油田开发中流体渗流机理模拟及剩余油分布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北二西开发区位于大庆萨尔图油田北部背斜构造西部,构造较为平缓,地层倾角1°~3°。该区共发育大小断层18条,均属正断层,走向为北北西向,断层密封性较好。北二西油层属于河流-三角洲相沉积,油层埋深870-1200m左右,砂泥质交互分布。该区单砂层划分为10种沉积类型,共发育8个油层组、34个砂体组、114个沉积单元。本文通过对北二区油层地质特征、地应力分布及扰动特征、油层流-固耦合渗流机理模拟、剩余油分布与应力扰动关系、注采井网调整部署的研究,获得如下认识及成果:
     根据对注水条件下油层地应力分布及扰动特征的观测试验,及对油田注水开发中后期油层地应力与流体压力耦合效应研究,建立了油层岩石流-固耦合渗流数学模型,给出了流-固耦合渗流模型的数值方法,为探讨油层岩石微裂缝的形成与分布模拟的理论及方法提供了科学依据。
     流-固耦合应力场模拟结果显示,油层开发之前,萨Ⅱ_(7-8)油层主应力值变化较小(最大主应力值介于-21.0~20.0Mpa;最小主应力值介于-4~-5.0MPa),但在断层重叠处最小应力值变化急剧,且出现多个极大值或极小值;油层开发中后期,除在断层密集区外,主应力值扰动增大(最大主应力值介于-25.0~-24.0Mpa之间;最小主应力值介于-19.0~-18.0MPa)。在断层带内,最小主应力值有明显的增大,出现一些极大值,同样在断层密集区内,变化急剧。
     流-固耦合流体(油和水)运移势模拟结果显示,油田开发中后期,研究区萨Ⅱ_(7-8)油层流体(油和水)运移势高值区主要分布在B2-3-35、B2-D4-429、B2-D5-426、B1-D1-26井的以西地区;其低值区则主要分布在上B2-3-35、B2-D4-429、B2-D5-426、B2-D1-24井的以东地区,其它地区流体(油和水)运移势值变化不大。在高势能分布区的西北部,存在三个明显的势能低值区,而在低势能区也分布有局部高势能区,低势能区大都呈闭合状分布,剩余油富集区主要分布在势能低值闭合区。
     油层裂缝的模拟结果显示,油田开发中后期。研究区萨Ⅱ_(7-8)油层普遍发育有张裂缝,一般呈北东-南西向,产状稳定,只有局部发育着剪裂缝。研究区裂缝指数变化较大,在研究区东、西两侧分别存在着一个大范围的高裂缝指数(大于7.5)区。除东、西两侧的高裂缝指数区外,大面积分布的是中等裂缝指数(3.0~4.0)区,包括从南侧的边界到北侧边界的大面积区域。
     应力扰动与流体运移二者关系研究表明,应力对流体运动的影响主要表现在两个方面,一是应力直接作用于岩石孔隙中的流体上,一般情况是构造应力越大,流体运移的势能值越大。二是应力作用于油层岩石的骨架上,使其产生弹性变形、塑性流动和脆性破裂,这些构造变动现象,严重影响岩石的物性和导水能力,从而影响流体的运移,在高应力作用区,由于应力作用于油层岩石骨架上,使岩石受到压缩,从而导致岩石孔隙度变小,导水系数变低;而在低应力作用区,导水系数相对增大。
     根据精细地质研究结果,分析了油层剩余油潜力、成因类型及与不同沉积类型储层的关系。应力扰动与剩余油分布二者关系研究表明,应力低值区即为剩余油分布区。在萨北油田北二西区萨Ⅱ_(7-8)油层扰动应力比较低的B1-D1-21、B2-6-420、B2-5-14和B2-4-122井西部、B2-4-122井的东部以及B2-4-126井北部的槽型地区为受应力直接影响的剩余油分布区;此外,在裂缝指数分布较小地区,剩余油也相对富集。但也有个别异常地区,这些地区裂缝指数较小,但却是高含水区,这表明裂缝对剩余油分布的影响效应,不仅与裂缝的发育密度有关,而且也与裂缝发育的方位有关。
     根据萨北油田北二西区井网调整部署目标和原则以及剩余油、微裂缝和断层的分布特征,在对调整区聚驱井网部署的基楚上,进行了二次加密井网的优化部署,根据不同方案数值模拟研究结果,确定了以转注间注间采排的边井形成横行列注水方式,提出了断层及裂缝附近井网部署设计的原则及方法,试采结果显示,注采系统调整可提高采收率0.82%,全区最终采收率达到43.16%,增加可采储量53.38×10~4t。
This paper made an integrated study of fluid flow in oil-bearing beds in the North Second Block of the Shaertu oil field, Daqing. It dealt with aspects such as geology, natural fractures, stress perturbation, coupling of fluid flow and solid skeleton in beds, residual oil, and adjustment of well network. Major conclusions drawn from this study are listed as follows.
     18 NNE-trending normal faults are recognized in the slightly dipping North Second Block, and all have relatively good seal ability. Oil beds are buried at a depth of 70 to 1,200 meters. They consist of intercalated sandstone and mudstone, of fluvial and lacustrine facies. They are substantially heterogeneous in space in that a number of 10 sedimentary for independent sandstone beds are discriminated.
     Stress perturbation was observed by changing work scheme and water well row. The in-situ maximum principal stress may vary in a range of 3 to 5MPa, and shear stress reaches a value or 0.35MPa, after the work scheme for 9 water wells at row 6-3 is changed. The perturbation would drive underground fluid flow, and enhance the nucleation and growth of micro-cracks in sandstone, enlarging the porosity and permeability of it. On the other hand, it should compress the pore in sandstone, reducing the porosity and permeability.
     A mathematical model is established for coupled stress and fluid flow at the middle and late stages of water injection development. It is implemented by adopting a numerical algorithm. In this model, the nucleation and spatial distribution of micro cracks are addressed.
     Simulation of stress field through the development shows that principal stress in oil-bearing bed ShaII_(7-8) varies slightly before the development, and greatly at the middle and late stages. The maximum principal stress is in a range of -21.0 to -20.0 MPa before the development, and of-25.0 to -24.0 MPa at the middle and late stages.
     According to the simulation of fluid (namely, oil and water) potential, it is high to the west of wells B2-3-35, B2-D4-429, B2-D5-426 and B1-D1-26, and low to the east of wells B2-3-35, B2-D4-429, B2-D5-426 and B2-D1-24. The variation of fluid potential is small between them. Residual oil tends to remain in areas of low fluid potential in a close configuration.
     Fracture predication reveals that, at the middle and late stages tensional fractures are widely distributed in oil-bearing bed Sha II_(7-8), in contrast with the local distribution of shear fractures. These tensional fractures are trended along the NE to SW direction, and extended in a stable way with a great variation of fracture density. Dense fractures have fracture index of greater than 7.5 are predicted in the eastern and western sides, respectively.
     The relation between stress perturbation and fluid flow is modeled to examine the impact of perturbed stress on fluid flow. The impact is both positive and negative, as described above. The fluid potential generally increases with the stress of rock skeleton acting upon the fluid in pore. Elastic deformation or plastic flow or even brittle fracturing might have resulted from the increase of stress, thus changing the properties and transmissivity of the rock. Both porosity and transmissivity in rock tend to decrease in highly stressed areas, and to decrease in slightly stressed areas.
     The potentialability and origin of residual oil, as well as its relation with reservoir of variable sedimentary kind, is analyzed on the base of detailed geological study. The distribution of residual oil is related in some way to factors including a low value of stress perturbation, a small fracture index, fracture orientation, and so forth. In oil-bearing bed, west of the North Second Block, there is a large possibility of having residual oil to the west of B1-D1-2, B2-6-420, B2-5-14 and B2-4-122, to the east of B2-4-122, and to the north of B2-4-126, because of the low value of stress perturbation. Additionally, residual oil is comparatively enriched in areas having small fracture index.
     Based upon the above study of residual oil, fractures and faults, injection-production well pattern in the North Second Block is rearranged, and a second infilled well pattern are optimized. Reservoir simulation of variable schemes confirms the best water-injection program, and adjustment pattern of injection-production well in the vicinity of faults and large fractures is promoted. It is shown by pre-production that in the new network the productivity may increase 0.82%, giving an additional amount of 53.38×10~4 tons active oil.
引文
1 安欧.构造应力场.北京:地震出版社,1992.
    2 巢华庆,许运新.大庆油田持续稳产的开发技术.石油勘探与开发,1997,14(1):34~38.
    3 陈景山.三角洲沉积与油气勘探.北京:石油工业出版社,1984.
    4 陈庆宣等.岩石力学与构造应力场分析.北京:地质出版社,1998:118~179.
    5 陈寿先,俞明淑.用新的统计法确定声波孔隙度.地球物理测井,1991,15(1):34~41.
    6 陈永生.油藏流场.北京:石油工业出版社,1998.
    7 陈永生.油田非均质对策论.北京:石油工业出版社,1993.
    8 陈昭年、陈发景.松辽盆地反转构造.北京:地质出版社,1998:1~11.
    9 迟元林,王璞君等.陆相含油气盆地深层地层研究——以松辽盆地为例.长春:吉林科学技术出版社,2000:171~199.
    10 大庆石油勘探开发研究院.石油地质研究报告.大庆内部报告,1985.
    11 单业华,李志安,曾联波.估测地下天然裂缝间距指数的新方法.石油勘探与开发.1997,24(1):73~76.
    12 单业华,李志安.估测地下多组系统性裂缝间距的原理和应用.石油实验地质.1998,20(3):297~304.
    13 丁中一、钱祥麟、霍红.构造裂缝定量预测新方法—二元法.石油与天然气地质,1998,19(1):1~7.
    14 董平川,徐小荷.油水两相流-固耦合渗流的数学模型.石油勘探与开发,1998,25(5):93~96.
    15 董平川等.油井开采过程中油层变形的流固耦合分析.地质力学学报,2000,6(2):6~10.
    16 杜庆龙,王元庆,朱丽红等.不同规模地质体剩余油的形成与分布研究.石油勘探与开发,2004,31(增刊):95~99.
    17 冯元桢.连续介质力学.北京:科学出版社,1984.
    18 甘舜仙.有限元技术与程序.北京:北京工业大学出版社,1988。
    19 高瑞祺,蔡希源等.松辽盆地大油田形成条件与分布规律.北京:石油工业出版社,1997.
    20 高瑞祺,萧德铭等.松辽盆地勘探新进展.北京:石油工业出版社,1996:90~126.
    21 高志华.松辽盆地天然气成藏规律及深层天然气勘探目标定量评价研究.博士学位论文,中国科学院广州地球化学研究所,2006.
    22 葛家理,宁正福,刘月田等.现代油藏渗流力学原理.北京:石油工业出版社,2001:10~35.
    23 郭永存等.低渗透油藏渗流的差分法数值模拟.水动力学研究与进展,A辑,2004,19(3):288~293.
    24 韩大匡,万仁溥.多层砂岩油臧开发模式.北京:石油工业出版社,1999.
    25 韩大匡、陈钦雷、闫存章.油藏数值模拟基础.石油工业出版社,1993:200~201.
    26 胡朝元.对松辽盆地油气藏形成和分布规律的初步认识.大庆石油地质与开发,1989,8(2):1~17.
    27 金毓荪主遍.论陆相油田开发.北京:石油工业出版社,1997.
    28 郎兆新.油气地下渗流力学.北京:石油大学出版社,2001.
    29 李德生.松辽盆地的油气形成和分布特征.大庆石油地质与开发,1983,2(2):79~89.
    30 李培超.多孔介质流-固耦合渗流数学模型研究.岩石力学与工程学报,2004,23(16):28~42.
    31 李培超等.饱和多孔介质流固耦合渗流的数学模型.水动力学研究与进展.A辑,2003,18(4):419~426.
    32 李自安,詹华明,尹中民,吴诗勇.高压注水条件下大庆萨尔图油田南部开发区地层变形机理的模拟研究.现代地质,2005,19(增刊):240~244.
    33 林舸,Chongbin Zhao,Yanhua Zhang,王岳军,单业华.地质构造变形数值模拟研究的原理、方法及相关进展.地球科学进展,2005,20(5):549~555.
    34 刘宝君.沉积岩石学.北京:地质出版社,1980.
    35 刘德来.松辽盆地北部的构造演化分析.博士学位论文,中国地质大学(北京),1993.
    36 刘建军,刘先贵,胡雅扔等.低渗透储层流固耦合渗流规律研究.岩石力学与工程学报,2002,21(1):88~92.
    37 刘建军.裂缝性低渗透油臧流固耦合理论及应用.中国科学院渗流所博士论,2001.
    38 刘建中,张金珠,张雪.油田应力测量.北京:石油工业出版社,1993.
    39 路保平,张传进,鲍洪志.油气开发过程中岩石力学性质变化规律实验研究.岩石力学与工程学报,2000,19(增):878~881.
    40 罗哲潭等.油层物理,科学出版社,1985.
    41 马力,杨继良,丁正言.松辽盆地-一个克拉通内的复合型陆相沉积盆地,朱夏,徐旺主编<中国中新生代沉积盆地>.北京:地震出版社,1990:7~23.
    42 潘别桐,黄润秋.工程地质数值法.北京:地质出版社,1994.
    43 普雷斯,W.H.,王璞等译.数值方法大全——科学计算的艺术.兰州:兰州大学出版社,1991.
    44 石广仁.油气盆地数值模拟方法.北京:石油工业出版社,1999.
    45 隋军、吕晓光、赵翰卿等.大庆油田河流——三角洲相储层研究.北京:石油工业出版社,2000.
    46 孙焕泉.油藏动态模型和剩余油分布模式.北京:石油工业出版社,2002.
    47 孙讷正.地下水流的数学模型和数值方法.北京:地质出版社,1981.
    48 孙讷正.地下水污染——数学模型和数值方法.北京:地质出版社,1989.
    49 孙希贤,吴靓国,陈文仁.地质力学简明教程.北京:地质出版社,1991.
    50 孙雄,洪汉净.构造应力场对油气运移的影响.石油勘探与开发,1998,25(1):1~4.
    51 谭凯旋,谢焱石,赵志忠,李小明.构造成矿非线性动力学:1.递增应力流变学模型.大地构造与成矿学,2001,25(4):381~388.
    52 陶一川.石油地质流体力学分析基础.武汉:中国地质大学出版社,1993.
    53 田杰,刘先贵,尚根华.基于流-固耦合理论的套损力学机理分析.水动力学研究与进展,2005,20(2):221~225.
    54 万天丰,古构造应力场.北京:地质出版社,1988.
    55 王冒成,邵敏.有限元单元法基本原理和数值方法.北京:清华大学出版社,1995:568.
    56 王平.地质力学方法研究—不同构造力作用下地应力的类型和分布.石油学报,1992,13(1):1~12.
    57 王秀娟,赵永胜,王良书等.大庆喇萨杏油田水力压裂人工裂缝形态研究.石油学报,2002,23(4):51~55.
    58 吴崇筠,薛叔和.中国含油气盆地沉积学.北京:石油工业出版社,1992.
    59 徐守余.油藏描述方法原理.北京:石油工业出版社,2005.
    60 徐雄鹰,王越之,李自俊.声波法计算水平主应力值.石油学报,1996,17(3):59~63.
    61 徐曾和,徐小荷.三维应力场下承压地层中渗流的液-固耦合问题.岩石力学与工程学报,1999,18(6):645~650.
    62 徐志良,王友斌.大庆油田成片套损机理研究(南七区实验区)总结报告.1990,研究报告.
    63 薛世峰等.地下流固耦合理论的研究进展及应用.石油大学学报,2000,24(2):109~115.
    64 闫健文.石油天然气开采过程中流固耦合理论研究进展及应用.中国科学技术大学报,2004,34(增刊):527~532.
    65 杨继良.对松辽盆地北部石油地质特征的几点认识.大庆石油地质与开发,1984,3(3):299~309.
    66 杨继良.中国松辽盆地的构造发育特征与油气,见朱夏主编《中国中新生代盆地构造和演化》.北京:科学出版社,1983:187~202.
    67 杨万里.松辽陆相盆地石油地质.北京:石油工业出版社,1985.
    68 殷有泉.有限元法及其在地学中的应用.北京:地震出版社,1987.
    69 尹太举,张昌民,赵红静.地质综合法预测剩余油.地球科学进展,2006,21(5):539~544.
    70 尹太举,张昌民,赵红静等.依据高分辨率层序地层学进行剩余油分布预测.石油勘探与开发,2001,28(4):79~81.
    71 尹中民,单业华.利用岩心资料估测地下一组裂缝分布的原理和应用.石油实验地质,1999,21(4):346.
    72 尹中民,武强,刘建军等.注水井泄压对井壁围岩应力场的影响.岩土力学,2004,25(3):363~368.
    73 尹中民.大庆萨尔图油田南部开发区套损机理研究.中国科学院长沙大地构造研究所博士论文,2000.
    74 于学馥.现代工程岩土力学基础.北京:科学出版社,1995.
    75 原福堂等.应用神经网络计算油藏参数.测井技术,1995,19(5):323~328.
    76 曾文冲.油气藏储集层测井评价技术.北京:石油工业出版社,1991.
    77 张景和,孙宗.地应力、裂缝测试技术在石油勘探开发中的应用.北京:石油工业出版社,2001.
    78 张恺,高明远,姚慧君.松辽盆地的演化及含油气远景评价.大庆石油地质与开发.1987,6(1):1~9.
    79 张顺,林春明,顾连兴等.松辽盆地头台油田现代地应力场分布特征研究.高校地质学报,2001,7(2):230~236.
    80 张铜生,张富德.简明有限元法及其应用.北京:地震出版社,1990:318.
    81 张永祥、陈鸿汉.多孔介质溶质运移动力学.北京:地震出版社,2000.
    82 赵红兵,徐玲.特高含水期油藏剩余油分布影响因素研究.石油天然气学报,2006,28(2):110~113.
    83 赵阳升,胡耀青,杨栋等.气液二相流体裂隙渗流规律的模拟实验研究.岩石力学与工程学报,1999,18(3):354~356.
    84 赵阳升.有限元法及其在采矿工程中的应用.北京:煤炭工业出版社,1993.
    85 Ahmadi,G. and R.Jackson. A fluid mechanical theory of fluid mixture, a superimposed model of equipresent constituents, Indian J. Technol., 1974,12,195.
    86 Angelier, J. Tectonic analysis of fault data sets. J. Geophs. Res., 1984, 89(B7): 5835~5848.
    87 Aziz K, Settari A. Petroleum reservoir simulation. London:Applied Science Publishers LTD, 1979:65~78.
    88 B.C.海姆森,и.А.图尔恰尼诺夫等.地应力测量与研究.北京:地震出版社,1982:230.
    89 Bear,J.,李竟生、陈崇希译.多孔介质流体动力学.北京:中国建筑工业出版社,1983.
    90 Biot M A. General theory of three-dimension-consolidation. Jour. Appl. Phys., 1942, 12:155~164.
    91 Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid. Jour. Appl. Phys.,1954,26:182~191.
    92 Buckley, S.E. and Leverett,M.C. Mechanism of fluid displacement in sands.Trans.A.I.M.E.,1942,146,107.
    93 Etchecopar, A.,Vasseur, G.. and Daignieres,M. An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J.Struct. Geol.,1981, 3(1):51~65.
    94 Fredrich J T, et al. Reservior compaction, surface subsidence and case damage. JPT. 1998:68~70.
    95 Fujii, H. Some remark on finite element analysis of time-dependent field problem. Theory and Practice in Finite Element Structural Analysis, University of Tokyo Press, 1973:91~106.
    96 Fujinawa, K. Finite element analysis of groundwater flow in multiaquifer systems. J. Hydrol., 1977, 33:349~362.
    97 Hobbs, D. W. The formation of tension joints in sedimentary rocks: an explanation, Geol. Magazine, 1967, 104:550~556.
    98 Hubbert, M. K. Darcy's law and the field equations of the flow underground fluids. Trans. AIME, 1976, vol. 207.
    99 Javandel, I. and Withespoon, R A. Application of the finite element method to transient flow in porous media[J].Soc. Petrol. Eng. J., 1968, 8:241~252.
    100 Javandel,I.林学珏等译.地下水运移数学模型手册.长春:吉林科学技术出版社,1985.
    101 Lewis R W, Sukirman Y. Finite element modeling of three phase flow in deforming saturated oil reservoirs. Int. J. Num. Anal. Methods Geomech, 1993, 17:577~598.
    102 Narr, W. & Currie, J.B. Origin of fracture porosity: example from Altamonte Field, AAPG Bull., 1982,66:1231~1247.
    103 Nelson, R. A. Geological analysis of fractured reservoirs, Development in Petroleum Series 12, Gulf Publishing Company,1991.
    104 Oda M. An equivalent continumn model for coupled stress and fluid flow analysis in jointed in rock masses. Water Resource Res., 1986, 25 (13): 1845~1856.
    105 Peaceman D W. Fundamentals of numerical reservoir simulation, developments in petroleum sciences. Amsterdam-Oxford-New York:Elsevier Scientific Publishing Company, 1977:35~67.
    106 Pinder, G.F.,and J.D.Bredehoeft.Application of the digital computer for aquifer evaluation. Water Resour. Res., 1968, 4(5): 1069~1093.
    107 Pollard, D. D. & A. Aydin. Progress in understanding jointing over the past century, Geol. Soc. Am. Bull., 1988,100: 1181~1204.
    108 Prickett, T.A. Modeling techniques for groundwater evaluation. Advances in Hydroscience, Academic Press, 1975, 10: 1~143.
    109 Rushton,K.R,and L.M.Tomlinson,Digital Computer Solution of Groundwater Flow. J.Hydrol.,1971, 12: 339~362.
    110 Saleem, Z.A. Method for numerical simulation of flow in multiaquifer systems. Water Resour. Res., 1973,9:1465~1469.
    111 Streltsova, T.D. Hydrodynamics of groundwater flow in a fractured formation. Water Resour. Res., 1976, 12(3):405~414.
    112 Tim Douglas J R. Finite difference methods for two-phase incompressible flow in porous media. Siam. J. Number Anal., 1983, 20(4): 681~696.
    113 Touloukian, Y. S., Judd, W. R. & Roy, R. F. Physical properties of rocks and minerals,单家增等译.北京:石油工业出版社,1981.
    114 Ungerer, P., Burrus, J., Doligez, B., Chenet, P. Y. and Bessis, F.. Basin evaluation by integrated two-Dimensional modeling of heat transfer, fluid flow, hydrocarbon generation,and migration. AAPG Bulletin, 1990,74: 309~335.
    115 Van Golf-Ract, T. D. Fundamentals of fractured reservoir engineering, Elsevier Scientific Publishing Company, 1982.
    116 Verruijt, A. Solution of Transient groundwater flow problems by the finite element method. Water Resour. Res., 1972,8:725~727.
    117 Wu Yan-qing, Zhang Zhuo-yuan. Research on lumped parameter model of coupled seepage and stress field in fracture rock mass. Prec. 7th int. Congr. Assoc. of Engineering Geology. Lisboa, Portugal, 1995:4601~4604.
    118 Wu, H. & Pollard, D.D. An experimental study of the relationship between joint spacing and layer thickness: J. Struct. Geol., 1995, 17: 887~905.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700