次声对细胞作用的部分生物力学机制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声波除可听声外还包括超声波和次声波。次声波是频率范围在0.0001~20Hz的机械振动波。次声波有传播远、衰减少,穿透力强等物理学特性,一定声压级水平的次声波可致人体功能障碍,甚至器质性损伤,一般的隔声和吸声材料、建筑物、掩蔽所均难以防护。因此,研究次声的发生、传播、生物学作用机制及制订相应的防护措施已越来越受到人们的重视。
     次声广泛存在自然界、生活环境、生产环境和军事环境中。近年来,一些发达国家投入大量的人力和财力,用于研究次声的生物学效应,并重视作为新概念武器的次声武器在战争中的作用,相关的文献报道也逐年增多。和其它物理因子一样,次声对机体的原发性作用机制一直为人们所关注。一般认为次声作用于机体组织引起生物共振,从而引起生物学效应。次声是一种机械波,作用于机体组织时可产生一种类似于弹性拉压的机械力。目前越来越多的研究表明:机械应力对细胞生长、分化、凋亡以及基因表达等生理过程和某些病理过程可发挥重要的作用。就细胞而言,在生物共振的基础上,对次声机械力的响应,很可能是引起细胞生物学效应的主要原因,但这种机械力如何被细胞感受并传至细胞内,进而使细胞发生一系列生物学效应,目前国内外还未见相关的报道。因
As the audible sound and ultrasound, infrasound is a mechanical vibration wave with frequency in range of 0.0001to 20Hz. With the physical characteristics of less attenuation in long distance spreading and strong penetration, infrasound is harmful to human and leads to body disfunction or a even severe damage when the intensity comes to a certain degree. We can hardly barricade the interference of infrasound with general sound absorbing material, building and shelter. So people are becoming increasingly aware of the importance in studying the mechanisms of the occurrence, spreading, biological effects and preventive measures of the infrasound.' Infrasound is existed widely in nature. It can be detected in our living condition, productive and military environments. In recent years many developed counties throw into a great amount of manpower and money in studying biological effects of infrasound, also they are gradually paying much attention to infrasound doing as a new concept weapon. Articles and reports about the infrasound are being increased year by year. As to other kinds of physical agents, people have showed solicitude to the primary mechanisms of infrasound. Generally, it is considered that infrasound evokes a biological resonance of bio-organs and gives rise to biological effects. On the other hand, being a mechanical wave, infrasound as an elastic spring forces produces a mechanical stress which something likes a pull and press alternately forces. At present, more and more investigations showed that mechanical stress played a very important role in cells' growth, differentiation, apoptosis and gene expression in some physiological and pathological procedures. Concerning to cells, responding to infrasound forces may be the main reason to create biological effects. However, it is not very clear that how does the infrasound signal be taken over and then transferred to intracellular by the cells to bring about a further series of biological effects. Therefore, it is
    important to investigate the changes on force transduction pathway of Extracelllular matrix(ECM) —,Integrin— Cytoskeleton(CSK) as well as cellular membrane structure and intracellular Ca2+ in the experiment to explore the infrasound signal transduction pathway to intracellular to establish the bases for the further studies of infrasound bio-effects. This thesis is composed of four parts as follow:Part one: The effect of infrasound on expression of cytoskeleton filament F-actin of ECV-304 cells and integrin (31 antisense oligonucleotide inhibits the expression of F-actinObjective: To identify the expression of cytoskeleton filament in ECV-304 cells after infrasound exposure and to explore the infrasound signal transduction pathway to intracellular.Methods: After the primary culture on coverglass, cells in experimental groups were exposed to infrasound with different parameter output The cells in control group were managed in the same environment as experimental groups with intensity output of OdB. Laser scanning confocal microscope was used to examine the changes of F-actin after immunofluorescent staining and the photos were taken for further analysis of the cells' average fluorescence by spectrofluorimetric quantification. Phosphorothioate modified antisense and plus-sense oligonucleotides of integrinpi were used to interfere with the expression of F-actin of ECV-304 cells exposed to infrasound with intensity output of 130dB and frequency of 16Hz for 2 hours. The same examination was done after infrasound exposure.Results:1. In control group, we could find under laser scanning confocal microscope that most fluorescein-labelled substance in cells was in diffusion states. Less actin filaments were tenuously short without direction. Less long stress fiber passed through the cells. Most cells with a clear margin appeared in circle, fusiform or polygon shape. Fluorescence of cells membrane showed a little bit stronger than in cytoplasm.'2. Correspondingly F-actin in the cells of experimental groups of 16Hz, 90dB or 11 OdB or 13 OdB were thick long and showed in longitudinal arrangement after once infrasound exposure of 2 hours. Small part of F-actin was arranged in across or network in cells. Less fluorescein-labelled substance in cells was in diffusion states. The intensity of fluorescence was significantly increased(p<0.01). In experimental groups, there was a membrane-like boundary much stronger fluorescence of cells than that in control group. More F-actin expression in experimental groups was being kept obviously for at
    least 8 hours then it gradually decreased. 24 hours later there was not any significantly different in F-actin expression between the experimental groups and the control group. There was not any difference between experimental groups.3. Compared to control group, the expression of F-actin in cells of different frequency groups of 8Hz and 16Hz was significantly increased(pO.OI). The variance pattern of F-actin expression was just same as above in 2. There was not any significantly difference of fluorescence of the cells between experimental groups. Frequency-dependent was not obvious.4. There were some cytomorphological changes in experimental groups after 3times infrasound exposure of 8Hz 16Hz 130dB respectively. Most cells appeared in circle, oblate forms and showed a poor expansion as if it retracted. Less cells appeared in expanded triangle or polygon shapes. Cellular nucleus with a very clear positive IP-stained boundary seemed to be shrink. F-actin with a radiation or longitude arrangement in cytoplasm showed a much stronger fluorescence than that in control or once exposure groups. The thin stress fibers could hardly be observed. Some filaments appeared almost as lump. Cells membrane was interrupted. More F-actin expression in experimental groups was being kept for 8 to 12 hours then it gradually decreased. The cell responsivity in 3 times infrasound exposure group was higher than once exposure group. Cells could be restored at 24 hours after infrasound exposure.5. In sense oligonucleotides group, cells fluorescence was almost in the same level as in control group. Anyway, a weak fluorescence was observed in cells of antisense oligonucleotides group. In simple infrasound exposure group, F-actin was thick long and showed in longitudinal arrangement and the fluorescence was strong. Correspondingly, fluorescence in sense oligonucleotides +infrasound exposure group was almost in the same level as in simple exposure group. However, less F-actin expression in cells of antisense oligonucleotides +infrasound exposure group was observed comparing to simply exposure group and most fluorescein-labelled substance was in diffusion states. Cells in all groups showed not any different in cytomorphology and structure after once exposure.Part two: Expression of integrinp 1 and integrinP 1 mRNA of ECV-3 04 cells after infrasound exposureObjective: To observe the expression of integrinp 1 and integrinP 1 mRNA of EC V-3 04 cell after infrasound exposure and to explore the contribution of integrinP 1 in infrasound signal transduction pathway to intracellular.Methods: Immunohistochemical method and in-situ hybridization were
    used to detect the expression of integrinpi and integrinplmRNA of ECV-304 cells after infrasound exposure with intensity output of 90,110,130dB and frequency of 16Hz. Results:1. After once infrasound exposure, integrin(31 expression showed obviously high in experimental groups compared to control group. Positive substance was in cytoplasm and caryon and the karyolemma showed a strong positive stained. Four hours after exposure, the positive substance reached a peak expression and then kept in a high level in 12 hours. At 24 hour more expression could also be observed. Up to 48 hour the expression got close normal.2. After three times exposure most cells appeared in circle, oblate forms and showed a poor expansion. There was an even more positive substance expression in cytoplasm and caryon. Compared to control group expression kept in a high level at 0,4,8,12 and 24 hour(pO.Ol) and when it did not become normal till 48 hours.3. More expression of integrinplmRNA was observed in experimental groups after once infrasound exposure with intensity output of 90,110,130dB and frequency of 16Hz. Positive substance was homogeneously in cytoplasm and karyolemma showed a little bit stronger positive stained. Caryon was in negative stained. In experimental groups cells were keeping in high expression for at least 24 hours(p<0.01). Integrinpi, integrinplmRNA and F-actin in cells of experimental groups showed a synchronized expression.4. There was more expression of integrinplmRNA in cells after three time infrasound exposure than that in only once exposure. More expression could be kept at least for 24 hours.Part three: AFM observation on cells' membrane after infrasound exposureObjective: To Observe the changes of cells' membrane under AFM after infrasound exposure with intensity output of 130dB and frequency of 8Hz and 16Hz to explore the mechanisms of infrasound on cell membrane.Methods: After primary culture, EVC-304 cells, L9129 cells, hippocampus neuron of embryonic rat and two kind of carcinoma cells were exposed to 16Hz 130dB infrasound meanwhile CHO cells and 446cells to 8Hz 130dB for 1 and 3 days and 2 hours each day respectively in different groups to observe the subsequent changes in the membrane of the cells by nano-scale scanning with AFM.
    Results:1. After infrasound exposure, it was showed on membrane of EVC-304 cells, L9129 cells, CHO cells and hippocampus neuron of embryonic rat that the prominent of the membrane became shorten and the excavation became shallow and the surface of the membrane became smooth in nano-scale scanning with AFM. All these changes might be the characteristics of cell membrane after infrasound exposure.2. The changes were more obvious on cell membrane with three times infrasound exposure than once exposure.3. The structure of the cell membrane is closely related to the function of the cell. Changes on cell membrane in nano-scale might be one of the primary mechanisms of infrasound.Part four: Effects of infrasound on changes of intracellular calcium ion concentration in EVC-304 cells with and without heparin interferenceObjective: To investigate the effects of infrasound on changes of Ca2+ in EVC-304 cells with and without heparin interference to explore the mechanisms of cell injury.Methods: After the primary culture on coverglass , cells with and without heparin interference in experimental groups were exposed to 16Hz 90dB,110dB and 130dB infrasound respectively. Fluo-3/AM fluorescence technique and laser scanning confocal microscope (LSCM) were used for measurement of Ca2+ level. Results:1. There was a significant increase in experimental groups after once or 3 times infrasound exposure compared to control(p<0.01), and there was a significant difference of Ca2+ between 130dB and 90dB group. However, there was no significant difference between 130dB 90dB and 1 lOdB group respectively. It seemed that calcium ion concentration was high in 3 times exposure than once, but there was no significant difference.2. In control groups it showed no significant difference of Ca2+ concentration in cells with or without heparin interference(p>0.05), but in 90dB HOdB and 130dB infrasound exposure groups there was a significant decrease after heparin interference compared to simply infrasound exposure groups with same intensity output(p<0.01).From all above we could get the conclusion that: More F-actin can be found after once infrasound exposure, and the amount of F-actin is closely related to the number of exposure times. The changes of cytoskeleton can be recovered at 24 hours. Cells can be morphologically changed after 3 times
引文
[1] 陈景藻.次声的产生及生物学效应.见:总后勤部卫生部主编.医药卫生科学技术进展.北京:军事医学科学出版社,1997.194-197
    [2] Garstang M Long-distance. low-frequency elephant communication. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2004, Oct; 190(10):791-805
    [3] 施志远.动物预报地震的奥秘.北京:科学普及出版社,1993.50-51
    [4] 李爱玲,闫夷升.次声波及其应用.现代物理知识.2001.33-34
    [5] 苏昉,苏骁.强地震临震预报的——前兆次声测量研究.石油大学学报(自然科学版),2000,24(6):106-114
    [6] 谢金来,谢照华.1993年7月2日日本北海道地震次声波.声学学报,1996,21(1)55-61
    [7] 牟翔.环境次声测量.第四军医大学博士学位论文.2001.28-34
    [8] Sand O, Karlsen HE. Detection of infrasound by the Atlantic cod. J Exp Biol, 1986,125:197-204
    [9] 王在忠,张作明,郭群.次声的生物作用的研究进展.预防医学情报杂志,2001,17(5):342-344
    [10] Karing W, Ludwik L. Burning oil fields as a source of infrasonic waves. J Low Freq Noise Vib, 1991,10(4): 123-9
    [11] 1979; 92-93
    [12] 1981, 189-190
    [13] Schulze J, Auer M, Werzi R. Low level radioactivity measurement in support of the CTBTO. Comprehensive Nuclear-Test-Ban Treaty Organization. Appl Radiat Isot, 2000, 53(1-2):23-30
    [14] 符文琛.工业次声的劳动卫生问题.职业医学,1985,12(2):47-49
    [15] Hennrik M. Annoyance of audilbe infrasound. J Low Freq Noise Vib,1987, 6(1):1-17
    [16] Backteman O, Kohler J, Sjoberg L. Infrasound-tutorial and review :part4. Low Freq Noise Vib, 1984,3(1):28-36
    [17] 陈景藻.次声的产生及生物学效应.国外医学物理医学与康复分册,1999,19:15-17
    [18]范建中.超声波的物理学基础.见:陈景藻主编.现代物理治疗学.北京:人民军医出版社,2001,326
    [19] Broner N. The effects of low frequence noise on people. Areie. Sound and Vibration, 1978, 58(4):483-488
    [20] Rice CG. Annoyance due to low frequence hums. British Medical Journal, 1994, 30895:355.
    [21] 苏防,田维.2001年2-4月强地震的前兆次声波测量研究.地球物理学进展,2001,16(4):61-70
    [22] Georges T M. HF Doppler studies of traveling ionospheric disturbances. J Atrnos Terr Phys. 1968,30:735741
    [23] 杜功焕,朱哲民,龚秀分.声学基础(上册)上海:上海科学技术出版社,1981,136-138
    [24] Gavreau V. infrasound: Generateurs, Detecteurs. Proprietes physiques, effects biologigues. Acustica, 1966,17:1-3
    [25] 屠焰,赵树卿.奇异的次声.北京:科学出版社,1979:3-4
    [26] 焦明若,张国民.地震前兆复杂性成因机理研究的讨论[J],地震学报,1998,18(2):112-118
    [27] Dieterich, J H. Time-dependent friction and the mechanics of stick-slip. Pure Appl Geoplys, 1978,116:790-806
    [28] Yang Xun-ren, Xie Jin-lai. Detection and analysis of the infrasonic wave attached to the tragic explosion of U.S. space shuttle "Challenger", Journal of Low Frequency Noise and Vibration, 1986,5(3): 100-103
    [29] 韩元杰,李绍文,陈宏.北部湾中小尺度灾害性强对流天气系统的次声/电磁波预警系统的研制与机理探讨.高原气象,2000,19(2):224-234
    [30] 苏昉,田维.4-8级大风的次声波三维动态频谱测量研究,石油大学学报,202,26(1):8-11
    [31] Yount G, Taft R, West J. Possible influence of infrasound on glioma cell response to chemotherapy: a pilot study, J Altern Complement Med, 2004 Apr; 10(2):247-50
    [32] 严宏,陈景藻,贾克勇.次声对α-晶体蛋白分子伴侣的活性的影响,第四军医大学学报,2002,23:1071-73
    [33] Svidovyi VI, Shleikin AG. Effect of infrasound on tissue succinate dehydrogenase activity, Gig Tr Prof Zabol, 1987,5:50-2
    [34] Filatov VV. Experimental study of infrasonic phonophoresis Vestn Oftalmol, 2001,117 (6): 35-37
    [35] Poddubnaia OA, Levitskii EF, Beloborodova EI. The effect of thermal-vibration massage on the function of the hepatobiliary system in patients with chronic cholecystisis and opisthorchiasis, Vopr Kurortol Fizioter Lech fiz Kult, 1999,6:19-21
    [36] Svidovyi VI, Kitaeva LV. Evaluation of cytogenetic activity in bone marrow cells exposed to infrasound (experimental data), Med Tr Prom Ekol, 1998,5:42-4
    [37] Sidorenko EI, Obrubov SA, Tumasian AR. Experience of clinical use infrasound pneumomassage in the treatment of progressive myopia in schoolchildren. Vestn Oftalmol, 1997,113(3): 18-20
    [38] Sidorenko EI, Obrubov SA, Dreval AA. Experimental study of morphologic changes in ocular tissue structures after exposure to infrasound pneumomassage. Vestn Oftalmol, 1996, 112(3): 17-9
    [39] Colasante DA, Au FC, Sell HW. Prophylaxis of adhesions with low frequency sound. Surg Gynecol Obstet, 1981,153 (3):357-9
    [40] 佘继林,孙艳萍.次声治疗小儿厌食症临床疗效分析.中国中医药信息杂志.1995,2(11):22。
    [41] 顾涵森,林厚省.探测气功“运气疗法”物理基础的初步实验结果.自然杂志,1978,1-3
    [42] Dimitri MD. Infrasound Method for Bone Mass Measurements. 133rd ASA Meeting, state College, PA. June 19, 1997
    [43] Kafing W, Ludwik L. Burning oil field as a source of infrasound waves. J Low Freq Noise Vib, 1991, 10(4): 123-129
    [44] 梁振福,黄锋,郭丰涛.艇用次声发声器声场特征及其对艇员的影响.中国职业医学,2002,12(6):8-13
    [45] 谢金来.99国际次声专家研讨会.声学学报,2000,01,95-96
    [46] 黄志强,梁振福,史秀凤.扫雷次声场对艇员心理的影响,中华劳动卫生职业病杂志,2003,21(1):27-29
    [47] 黄志强,李政年,李振杰.某扫雷艇扫雷磁场对艇员神经行为功能的影响.中国职业医学,2001,28:50-15
    [48] Barbara Starr. Non-lethal weapon puzzle for US Army. Internation defense review. 1993, 4:319-320
    [49] 李爱玲,闫夷升.次声波及其应用.现代物理知识,2001,6:33-34
    [50] 朱序来,王广献.次声武器.外国军事学术,1994,8:57-59
    [51] Batanov GV. Characteristics of etology of immediate hypersensitivity in condition of exposure to infrasound. Radiat Biol Radioecol, 1995,35(1):78-82
    [52] 丘萍,温宁,姜勇,陈景藻.次声的物理存在及研究意义.中华预防医学杂志,2003,37(10):56-58
    [53] 杜宝东,刘淑芳.次声对人体及动物影响的研究进展.国外医学耳鼻咽喉科学分册,2001,25(2):99-102
    [54] 王斌,陈景藻,易南.不同声强8Hz次声对小鼠学习能力的影响.第四军医大学学报,1997,18(5):442-445
    [55] 魏智钧,李玲,陈景藻.次声作用对大鼠记忆功能及隔内侧核和斜角带核胆碱能神经元表达的影响.中华物理医学与康复杂志,2001;23(2):83-85
    [56] Janhunen, H. K. Combined Effects of Occupational Exposure. Helsinki, finland. Infrasound, 1984,134-139
    [57] 费舟,章翔,王小峰.次声作用后鼠脑超微结构与血脑屏障改变,中华物理医学与康复杂志,1999,21(3):134—137
    [58] 费舟,章翔关,李树合.次声对脑组织血栓素A2、前列环素代谢的影响.中华物理医学与康复杂志,2000,22(5):270—272
    [59] 刘卫,陈景藻,李玲,刘静,裘明途.次声对兔脑电活动的影响.中华物理医学与康复杂志,2002,24(5):269-271
    [60] Arabadzhi V. Infrasound and biorhythms of the human brain. Brofizika, 1992,37(1): 150-151
    [61] 叶琳,龚书明,黄晓峰,王枫,刘静,陈景藻.次声作用对大鼠大脑皮层超微结构的影响.第四军医大学学报,2002,23(9):856-858
    [62] Okamoto K. The influence of infrasound upon human body. Sangyo Ika Daigaku Zasshi, 1986, 8(suppl): 135
    [63] Takigawa. H. Effects of infrasound on vestibular function. J Low Freq Noise and Vib, 1991, 151(3):4553
    [64] Fu Guo-you, Chen Jing-zao, Jia Ke-Yong. Changes of Glutamate in brain of rats exposed to infrasound. J. Fourth Mil. Med. Univ, 1999. 20(4): 288-290
    [65] 刘朝晖,陈景藻,王志鹏.8Hz、130dB次声对大鼠海马细胞内钙离子浓度的影响,第四军医大学学报,2004.25(4):304-306
    [66] 赵乃坤.次声对动物生物学效应的研究.中华劳动卫生职业病杂志,1993,11(6):338
    [67] 邢晓辉,王凌,陈景藻,饶志仁.次声刺激诱导大鼠延髓内儿茶酚胺能神经元FOS的表达解放军医学杂志,1998,23(3):189-191
    [68] Landstrom U. Laboratory and field studies on infrasound and its effects on human. J Low Frequeqency Noise and Vibration, 1987,6:29-34
    [69] Izmerov Nf, Suvorov GA, Kuralesin NA, et al. Infrasound: bodys effects and hygienic regulation. Vestn Ross Akad Med Nauk, 1997,(7):39-46
    [70] Kuralesin NA. Hygienic and biomedical aspects of the effects of infrasound. Med Tr Prom Ekol, 1997,(5):8-14
    [71] 袁华,陈景藻,李玲.8Hz次声作用后大鼠脑热休克蛋白70的表达.中华物理医学与康复杂志,1999,21(2):94—97
    [72] 黄文晋,贾克勇,张萍,肖华胜,韩良辅,陈镔复,陈景藻,鞠躬.次声作用后大鼠下丘脑HSP70的表达.第四军医大学学报,2000,21 (2):162-163
    [73] 牟翔,陈景藻,李玲,邱建勇,贾克勇.次声作用对小鼠脑中胶质纤维酸性蛋白表达和分布的影响.中华物理医学与康复杂志,2001,23(2):76-79
    [74] 袁华,龙华,李玲,牟翔,邱建勇,刘静,陈景藻.次声作用后大鼠延髓星形胶质细胞和神经元反应的关系.中国康复理论与实践,2002,8(11):661-663
    [75] 裴朝辉.次声对心血管的影响及机制的实验研究,第四军医大学博士学位论文,2004:69-80
    [76] Lehoux S, Tedgui A. Shear and signal transduction in the endothelial cell Med Sci. 2004, 20(5): 551-6
    [77] McCue S, Noria S, Langille BL. Shear-induced reorganization of endothelial cell cytoskeleton and adhesion complexes. Trends Cardiovasc Med. 2004, 14(4): 143-51
    [78] 裴兆辉,陈景藻,朱妙章.次声诱导的大鼠心肌细胞凋亡和管内皮损伤,第四军医大学学报,2004,25(2):97—99
    [79] 陈景藻.次声的存在及其基本生物效应和研究意义.中华物理医学与康复杂志,1999,21(3):131-133
    [80] 1991; 12:56
    [81] Kanelo S, Okumura K, Numaguchi Y. Melatonin scavenges hydroxyl radical and protects isolated rat hearts from ischemic reperfusion injury. Life Sci, 2000, 67:101-102
    [82] 裴兆辉,朱妙章,陈景藻.8Hz,130dB次声引起心肌组织超微结构的变化.第四军大学学报,2004;25(11):991-993
    [83] Nekhoroshev AS, Glinchikov VV. Morphofunctional changes in the myocardium under exposure to infrasound. NVB. Noise Vib. Bull, 1998,(12):56-58
    [84] Gordelaze AS, Glinchilov VV, Usenko VR. Experimental myocardial ischemia caused by infrasound. Gig. Tr.Prof. Zabol, 1986,(6):30-33
    [85] 田时秀,李金锡,胡冰.次声对人血压和脉搏的影响.声学学报,1996,21(3):254-258
    [86] 汤家骥.次声的损伤效应,解放军医学情报,1995,9(5):262-264
    [87] Kuralesin NA. Hygienic and biomedical aspects of the effects of infrasound. Med Tr Prom Ekol, 1997,(5):8-14
    [88] 冯勃,姜泗长,杨伟炎等.强次声波对豚鼠前庭终器超微结构造成的损伤.中华航空航天医学,2001,12(2):99-102
    [89] Salt A.N., Demott. J.E. Longitudinal endolymph movements and endocochlear potential changes induced by stimulation of infrasound frequencies. J.acoust. Soc. AM, 1999,106(2):847-856
    [90] 1990; 24 (6): 39-41
    [91] 1998; (5): 26-29
    [92] Yoshida A, R.Nagano. The influence of infrasound vibration upon cochlea. Sangyo Ika Daigaku Zasshi, 1986,8(suppl.): 123-128
    [93] 张术,黄维国,邱建华等.次声对豚鼠听阈的影响.陕西医学杂志,1998,27(4):253-254
    [94] 刑晓辉,陈景藻.次声刺激诱导大鼠听中枢FOS蛋白的表达.中华物理医学杂志,1998;20(3):165-167
    [95] Carricondo F, Bartolome MV, Vicente-Torres MA, et al. Sensitivity to glutamate neurotoxicity in different developmental periods of the rat cochlea. Adv Otorhinolaryngol 2002;59:91-5
    [96] Fei zhou, Zhang Xiang, Lu Peiling et al. The changes and significance of cerebral ultrastructure and the expression of heat shock protein 70 in cortex after infrasonic damage. J Low Freq Noise Vib 2000; 19(2):93-99
    [97] 刘恩渝,章翔,费舟等.次声作用下大鼠脑皮质内谷氨酸及其代 谢型受体Ⅰ亚型mRNA的变化.第四军医大学学报,2001;22(23):2137-2140
    [98] 邢晓辉,贾克勇,陈景藻.次声刺激后大鼠下丘n-cNOS阳性神经元FOS蛋白表达,中华劳动卫生职业病杂志,1999,17(4):214-216
    [99] 韩良辅,肖华胜陈景藻。次声作用引起大鼠下丘脑c-fos mRNA与CRFmRNA的表达,第四军医大学学报。1999;20(1):1-3
    [100] 王冰.硕士学位论文,第四军医大学.西安,1999,30-31
    [101] 王在忠,张作明,王冰,郭群,李莉.次声作用后大鼠视网膜组织中GFAP与VEGF的表达.眼外伤职业病杂志,2002,24(1):6-8
    [102] 曹燕,邱萍,惠延年.次声作用对大鼠血视网膜屏障超微结构的损伤.2003,19(1):48
    [103] 邱萍,张作明,姜勇,郭群,王冰,苟琳,陈景藻.次声暴露对大鼠血视网膜屏障超微结构的损害.中华眼科杂志2002,38(8):499-501
    [104] 王志平,王永建,王荣芬.未来的超常规武器.北京,解放军出版社,1985,64
    [105] Sidorenko EI, Obrubov SA, Dreval AA, et al. Experiental study of morphologic changes in ocular tissue structures after exposure to infrasound pneumomassage. Vestn Oftalmol, 1996, 112: 17-19.
    [106] 苟琳,张作明,郭守一,贾克勇,邱萍,李莉,郭群,陈景藻.次声作用对大鼠视网膜Muller细胞及血管内皮细胞增殖力的影响,中华航空航天医学杂志,2002,13(1):44-46
    [107] 王在忠、张作明,王冰,郭群。次声对大鼠视觉电生理和视网膜超微结构的影响.眼外伤职业病杂志,2001,23(6):614-616
    [108] 石力.硕士学位论文,第四军医大学,西安,2003,5
    [109] 韩风华,武毅军,陈景藻,黄晓峰,刘小玲,王喜青.次声下大鼠肝细胞损伤作用的超微结构变化.西南国防医药,2003,13(5):465-467
    [110] 1991; 2: 45-47
    [111] Lekseev, S.S., V.V. Glinchikov, V.R. Usenko. Reaction of liver cells to infrasound. Gig. Tr. Prof. Zabol, 1986,(9):131-132
    [112]. Nekhorohev As, Glinchikov VV, Reaction of hepatocytes to infrasound exposure. Gig Sanit, 1991 Feb:2:45-47
    [113] Nekhoroshex AS, Glinchikov VV. Morphological research on the liver structures of experimental animals under the action of infrasound. Aviakosm Elolog Med. 1992,26(3):56-9
    [114] Ekhoroshev As, Glinchikov VV. Morphological research on the liver structures of experimental animals under the action of infrasound Aviakosm Ekolog Med 1992,May-jun; 26(3):56-59
    [115]. Branco N, Santos J, Monteiro E, Silva A, Ferreira J, Pereira M. The lung parenchyma in low frequency noise exposed Wistar rats. Rev Port Pneumol. 2004 Jan-Feb; 10(1):77-85
    [116] 李唯,贾克勇,李焕章,倪殿涛,陈景藻.次声对大鼠肺组织损伤及肺氧合功能的影响.中华劳动卫生职业病杂志.2001,19(3):194-197
    [117 李唯,白汝芬,倪殿涛,李焕章,陈景藻.8Hz和16Hz单次次声作用后大鼠肺组织匀浆中细胞因子TNF-α及IL-8的变化.中国急救医学,2002,22(3):127-129
    [118] 崔芳,任雨笙,李玲,张荣庆,袁华,贾克勇,陈景藻.不同声强8Hz次声作用对大鼠GSH-PX,SOD活性及MDA含量的影响.第四军医大学学报,1999,20(9):743-4
    [119] 魏亚宁,刘静,舒青等.次声暴露对小鼠睾丸细胞超微结构的影响,中华男科学,2002,8(5):323-325
    [120] 魏亚宁,刘静,舒青等.次声暴露对小鼠卵巢细胞超微结构的影响,第四军医大学学报,2003,24(4):293-295
    [121] 刘秀敏,甄荣,陈惠芳等.次声对小鼠生育能力与免疫功能的影响,中华物理医学与康复杂志,2000,22(2):100-102
    [122] Naoko N, Masanobu M, Yasukiyo Y, et al. Process and emergence on the effects of infrasonic and low frequency noise on inhabitants. J Low Freq Noise Vib, 1989,8:87-99
    [123] Nishimura K, Kuroda M, Yoshida Y et al. The pituitary adrenocortical response in rats and human subjects exposed to infrasound. J Low Freq Noise Vib, 1987,(6): 18
    [124] 赵志刚,陈景藻,张李燕.次声作用后大鼠血浆中血管紧张素Ⅱ含量的改变.中华物理医学与康复杂志,2001,23(2):83-85
    [125] 赵乃坤.次声对动物生物学效应的研究.中华劳动卫生职业病杂志,1993;11(6):338
    [126] 1984;(10):48-49
    [127] 张建保,贾克勇,李玲,五南林,杨继庆,巨宏博,陈景藻.次声对大鼠血液流变特性的影响,第四军医大学学报,2001;22(5):465-7
    [128] 范云,杨春智.次声(物理学教材),第四军医大学,1995,3
    [129] Osamn Okai. Effects of infrasound on respiratory function of man. J Low Freq Noise and Vib, 1986;5(3):94-99
    [130] Svidovyi VI, Kolmakov VN, Kuleba VA, Timofeeva VM. Change in the permeability and total ATPase activity of erythrocytes and blood plasma superoxide dismutase activity on exposure to infrasound in vitr.o. Gig Sanit. 1987May; (5):78-79
    [131] Martini K, Opltova L. Human nonspecific response to sound stimulation. J Hyg Epidemiol Mivrobiol Immunol, 1986; 30(2): 139-44
    [132] Idovyi VI, Kuklina OI. State of the hemolymph circulatory bed of conjunctiva as affected by infrasound. Gig Tr Prof Zabol, 1985;Jun(6):51-52
    [133] 范建中.超声波的物理学基础.见:陈景藻主编,现代物理治疗学.北京:人民军医出版社,2001,328
    [134] 梁振福,黄锋,唐志文等.护耳器对次声防护效果的观察.航天医学与医学工程,2003,16(4):110-114
    [135] Balunov VD, Barsukov AF, Artamonova VG. Clinical and functional evaluation of health status of workers exposed to infrasound, noise and general vibration. Med Tr Prom Ekol. 1998;(5):22-26
    [136] 黄其柏.家用电器次声及其声辐射特征的研究.噪声与振动控制,1997,17(5):6-8
    [137] Pawlaczyk LM. Evaluation of occupational exposure to infrasonic noise in Poland. Int J Occup Med Environ Health. 1999; 12(2): 159-76
    [138] Pawlaczyk LM, Augustynska D, Kczmarska KA, Sliwinska KM, Kamedula M. Revised maximum admissible intensity (MAI) values for infrasonic noise in work environment. Med Pr. 2001; 52(2): 119-23
    [139] Takahashi Y, Yonekawa Y, Kanada K, Maeda S. An infrasound experiment system for industrial hygiene. Ind Health. 1997 Oct; 35(4): 480-8
    [140] 汤家骥.次声武器杀伤因素的生物效应及防护.人民军医,1995,426(5):5-6
    [141] 王斌,陈景藻,易南.次声对小鼠学习记忆能力的影响及防护.航空军医,1997,25(3):142-143
    [142] 刘思渝,费舟,章翔,陈景藻,刘先珍.次声作用下大鼠脑皮质Ⅰ、Ⅱ组代谢性谷氨酸受体mRNA表达及意义,中华物理医学与康复杂志,2001,23(5):284-287
    [143] 李志刚,费舟,章翔,贾克勇,陈景藻,贺晓生,刘先珍.次声作用后鼠脑CA1区mGluR1α表达改变及其拮抗剂MCPG的作用研究。解放军医学杂志,200126(2):104-106
    [144] 张元菊,陈景藻,杨俊峰,王斌,刘静.16Hz、130dB次声对小鼠记忆功能和脑超微结构的影响及姜黄素的治疗作用研究,中华物理医学与康复杂志,2005,27(3):152-155
    [145] Nekhoshev As, Glinchilov VV. Mechanism of the effect of infrasound on labybrinthine recetors. Kosm Biol Ariakosm Med, 1990, 24(6): 39-42
    [146] Davies P F. Flow-mediated endothelial mechanotransduction. Physiol Rev, 1995, 75(3):519-560
    [147] Sadoshima J, Izumo S. The cellular and molecular response of cardiac myocytes to mechanical stress. AnnuRev Physiol, 1997, 59: 551-571
    [148] Lehoux S, Tedgui a. signal transduction of mechanical stresses in the vascular wall. Hyperthnsion, 1998, 32(2): 338-345
    [149] Hoffmann J, Dimmeler S, Haendeler J. Shear stress increases the amount of S-nitrosylated molecules in endothelial cells: important role for signal transduction. FEBS L, 2003 Sep 11; 551 (1-3): 153-8
    [150] Sandy JR, Meghji S, Farndate RW, et al. Dual evaluation of cyclic AMP and inositol phosphates in response to mechanical deformation of murine osteoblasts. Biochim Biophys Acta, 1989, 1010: 265-269
    [151] Murray DW, Rushton N. The effect of strain on bone cell prostaglandin E2 relaese: a new experimental method. Calcif Tissue Int, 1990, 47: 35-39
    [152] Ozawa H, Imamura K, Abe E et al. Effect of continuous applied compressive pressure on mouse osteoblast-likecells in vitro. J Cell Physiol, 1990, 142: 177-185
    [153] Reich KM, Frangos JA. Protein kinase C mediates flow-induced prostaglandin E2 production in osteoblasts. Calcif Tissue Int, 1993, 52: 62-66
    [154] Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol, 1994, 267: F909-F916
    [155] Bradley JM, Kelley MJ, Rose A et al. Signal pathway used in trabecular matrix metalloproteinese response to mechanical stretch, Invest Opthamol Vis Sci, 2003; 44(120: 5174-81
    [156] Yao X, Kwan HY, Dora KA, et al. A mechanosensitive catinchannel in endothelial cells and its role in vasoregulation, Biorheology 2003; 4(1-3): 23-30
    [157] Hynes RO. Inegrins: versatility, modulation and signaling in cell adhesion. Cell, 1992,69(1): 11-25
    [158] Giancotti F G, Ruoslahti E. Integrin signaling. Science, 1999,285(5430): 1028-1032
    [159] Rosales C, O'Brien V, Kornberg L, et al. Signal transduction by cell adhesion recepter. Biochim Biophys Acta, 1995, 1242(1): 77-98
    [160] Wang N, Buler J P, Ingber D E. Mechanotransduction across the cell surface and through the cytoskeleton. Science, 1993, 260(5111): 1124-1127
    [161]. Tang D, Mehta D, Gunst S J. Mechanosensitive tyrosine phosphorylation of paxillin and focal adhesion kinase in tracheal smooth muscle. Am J Physiol, 1999, 276(lptl): C250-258
    [162]. Hynes RO. Integrins: Versatility, modulation and signaling in cell adhesion. Cell. 1992,69(1): 11-25
    [163]. Ingber DE. Tensegrity the architectural basis of cellular mechanotransduction. Annu Rev Physiol, 1997, 59: 575-599
    [164]. Duncan RL, Turner CH. Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int, 1995, 57(5): 344-358
    [165]. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stablize nueclear structure. Proc Natl Acad Sci USA, 1997, 94(3): 849-854
    [166] Chicurel ME, Signer RH, Meyer CJ, et al. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature, 1998, 392(6677): 730-733
    [167] Girard PR, Nerem RM. Shear strss modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion associated proteins. J Cell Physiol, 1995, 163(1): 179-193
    [168] Takahaski M, Ishida T, Tranb O, et al. Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J Vasc Res, 1997, 34(3): 212-219
    [169]. Jalali S, del Poxo M A, Chen K D, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA 2001, 98(3): 1042-1046
    [170] 宋今丹 主编。医学细胞生物学。北京,人民卫生出版社,1997年5月,第1版:121-7
    [171] Ingber D E. Tensigrity the architectural basis of cellular mechanotransduction. Annu Rev Physiol, 1997, 59: 575-599
    [172] Sims JR, Karp S, Ingber DE. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci, 1992, 103(4): 1215-1222
    [173] Maniotis AJ, Chen cS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments and nucleoplasm that stablize nuclear structure. Proc Natl Acad Sci USA, 1997, 94(3): 849-854
    [174] 孙继虎,于彦铮,江国伟等。血管内皮细胞微丝的共聚焦扫描显微镜观察。解剖学杂志,1995,18(4):377-379
    [175] Franke RO, Grafe M, Schnittler H. et al. Induction of human vascular endothelial stress fibers by fluid shear stress. Nature, 1984, 307: 648-654
    [176] Olkawa K, Sato M, Ohshima N. Time course changes in cytoskeletal structures of cultured endothelial cells exposed to shear stress. Front Med Biol Eng, 1993, 5(2): 121
    [177] Levesque MJ, Nerem RM. The study of rheological effects on vascular endothelial cells in culture, Biorheology, 1989, 26: 345
    [178] White GE, Gimbrone MA Jr, Fujiware K. Factors influencing the expression of stree fibers in vascular endothelial cells in site. J Cell Biol, 1983, 97: 416
    [179] Morris CE. Mechanosensitive ion channels. J membrane Biol, 1990, 113(2): 93-107
    [180] Lansman JB, Hallam TJ, Tink TJ. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature lond, 1987, 325: 811-812
    [181] Olesen SP, Clapham DE, Davies PF. Hemodynamic shear stress activates a K current in vasvular endothelial cells. Nature, 1988, 331: 168-170.
    [182] Davies PF, Barbee KA, Depaola N, et al. Spatial relationships in early signaling events of flow-mediated endothelial mechantransduction Anu Rev Physiol, 1997, 59: 527-550
    [183] Aikawa R, Komuro I, Yamazaki T, et al. Rho family small Gproteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circ Res, 1999, 84(4): 458-466
    [184] Akhter S A, Luttrell L M, rockman H A, et al. Targeting the receptor-Gq inter face to inhibit in vivo pressure overload myocardial hypertrophy. Science, 1998, 280(5365): 574-577
    [185] Mikuni-Takagaki Y. Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab. 1999; 17(1): 57-60.
    [186] Sims JR, Karp S, Ingber DE. Altering the cellular mechanical force balance results in ingegrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci, 1992, 103(pt4): 1215-1222
    [187] Meazzini MC, Toma CD, Schaffer JL, et al. Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J Orthop Res, 1998, May 16(2): 170-180
    [188] Hughes-Fulford M, Lewis ML Effects of microgravity on osteoblast growth activation. Exp Cell Res, 1996, Apr 224(1): 103-109
    [189] Dewey CF, Bussolari SR, Gimbrone J, et al. The dynamic response of vascular endolthelial cells to fluid shear stess. J Biomech Eng, 1981, 103: 177-185
    [190] Hughes-Fulford M, Lewis ML Effects of microgravity on osteoblast growth activation. Exp Cell Res, 1996, Apr 224(1): 103-109
    [191] 赵启韬,苗俊英.激光共聚焦显微镜在生物医学研究中的应用,北京生物医学杂志,2003,22(1):52-54
    [192] Warn RM, Robert-Nicoud M. F-actin organization during the cellularization of the drosophila embryo as revealed with a confocal laser scanning microscope. J Cell Sci, 1900, 96(Pt1): 35-42
    [193] Noria S, Xu F, McCue S, et al. Assembly and reorientation of stress fibers drives morphological changes to endothelial cells exposed to shear stress. Am J Pathol. 2004 Apr; 164(4): 1211-23
    [194] Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell, 1996, 9(3): 181-190
    [195] Martini K, Opltova L. Human nonspecific response to sound stimulation. J Hyg Epidemiol Microbiol Imunol, 1986; 30: 139-144
    [196] Stamenovic D, Fredberg J, Wang N, et al. a microstructural approach to cytoskeletal mechanics based on tensigrity J Theor Biol, 1996, 181(2): 125-136
    [197] Hemler ME. Integrin associated proteins. Curr Opin Cell Biol, 1998, 10: 578
    [198] Salter DM, Bobb JE, Wright MO. Electrophysiological responses of human bone cells to mechanical stimulation: evidence for specific integrin function in mechano-transduction J Bone Miner Res, 1997, 12(7): 1133-1141
    [199] Giancotti FG, Ruoslahti E. Integrin signaling. Science, 1999, 285(5430)g: 1028-1032
    [200] Viziri C, Downes CP. Association of a receptor and G-protein regulated phospholipase C with the cytoskeleton. J Biol Chem, 1992, 267(32): 22937
    [201] Papadaki M, Eskin Sg. Effects of fluid shear stress on gene regulation of vascular cells. Biotechnol Prog, 1997, 13(3): 209-221
    [202] Lipshitz HD, Smibert CA. Mechanism of RNA localizational regulation. Curr Opin Genet Dev, 2000,10(5):476-488
    [203] 牛富文主编:医用分子细胞生物学.郑州市:河南医科大学出版社1996.112
    [204] 侯淑莲,李石玉.原子力显微镜在生命科学研究中的应用.中国医学物理学杂志,2000,17(4):235-238
    [205] Chang L, Kious M, Yorgancioglu D, et al. Cytoskeleton of living, unstained cells imaged by scanning force microscopy. Biophys J, 1993, 64(4): 1282-1286
    [206] Lal R, John SA. Biological applications of atomic force microscopy. AM J Physiol, 1994, 266(Cell Physiol 35): C1-C21
    [207] Lal R, Drake B, Blumberg D, et al. Imaging real-time neurite outgrowth and cytoskeletal reorganization with an atomic force microscope. Am J Physiol, 1995, 168(lpt1): C275-285
    [208] Thimonier J, Montixi C, Chauvin JP, et al. Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscopy and the electron microscope Biophys J, 1997, 73 (3): 1627-1632
    [209] Takeuchi M, Miyamoto H, Sako Y, et al. Structure os the erythocyte membrane skeleton as observed by atomic force microscopy. Biophys J, 1998, 74(5): 2171-2183
    [210] 张军,王远亮,谷俐,潘君。肌动蛋白的原子力显微镜研究(英文)生物化学与生物物理学学报,2003,36(6):489-494
    [211] Henderson E, Haydon PG, Sakahuchi DS. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science, 1992,257(5078): 1944-1946
    [212] 白春礼.扫描隧道显微技术及其应用.上海科学技术出版社,1992
    [213] Dufrene Yf. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface cayers to living cells. Micron, 2001,32(2): 153-65
    [214] Muller DJ, Engel A. Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force. Methods Cell Biol. 2002;68:257-99
    [215] Lal R. Imaging molecular structure of channels and receptors with an AFM. Scanning Microsc Suppl, 1996,10:81-95
    [216] 曹晓哲,王德文,赵梅兰等.电磁脉冲辐射致大鼠垂体细胞膜穿孔的原子力显微镜观察.中华物理医学与康复杂志,2003,25(8):462-464
    [217] 刘智良,徐如祥,张英鸽等.红藻氨酸作用后海马神经元胞膜表面的超微结构的原子力显微镜观察.第一军医大学学报,2003;23(7):659-662
    [218] Goldmann WH, Galneder R, Ludwig M, et al. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Exp Cell Res, 1998, 239(2): 235-242
    [219] Reuter H. The dependence of slow inward current in Purkinje fibers on the extracelluar calcium concentration. J Physiol, 1967, 192:479
    [220] Bean B. Calcium Channels: gating for the physiologist. Nature, 1990,348:192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700