水源热泵复合式系统的优化匹配和运行调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江水源热泵作为可再生能源的一种形式,将水体中储存的冷量或热量通过热泵提取后供给室内,具有节水、节电和减少污染物排放的巨大优势;冷却塔作为传统的制冷装置,在空气温度较低时使用优势明显。因此将两种技术联合应用,能充分发挥各自的优势,实现对资源的合理优化,最大限度的实现系统高效、经济、节能。
     本研究针对江水源热泵复合式系统应用的一些关键技术问题进行研究,从而为实现该系统的高效经济运行提供理论依据,为工程应用提供参考。对水源热泵复合式系统做全方位的分类,并说明各种系统形式的适用范围;分析了影响江水源热泵系统能效和常规冷却塔系统能效的逐时外部条件;依据能效优先的原则,对两种系统进行对比分析,推导出江水源热泵在不同负荷率下,相对常规系统节能的临界温差Δt的计算公式;综合考虑逐时江水温度、逐时室外空气湿球温度、逐时取水高差和逐时部分负荷率,遵从建筑空调冷热量供应侧和需求侧最佳匹配的理念,首次提出四类建筑江水源热泵复合式系统冷却塔负荷分担比例;基于水源热泵复合式系统的分类,考虑各方案的经济因素、技术因素、环境效益、社会影响四个方面,采用模糊层次分析法FAHP选择合理的系统方案;针对某江水源热泵+冷却塔复合式系统,在冷却塔50%负荷分担比例的前提下,提出6种可能最优的控制策略,利用matlab分别编程计算分析。
     研究结果表明:水源热泵复合式系统可以按照辅助系统的形式、作用方式、作用位置、组合方式等分类,在工程应用中负荷侧并联和冷热源侧并联两种形式应用较多;利用DEST建立典型模型,分析了不同建筑末端负荷特性,并分析了重庆地区江水温度、取水高差、空气温度等逐时变化,为系统负荷与能耗的动态耦合分析提供依据;江水源热泵相对节能临界温差Δt与取水高差H和部分负荷率PLR有关,本研究根据江水取水泵的变频限制,针对0.72时开启辅助系统)节能效果也较好,节能率为7.67%。
     本文研究表明,水源热泵复合式系统具有推广应用的价值,可以解决在夏初及夏末时间段江水源热泵取水高差大、部分负荷率低造成的系统能效较低的问题。
As a form of renewable energy, river water source heat pump, which getting the cooling and heating capacity stored in water, has advantage of water saving, power saving, and reducing pollutant discharging; cooling tower as a tranditional cooling device has obvious superiority when use in the air temperature is lower.So combined of the two technologies can give full play their respective strengths, achieve the rational optimization of resources and maximum system efficiency, economy, energy saving.
     In this study, research on several key technical problems of river water source heat pump hybrid system ,so provide the theoretical basis for hybrid system’s efficiency and economic operation and offer reference for engineering application. We do a full range of categories of hybrid systems of water source heat pump, and describe the application of various systems in the form.; analysis of the hourly external conditions impact of river water source heat pump system efficiency and conventional cooling tower system efficiency; based on priority of energy efficiency principle, comparative analysis the two kind system, calculation formula of relative energy saving critical temperature difference to general system under different loading rates is derived; considering the hourly river temperature, hourly outdoor air's wet bulb temperature, hourly water height and hourly rate of part-load, following the best matched concept of building air conditioning load supply side and the demand side, first put forward load sharing proportion of hybrid system of water source heat pump for four kind of architecture; based on the classification of hybrid water source heat pump system, consider economic factors, technical factors, environmental and social impact of various options,use fuzzy analytic hierarchy process choose reasonable system solutions; according to a river water source heat pump and cooling tower system, under the cooling tower 50% load allocation proportion put forward six may optimal control strategy and programming calculation and analysis using matlab.
     The results show that: Water source heat pump systems can follow the form of auxiliary system, mode of action, role position, combinations, etc. and in engineering applications load side and the heat source side in parallel are more; establish typical model using DEST to analyze the load characteristics of different construction end and analyze of Chongqing river temperature, water height, hourly air temperature, providing basis for system load and enery dynamic coupling analysis; river water source heat pump energy-saving critical temperature relative to water height and part-load ratio, based on the intake pump frequency limit, for 0.7 2 on auxiliary systems) are also have well energy saving effect, energy-saving rate of 7.67%.
     This study shows that hybrid river water source heat pump technology has application value, can solve the problem of low system efficiency cosed by Large taking water elevation and low part-load in the early summer and late summer period
引文
[1]中国统计年鉴[M].北京:中国工业出版社,2010.
    [2]中国百科网http://www.chinabaike.com/z/xinxi/481243.html
    [3]魏庆节,凡王鑫等.中国公共建筑能耗现状和特点[J].建设科技,2009:38-43.
    [4]中央政府门户网站http://www.gov.cn/jrzg/2011-05/12/content_1862895.htm
    [5] Woodburn P J, Britter R E. CFD. simulation of atunnel fire—partⅠ[J]. Fire Safety Journal, 1996,26(1):35-62.
    [6] Kumar S,Cox G..Mathematical modeling of fires inroad tunnels[C]5th International Symposium on the Aerodynamics and Ventilation of VehicleTunnels,1985.
    [7]黄其励.节约能源与可持续发展[J].电力设备, 2004,5(2):5-7.
    [8]胡连营.地源热泵技术讲座(六)地表水地源热泵系统[J].可再生能源,2008,26(6):111-113.
    [9]徐伟等译.地源热泵工程技术指南[M].北京,中国建筑工业出版社,2001.
    [10] ASHARE. Commercial/institutional ground-source heat pump engineering manual [M]. Atlanta: American Society of Heating,Refrigerating and Air-conditioning Engineerings, Inc,1995.
    [11] Gilbreath.C.S. Hybrid Ground Source Heat Pump System for commercial application [D]. Master’s thesis. University of Alabama, Tuscaloosa. 1996.
    [12] Kavanaugh. S.P, K. Rafferty. Ground-Source Heat Pumps: Design of geothermal systems for commercial and institutional buildings[M]. Atlanta: ASHRAE, Inc.1997.
    [13] Kavanaugh,S.P. A design method for hybrid ground-source heat pumps, ASHRAE Trantisact-ions, 1998,104(2):691-698.
    [14] G. Phetteplace, W.Sullivan. Performance of a hybrid GCHP system[J]. ASHRAE transactions, 1998.
    [15] Singh. J. B., Foster G.. Advantages of using the hybrid geothermal options [M]. The second Stockton College of NewJersey. 1998.
    [16] Chiasson.A.D, J.D. Spitler, S.J. Rees, et al. A model for simulating the performance of a shallow pond as a supplemental heat rejecter with closed loop ground source heat pump systems [J]. ASHRAE transactions, 2000.
    [17] Yavuzturk. C, J.D. Spitler, S,J.Ree. A Short Time Step Response Factor Model for Vertical Ground Loop Heat Exchangers [J].ASHRAE Transactions, 1999.
    [18] Yavuzturk.C., J.D.Spitler. Comparative study of operating and control strategies for hybridground source heat pump systems using a short time step simulation model [J] . ASHRAE Transactions,2000.
    [19] Ramamoorthy, M., H.Jin, A. Chiasson, J.D. Spitler. Optimal Sizing of Hybrid Ground-Source Heat Pump Systems That use a Cooling Pond as a Supplemental Heat Rejecter -A System Simulation Approach [J]. ASHRAE transactions, 2001.
    [20]曲云霞,张林华,方肇洪.地源热泵系统辅助散热设备及其经济性能[J].可再生能源,2003,(4):9-12.
    [21]高娜.冷却塔—土壤源联合运热泵系统的优化[D].华中科技大学,2007.
    [22]於仲义,胡平放,王彬等.混合式地源热泵系统优化设计[J].暖通空调,2007,37(9):105-109.
    [23]李季勋.水源辅助散热的复合地源热泵系统性能模拟与经济性分析.湖南大学,2010.
    [24]吴浩.湖水源热泵系统水体热承载能力的研究[D].重庆大学,2008.
    [25]范亚明,付祥钊.湖泊、池塘的水温模型与最大供冷能力的分析研究[J].暖通空调2009,39(7):27-32.
    [26]李跃,付家轩,等.为满足冬季极端工况下闭式地表水源热泵正常运行的两种改造方案对比[J].能源技术,2008.29(2):103-105.
    [27]钱剑峰,孙德兴等.地表水源热泵辅助热源节能效果的分析[J].节能技术,2006,24(4):330-333
    [28]钱剑峰,孙德兴.寒区水源热泵及调峰供暖运行机制的优化分析[J].太阳能学报,2006( 27):1142-1147
    [29]钱剑峰,孙德兴.水源热泵与调峰锅炉供热系统运行参数的选择[J].煤气与热力,2006,26(8):49-52.
    [30]沈长亮,吴祥生,庄春龙.土壤源-湖水源热泵系统及工程应用实例[J].后勤工程学院学报,2009,26(1):17-21
    [31]夏国欣,陈汝东.负荷动态特性与制冷机组性能的匹配[J].流体机械,2003,31(1): 53-55.
    [32]龙惟定.建筑节能与建筑能效管理[M].中国建筑工业出版社2005.
    [33]简毅文,江亿.住宅供暖空调能耗计算模式的研究[J].暖通空调,2005,35(2):11-14.
    [34]李兆坚,江亿.北京市住宅空调负荷和能耗特性研究[J].暖通空调,2006,36(8):1-6.
    [35]龚延风.住宅建筑空调部分负荷分布的研究[J].暖通空调,2005,35(4):91-94.
    [36]《重庆市工程建设标准-居住建筑节能50%设计标准》(DBJ50-102-2010).
    [37]《民用建筑热工设计规范》(GB50176-93).
    [38]孙杰.重庆市办公建筑能耗特性及节能策略研究[D].重庆大学,2007.
    [39]《公共建筑节能设计标准》(GB50189-2005).
    [40]涂光备.大、中型商场空调设计的一些间题(一).建筑技术通讯,1987:44-46.
    [41]黄绪镜.百货商场空调设计[M].中国建筑工业出版社,1992.
    [42]王树健.重庆市大型商场建筑能耗调研与能耗模拟[D].重庆大学,2008.
    [43]曾菲.江水源热泵系统运行控制的研究[D].重庆大学,2010.
    [44]马兆玉.对湿空气焓值近似计算公式的研究[J].铁道车辆,1996:29-32.
    [45]曲云霞,杨勇,李爱景.水源热泵机组变工况性能的实验[J].山东建筑大学学报,2007,22(3):222-226.
    [46] Supervisory Control Strategies and Optimization. ASHRAE handbook,1999[chapter 40]
    [47] R.J.Hachner,J.W.Mitchell,W.A.Beckman,HVAC sytem dynamics and energy use in buildings. Part I, ASHRAE Trans.90(1984)523-535.
    [48]张言军.地表水水源热泵输配系统节能问题研究[D].重庆大学,2009.
    [49]龚明启.中央空调系统动态运行节能优化策略研究[D].广州大学,2006.
    [50]李永安,常静.封闭式冷却塔供冷系统气象条件分析[J],暖通空调,2005(6):107-108.
    [51]吴玲红,叶大法,梁韬等.某大型公共建筑江水源与地源热泵联合系统设计[J],暖通空调,2008,38(6):57-62.
    [52] Donald M.Eppelheimer.Variable Flow.The question for system energy efficiency. ASHRAE Transaction,Symposia:P673-678
    [53]王平利.空调冷热源方案选择方法的研究[D].西南交通大学,2002.
    [54]张维亚.空调系统冷热源方案选择方法的研究[D].天津大学,2004.
    [55] Cheng C H,Yang K L,Hwang C L. Evaluating attack helicopters by AHP based on linguistic variable weight[J]. European Journal of Operational Research, 1999, 116(2):423~435.
    [56] ORLOVSKY S A.Decision-making with a fuzzy preference relation[J].Fuzzy Sets and Systems,1978,1(1):155-167.
    [57] TANINO T.Fuzzy preference orderings in group decision making[J].Fuzzy Sets and Systems,1984,12(1):117-131.
    [58] Wilhelm M R, Parsaei H R. A fuzzy linguistic approach to implementing a strategy for computer integrated manufacturing [J]. Fuzzy Sets and Systems, 1991, 42(2):191~204.
    [59] Saaty T L.The Analytic Hierarchy Process[M].McGraw-Hill,Newyork,1980
    [60]杜栋. AHP判断矩阵一致性问题的数学变换解决方法.决策科学及其应用,北京:海洋出版社,1996
    [61]徐泽水.模糊互补判断矩阵排序的一种算法[J].系统工程学报,2001,16(4):311 314.
    [62]陈华友,赵佳宝.模糊判断矩阵的相容性研究[J].运筹与管理,2004,13(1):44 47.
    [63]徐泽水.模糊互补判断矩阵的相容性及一致性研究[J].解放军理工大学学报,2002,3(2):94-97.
    [64] Yavuzturk.C.,J.D.Spitler.Comparative study of operating and control strategies for hybrid ground source heat pump systems using a short time step simulation model[J].ASHRAE Transactions, 2000,106(2):192-209.
    [65] Study Of Operating Control Strategies For Hybrid Ground Source Heat Pump System With Supplemental Cooling Tower.
    [66]水源辅助散热的复合地源热泵系统性能模拟与经济性分析.
    [67]王华军,赵军.混合式地源热泵系统的运行控制策略研究[J].暖通空调,2007,9(37),131-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700