a static MEMS grating light modulator, the diffractive light distribution and the projection image of modulator are got with LED light source, the color projection system of grating light modulator based on three primary colors of LED is built, and color projection display of LED light source is realized, which indicated the validity of the theoretical analysis and the reasonableness of the design. A truly original optical projection imaging system of grating light modulator based on MEMS technique combing with LED light source is first developed independently in China.
引文
[1]谷千束[日].先进显示器技术[M].北京:科学出版社.2002. 8.
    [2] Jeremie Bouchaud, Henning Wicht. MEMS microdisplays, overview and markets[C], Proceedings of SPIE. 2006, 6114: 47-54.
    [3] R.L. Howe. Big optics for big screen television[J]. Optical Spectra. 1978, 3: 37-40.
    [4] R.L. Howe and B.H. Welham, Developments in plastic optics for projection television systems.[C] IEEE Transactions on Consumer Electronics. 1980, 4: 44-53.
    [5] E. Stupp. Projection displays take off [J]. Information Display. 1996, 10: 20-24.
    [6] K. Schiecke. Projection television: Correcting distortions[C]. IEEE Spectrum. 1981, 11: 40-45.
    [7] C. Guerin and J.M. Pannier. Automatic registration for an HDTV progressive CRT video projector[C]. Proc. SID 13th International Display Research Conference. 1993: 545-547.
    [8] F.J. Kahn. Projection displays[D]. SID Seminar Lecture Notes. 1996(II). F-1:1-46.
    [9] Y. Itoh, J.-I. Nakamura, K. Yoneno, H. Kamakura, N.Okamoto. Ultra-high-efficiency LC projector using a polarized light illuminating system[J]. SID International Symposium Digest of Technical Papers. 1997(28): 993-996.
    [10] A. Nakano, A. Honma, S. Nakagaki, and K. Doi. Reflective active matrix LCD: D-ILATM [C]. Proc. SPIE. Projection Displays IV. 1998(3296): 100-104.
    [11] L.J. Hornbeck. 128 x 128 Deformable Mirror Devices[C]. IEEE Trans. Electron Devices. 1983 (ED-30): 539-545.
    [12] D.R. Pape and L.J. Hornbeck. Characterization of the Deformable Mirror Device for optical information processing [J]. Opt. Eng. 1983, 6: 675~681.
    [13] Hornbeck. Deformable mirror light modulator [P]. United States Patent 4,441,791.
    [14] Bruzzone, Charles L. et al. High-performance LCOS optical engine using cartesian.polarizer technology [J]. SID 03 Digest, 2003: 126~129.
    [15] Bone, Matthew. Front-projection optical-system design for reflective LCOS technology[J]. Journal of the SID,2001: 227~232.
    [16]刘晓名等.微机电系统设计与制造[M].北京:国防工业出版社.2006: 1-5.
    [17] D. Senturia. Microsystem Design[M]. Third Edition. London. Kluwer Academic 2001: 530-558.
    [18]刘晓明,朱钟淦著.微机电系统设计与制造[M].北京.国防工业出版社. 2005: 1-11.
    [19]温诗铸.关于微机电系统研究[M].中国机械工程. 2003, 2: 159-164.
    [20]葛文勋,丛鹏.微机电系统发展动向[J].纳米技术与精密工程. 2007,9: 181-189.
    [21]泽田廉士,羽根一博,日暮荣治著.李元燮译.微光机电系统[M].北京:科学出版社. 2005: 1-17.
    [22]板生清,保坂宽,片桐祥雅著.崔东印译.光微机械电子学[M].北京:科学出版社. 2002: 3-6.
    [23] M. E. Motamedi, Ming C. Wu, Kristofer, S. J. Pister. Micro-opto-electro-mechanical devices and on-chip optical processing[J]. Optical Engineering. 1997,5: 1282-1297.
    [24] Mohamed Gad-el-Hak. MEMS: Introduction and Fundamentals[M]. CRC Press. 2006: 1-2.
    [25] Petersen. K. E. Micromechanical Light Deflector Array[J]. IBM Technical Disclosure Bulletin. 1977, 20(1):355~356.
    [26] KE Peterson. Silicon Torsional Scanning Mirror[J]. IBM J. Res. Develop. 1980,24(5):631~637.
    [27] L.J. Hornbeck. Current Status of the Digital Micromirror Device (DMD) for Projection Display Applications[J]. International Electron Devices Technical Digest. 1993:381~384.
    [28] L.J. Hornbeck. Digital Light Processing: A new MEMS-based display technology[C]. Technical Digest of the IEEJ 14th Sensor Symposium. 1996:297-304.
    [29] L.J. Hornbeck. Digital Light Processing and MEMS: Reflecting the digital display needs of the networked society[C]. SPIE Europol Proceedings. 1996(2783): 2-13.
    [30] R.L. Knipe. Challenges of a Digital Micromirror Device: Modelling and Design[C]. SPIE Europol Proceedings. 1996(2783): 135-145.
    [31] L.J. Hornbeck, T.R. Howell, R.L. Knipe, and M.A. Mignardi. Digital Micromirror Device– Commercialization of a massively parallel MEMS technology[C]. Microelectronic Systems ASME International Mechanical Engineering Congress and Exposition. 1997(62):3-8.
    [32] L.J. Hornbeck. Digital Light Processing for high brightness, high-resolution applications[C]. Proc. SPIE. Projection Displays III. , 1997(3013):27-40.
    [33] L.J. Hornbeck. Current Status of the Digital Micromirror Device (DMD) for Projection Television Alications[J] .Electron Devices, 1993, 23: 81-84.
    [34] R.G Fielding, M. Burton, T. Bartlett. Colorimetry Performance of a High Brightness DMD Based Optical System[J]. CA,San Diego, 1996.
    [35] Lars Seime, Jon Y Hardeberg. Colorimetric characterization of LCD and DLP projection displays[J], SID 2003:349-358.
    [36] O. Solgaard, F. S. A. Sandejas, and D. M. Bloom. A Deformable Grating Optical Modulator[J]. Optics Letters. 1992, 9:688.
    [37] O. Solgaard. Integrated Semiconductor Light Modulators for Fiber-Optic and DisplayApplication[D]. Ph. D. Dissertation. Stanford University. 1992.
    [38] D. T. Amm, R. W. Corrigan. Grating Light Valve? Technology: Update and Novel Applications[J]. Society for Information Display Symposium. 1998,5
    [39] R. W. Corrigan, D.T. Amm, and C.S. Gudeman. Grating Light Valve Technology for Projection Displays [J]. the International Display Workshop. Kobe Japan. 1998,12
    [40] M. W. Miles. A new reflective FPD technology using interferometric modulation [J]. Journal of the Society for Information Display. 1997,4: 379-382.
    [41] Mark W. Miles. MEMS-based interferometric modulator for display applications[C]. Part of the SPIE Conference on Micromachined Devices and Components. 1999: 20-28.
    [42] Mark W. Miles. Interferometric Modulation: MOEMS as an Enabling Technology for High-Performance Reflective Displays MOEMS Display and Imaging Systems[C]. Proceedings of SPIE. 2003(4985):131-139.
    [43] S. G. Kim, K. H. Hwang, Y. J. Choi, Y. K. Min, and J. M. Bae. Micromachined Thin-Film Mirror Array for Reflective Light Modulation [J]. Annals of the CIRP. 1997, 1: 455-458.
    [44] Kyu-Ho Hwang, Myung-Kwon Koo, and Sang-Gook Kim. High-brightness Projection Display Systems Based on the Thin-Film Actuated Mirror Array (TFAMA) [C]. Proc. of SPIE. 1998(3513):171-180.
    [45] Sang-Gook Kim, Kyu-Ho Hwang, Jin Hwang, Myung-Kwon Koo, and Keun-Woo Lee. Actuated Mirror Array - A New Chip-based Display Device for the Large Screen Display [J]. SID Asia Display '98. Seoul. 1998: 329-334.
    [46] http://www.microvision.com/pico_projector_displays/[EB/OL].
    [47] D. Monk. Digital Light Processing with the Digital Micromirror Device[M]. Germany, Chemnitz. 1996.
    [48] J.M. Younse. Projection Display Systems Based on the Digital Micromirror Device (DMD) [J]. Texas,Austin, 1995.
    [49] G. Sextro, T. Ballew, J. Iwal. High-Definition Projection System Using DMD Display Technology [J]. SID 95. Digest, 1995: 70-73.
    [50] L. Yoder. DLP, The State of the Art in Projection Display [J]. CA, San Diego, 1996.
    [51] L.J. Hornbeck. Digital Light Processing for Projection Display[M] .Germany,Berlin, 1996.
    [52] M.S. Brennesholtz. Light Collection Efficiency for Light Valve Projection Systems[J]. Projection Displays II, 1996, 23: 71-79.
    [53] J. Florence, R. Miller, T. Bartlett. Contrast Ratio in DMD-Based Projection Systems[M]. MA ,Boston, 1997.
    [54] Kim, Dae-Sik.Electronics Co. Highly Efficient Projection System for a Single DLPPaneI[C].SPIE.2003,5186: 96-99.
    [55] M.R. Douglass, D.M. Kozuch. DMD Reliability Assessment for Large-Area Displays[J].Information Display, 1995, 26: 49-52.
    [56] http://www.pctechguide.com/57Projectors_DLP.htm[EB/DL]
    [57] R.L. Howe. Big optics for big screen television[J]. Optical Spectra. 1978, 3: 37-40.
    [58] R.L. Howe and B.H. Welham, Developments in plastic optics for projection television systems[C]. IEEE Transactions on Consumer Electronics. 1980, 4: 44-53.
    [59] Hans Zou, Adam Schleicher, Single-Panel LCoS Color Projector with LED light Source[C], SID 05 DIGEST, 58.1
    [60]徐佳.基于LED的DLP投影显示光学引擎研究[D].华东师范大学硕士论文. 2008, 5:10-11.
    [61] D. T. Amm, R. W. Corrigan. Grating Light Valve? Technology: Update and Novel Applications[J]. Society for Information Display Symposium. 1998,5.
    [62] R. W. Corrigan, D.T. Amm, and C.S. Gudeman. Grating Light Valve Technology for Projection Displays[J]. The International Display Workshop. Kobe Japan. 1998,12.
    [63] D. T. Amm and R. W. Corrigan, Optical Performance of the Grating Light Valve Technology. Projection Displays[C]. SPIE Proceedings. 1999, 3634: 71-78.
    [64] H. Tamada et al. High Contrast and Efficient Blazed Grating Light Valve for Full-HD 5,000Lumen Laser Projectors[J]. Digest of Technical Papers. ICCE2006: 133-134.
    [65] Y. Ito et al. High-performance blazed GxL device for large-area laser projector[C]. Proc. SPIE. 2006(6114): 611401.1-611401.12
    [66] K. Saruta et al. Nanometer-ordered Control of MEMS Ribbons for Blazed Grating Light Valves[J]. Technical Digest of IEEEMEMS. 2006: 842.
    [67]张洁.面向显示基于MEMS光栅光调制器光学分析和实验[D].重庆大学博士论文. 2006.
    [68]伍艺.基于MEMS光栅光调制器的机电特性及控制系统研究[D].重庆大学硕士论文. 2006: 47-55.
    [69]黄尚廉,张智海,闫许,付红桥,张洁,伍艺.光栅平动式光调制器及阵列[P]. 200510020186.8, 2005.
    [70]闫许,黄尚廉,张洁,付红桥.基于MOMES光栅平动式光调制器[C].第十一届光电技术与系统会议. 2005: 795-799.
    [71]张洁黄尚廉闫许等.光栅平动式光调制器结构参数的优化分析[J].光学学报. 2006,8: 1121-1126.
    [72]张洁,黄尚廉,闫许,张志海,伍艺.光栅平动式光调制器的光学特性分析和仿真[J].中国机械工程(增刊). 2005: 218-220.
    [73]闫许.基于MEMS光栅平动式光调制器结构优化与实验[D].重庆大学硕士论文. 2006: 50-55.
    [74]张智海.基于MOEMS技术的光栅平动式光调制器阵列若干关键技术研究[D].重庆大学博士论文. 2008.6: 102-105.
    [75]张万生,梁春广,可见光LED的进展一发展趋势及蓝色LED[J],半导体情报,34(3):33~42
    [76]夏常荣,投影技术与投影光源分析,真空电子技术,2003, 1:51-53.
    [77] G. Harbers, S. J. Bierhuizen, and M. R. Krames, Performance of High Power Light Emitting Diodes in Display Illumination Applications[J] , J. Display Technol. 2007,3: 98-109.
    [78] Gerard Harbers, Serge J. Bierhuizen, and Michael R. Krames ,Performance of High Power Light Emitting Diodes in Display Illumination Applications[J].J.Display Technol.2008,5: 102-105.
    [79] U. Zehnder, B. Hahn, J. Baur, M. Peter, S. Bader, H. J. Lugauer, and A. Weimar. GaInN LEDs: straight way for solid state lighting[C]. Proc. SPIE 6797, 2007:67970E-67970E-7.
    [80] Eun-Hyun Park, Soo-Kun Jeon, Chang-Tae Kim, Dong-Hwan Kim, and Jung-Seo Park.InGaN based high efficiency LED[C].Proc. SPIE 6669,2007: 66690J.
    [81] G Harbers S. J Bierhuizen, and M R. Krames. Performance of High Power Light Emitting Diodes in Display Illumination Alications[J].Journal of Display Technology,2007, 3: 98-109.
    [82] Joseph W. Goodman. Introduction to Fourier Optics[M]. Beijing: Publishing House of Electronics Industry. 2006: 67-70.
    [83]中国电子行业标准.数字投影机通用规范[J]. SJ/T 11298-2003: 20-21.
    [84]中国电子行业标准.电子投影机测量方法[J]. SJ/T 11346-2006: 6-7.
    [85]吕乃光.傅里叶光学[M].北京,机械工业出版社. 2007: 93-113.
    [86]孙吉勇,黄尚廉,张洁,张智海,王宁.二维光栅光调制器阵列的光学分析与实验[J],光学学报, 2008, 6: 1136-1140.
    [87] M.Adrian Michalicek, Darren E.Sene, Victor M. Bright. Advanced Modeling of Micromirror Devices[J]. International Conference on Integrated Micor/Nanotechnology for Space Applications, 1995: 214~229.
    [88] Stephen D. Senturia.微系统设计[M].电子工业出版社,北京,2004.
    [89]黄婉云.傅里叶光学教程[M].北京:北京师范大学出版社. 1985: 94-115.
    [90] M.波恩,E.沃耳夫.光学原理[M].北京:科学出版社. 1978: 648-715.
    [91]沈光地,张剑铭,邹德恕等.大功率GaN基发光二极管的电流扩展效应及电极结构优化研究[J].物理学报,57(1):472-476.
    [92]汤顺青.色度学[M].北京:北京理工大学出版社,1990: 113-123.
    [93] CIE No 13-2-1965.Method of measuring and specifying color remdering properties of light sources[P].1965.
    [94] CIE No 13-2-1974(2ndEdistion).Method of measuring and specifying color rendering properties of light sources[P].1974.
    [95] Harald Ries, Narkis Shatz, John Bortz et.al. Performance limitations of rotationally symmetric non -imaging devices[J].Opt.Soc.Am.A.
    [96] D.Y.Cheng, Intense pinhole light source improves image quality of reflective and transmissive display systems, Projection Displays[C],SPIE Proceedings, 1996:63-70.
    [97] Roland Winston, Juan C. Mi?ano, W. T. Welford et al. Nonimaging optics]M]. Elsevier Academic Press.2005.
    [98] Ximing Deng,Xiang ChunLiang,Ze Zun Shen..Uniform illumination of large targets using a lens array[J]. Applied Optics, 1986,25(3): 337-381.
    [99] LGlaser. Applications of the lenslet array processor[C]. SPIE,564: 180-185.
    [100]张增宝.投影显示系统光学引擎研究[D].中国科学院研究生院博士学位论文.2003,12: 17-19.
    [101] John D. Hayes, Projection Optical System[P], U.S.Patent #3,030,860, 1962.
    [102]袁旭沧.光学设计[M].北京理工大学出版社. 1988: 244-246.
    [103] L i K N,Sillyman S D, Inatsugu S J. Light pipe based optical train and its application [C」.SPIE,2004, 5524: 186-1951.
    [104] Beniamin A.J, RobertDG. Beam-shape transforming devices in high-efficiency projection system[C].SPIE,1996,2407:48-56.
    [105] Carl Gilay. optical Design Application for Enhanced illumination Performance[C]. SPIE VOL 2538:177-187.
    [106]吕勇,郑臻荣,方棒照明系统的光学扩展量传递分析[J],北京航空航天大学学报,30(6):47-49.
    [107]张增宝,张新,翁志成等,用于投影显示的匀光杆照明系统设计[J],发光学报,25(5):12-15.
    [108] Douglas M.Rutan,Charles N.Stewart,Daniel J.Savage, Low Wattage Long Life Short Arc Metal Halide Lighting Systems for LCD Projectors, Euro Display[J],96: 261-264.
    [109] D.Y.Cheng, Intense pinhole light source improves image quality of reflective and transmissive display systems, Projection Displays[C],SPIE Proceedings, 1996: 63-70.
    [110] Taira Kouchiwa, COLOR Separating Lens Composed of Three Lens Units[P], U.S.Patent#4,711,536, 1987.
    [111] Norikazu Arai, Projection Lens for Television Projector[P], U.S.Patent #4,889,417,1991.
    [112] Kyohei Fukuda, Projection Lens for Projection Television[P], U.S.Patent, #4,620,773,1986.
    [113]高峰.傅里叶变换透镜参数的研究[J].实验室研究与探索. 1997, 6: 59-60.
    [114]徐进,王忠厚.长焦距傅里叶变换透镜的小型化[J].光子学报. 1998, 11:1046-1049.
    [115]李晓彤.几何光学和光学设计[M[.杭州:浙江大学出版社. 1997: 227-230.
    [116] Jacob Moskovich. telecentric lens system for forming an image of an object composed of pixels[P]. U.S. patent. RE39424.
    [117]宋家军,何平安. LCoS背投光学引擎中变焦投影物镜设计[J].应用光学. 2007, 1: 58-62.
    [118]杨宝喜.平原光电公司光学技术发展现状研究与投影物镜设计[D].长春理工大学硕士论文. 2004: 29-48.
    [119] John A. Clarke, Projection Lens System[P], U.S.Patent #4,595,263, 1986.
    [120]张以漠,应用光学[M].北京:机械工业出版社.1982.
    [121]孙吉勇. MEMS光栅光调制器阵列及投影系统的光学分析与实验[D],重庆大学博士论文.2008: 74~76.
    [122] http://www.projector-news.com/projector-reviews/toshiba_tdpff1a_led_projector.html[EB/DL]
    [123]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报. 2000,9: 505-508.
    [124]周兆英,叶雄英.微机电技术系统[J].电子产品世界. 1999, 5: 18-21.
    [125]张智海.基于MOEMS技术的光栅平动式光调制器阵列若干关键技术研究[D].重庆大学博士论文. 2008: 67-111.
    [126] Zhang Zhihai, Huang Shanglian. Fabrication Improvement of the Grating Light Modulator[C]. In Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. 2006:1483-1486.
    [127] Cleo Cabuz. Dielectric related effects in micromachined electrostatic actuators[J]. Annual Report of the IEEE/CEIDP Society. 1999: 327-332.
    [128]梁曦东.高电压工程[M].北京:清华大学出版社. 2003: 16-18.
    [129] Paul G. Slade, Erik D. Taylor. Electrical Breakdown in Atmospheric Air Between CloselySpaced (0.2pm-40pm) Electrical Contacts[C]. Proceedings of the Forty seventh IEEE Holm Conference on Electrical Contacts. 2001: 245-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700