电焊烟尘与噪声联合作用致听力损伤及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一.背景
     目前,我国职业危害重点仍然是化学毒物、噪声与粉尘等职业有害因素。急慢性职业中毒、噪声性耳聋和尘肺仍是职业卫生工作关注的热点。职业性听力损伤一般是由噪声引起的,但噪声并不是引起职业性听力损伤的惟一因素,接触于某些化学毒物也可引起听力系统的损伤。在各类职业活动中,往往存在噪声和化学毒物的联合接触。近年来,国内外大量实验研究表明噪声和某些化学毒物同时接触可能具有协同作用,能导致较单因素接触时更为严重的听觉系统的损害。
     在金属构件生产中,焊接与铆接是两个相互关联的操作工序,可产生电焊烟尘和噪声等危害的联合作用。焊接过程产生大量含有锰、铁、铜及锌等各种金属气溶胶和臭氧、一氧化碳、二氧化碳、氮氧化物等有害气体;铆接工艺中的展开放样、下料、加工成型和连接装配等过程能产生强烈的机械性噪声。单纯电焊烟尘或噪声接触可造成作业工人的健康危害,二者同时接触可能存在协同作用,加重作业工人的健康危害,尤其是听觉系统。
     二.目的
     1.了解金属构件企业的职业危害状况及防护措施,特别关注电焊作业过程中产生锰烟、锰尘的浓度和金属加工、铆接等过程产生噪声的强度。
     2.了解作业工人职业有害因素的接触时间、接触机会、接触方式等,以及个人防护情况。
     3.评价电焊烟尘与噪声联合接触致作业工人听力损伤程度和特征,并探讨联合作用致听力损伤的部分机理。
     4.根据金属构件企业存在的职业危害因素和作业工人的健康损害特征,提出具体的职业危害预防控制建议。
     三.方法
     选择某钢铁企业金属构件厂装配、容器车间的65名焊接、铆接作业工人为电焊烟尘与噪声联合接触组,简称联合组;选择同企业能源厂锅炉车间59名工人为单纯噪声接触组,简称噪声组;选择同企业能源厂无职业危害因素接触的55名外线电工为对照组。三组研究对象的年龄、工龄、性别、生活习惯等特征均匹配。
     现场职业卫生基本情况调查,运用火焰原子吸收分光光度法测定联合组作业场所空气锰浓度,运用石墨炉原子吸收分光光度法测定噪声组和对照组作业环境空气锰浓度,使用QUEST-400噪声检测仪测定三组作业环境的噪声强度。
     对作业工人进行一般情况调查和健康检查;使用已校正MADSEN 622-型听力诊断计(丹麦)测试工人纯音气导听阈,并对检查结果进行年龄修正(根据声学耳科正常人的气导听
Ⅰ.Background
     At present, chemicals, noise and dusts still are main occupational hazards in workplaces. Occupational health conservationists’main concerns still are chronic or acute poisoning and hearing loss induced by noise. Occupational hearing loss often was attributing to noise exposure, but noise wasn't the only hearing hazard. Certain chemicals in the workplaces could damage the hair cells in the inner ear just like noise. Even some chemicals were synergistic with noise exposure. The impact of combined exposure could do greater damage than exposure to either hazard alone. Many domestic and foreign laboratory studies could confirm the synergistic effects of exposure to noise and chemicals on hearing.
     Welding and riveting are two associated operation procedures in the production process of structural metallic materials. There might exist welding fumes, riveting noise and other occupational hazards, which can synergistically damage workers’health. The welding fumes emitting from welding process contains a mixture of some metal aerosol and toxic gases, which includes of manganese, iron, zinc, nitric oxides, carbon monoxide and ozone, etc. Riveting process produces intense noise. There might be a synergistic interaction combined exposure to welding fumes and riveting noise, which would pose more serious health hazards on workers’body, especially on auditory system.
     Ⅱ.Objective
     1. To investigate occupational hazards and health preventive measures in workplaces of steel plants, especially pay more attention to concentrations of air manganese and intensity of noise produced in riveting.
     2. To investigate workers’exposure-time, exposure routes and exposure style of occupational hazards in workplaces and personal protective measures.
     3. To evaluate the potential effects of combined exposure to welding fumes and riveting noise on hearing, explore parts of possible mechanisms of combined exposure action.
     4. According to occupational hazards existing in workplaces and health impairment symptoms of workers, we can make some effectively preventable measures.
     Ⅲ.Method
     The study group was consisted of 65 workers chronically exposure to welding fumes and riveting noise in some Steel plant. Another 59 boilermakers from the same plant were chose as the noise exposure group. The control group was consisted of 55 unexposed healthy electricians. We compared age, exposure-time, sex, life styles among the three groups, and there were no
引文
[1] Fechter, L.D., Thorne,P.R., Nuttall,A.L. Effects of carbon monoxide on cochlear electrophysiology and blood flow [J]. Hear. Res, 1987, 27: 37~ 45.
    [2] Deepak Prasher, Thais Morata, Pierre Campo, et al. Noisechem: an European commission research project on the effects of exposure to noise and industrial chemicals on hearing and balance [J]. Occup Med Envir Health, 2002, 15 (1): 5~11.
    [3] Shu-Ju chang, tung-sheng shih, Tzu-chieh chou et al. Hearing loss in workers exposed to carbon disulfide [J]. Environ Health Pers, 2003, 111, 13: 1620~1624.
    [4] 张铭强,张天尧, 王建平,等. 铅烟与噪声对听力损伤的联合影响 [J]. 工业卫生与职业病, 1997, 23,5:261.
    [5] Natalie L. M. Cappaert, Sjaak F.L. Klis a,Hans Muijser,et al. Simultaneous exposure to ethylbenzene and noise: synergistic effects on outer hair cells [J]. Hear Res, 2001, 162 : 67~79.
    [6] Makitie .Antti A, Ulla Pirvola , Ilmari Pyykko, et al. The ototoxic interaction of styrene and noise [J]. Hear Res, 2003, 179: 9~20.
    [7] Otto DA, Fox DA. Auditory and visual dysfunction following lead exposure [J]. Neurotoxicology, 1993, 14: 191-207.
    [8] Jiunn-Jye Chuu, Chuan-Jen Hsu, Shoei-Yn Lin-Shiau. Abnormal auditory brainstem responses for mice treated with mercurial compounds: involvement of excessive nitric oxide [J]. Toxicology, 2001, 162: 11-22.
    [9] 杨英,毛辉青. 接触低浓度硫化氢对听力的影响 [J]. 职业医学, 1998,25(6).20-21.
    [10] 张磊力,龙云芳.工业噪声引起作业人员听力损伤的发病机制及诊断[J]. 职业卫生与病伤, 2004,19(2),114-116.
    [11] Deepak Prasher, Thais Morata, Pierre Campo, et al. Noisechem: an European commission research project on the effects of exposure to noise and industrial chemicals on hearing and balance [J]. Occup Med Envir Health, 2002, 15 (1): 5-11.
    [12] WennbergAetal. Scand J work Environ Health,1991, 17(4):255-262.
    [13] SiogrenBetal. Occup Environ Med,1996, 53:32-40.
    [14] Fridberger, A., Flock, A., Ulfendahl, M., et al. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc. Natl. Acad. Sci, 1998, 95:7127-7132.
    [15] 张龙连,卢玲,郭文瑞,等. 锰电焊对作业工人血 SOD、MDA 影响的研究 [J]. 中国公共卫生.2000, 16, 5:454-455.
    [16] Cao G, Prior RL. Comparison of different analytical methods for assessingtotal antioxidant capacity of human serum. Clin Chem. 1998, 44, 6: 1309-1315.
    [17] Stepnewski M, et al. Antioxidant enzymes and pulmonary function in steel mill welders [J]. Occup Med Environ Health. 2003,16,1:41-7.
    [18] Peter M.Rabinowitz, et al. Antioxidant status and hearing function on noise exposed workers [J]. Hearing Research. 2002,173:164-171.
    [19] 翟金霞,胡刚,侯俊,等. 电焊工体内脂质过氧化水平及相关酶活性 [J]. 疾病控制杂志, 2000,4,1:72-73.
    [20] 赵宝路. 氧自由基和天然抗氧化剂. 1999,科学出版社.
    [21] 王卫国,许荣,姚茂军. 突发性聋的早期治疗及超氧化物歧化酶和丙二醛检测 [J]. 中华耳鼻咽喉科杂志, 2002,37,4:274-276.
    [22] 原红艳,李兴启,李树华. 氧自由基中毒与耳蜗毛细胞凋亡 [J]. 国外医学耳鼻咽喉科学分册, 2004,28,4:202-205.
    [23] 赖丹. 氧自由基与耳蜗毛细胞的 DNA 损伤 [J]. 国外医学耳鼻咽喉科学分册, 2002,26,6:343-346.
    [24] 郑玉新. 锰的神经毒性研究进展 [J]. 国外医学卫生学分册,1997,24,3:129-132.
    [25] 李桂芝,郭健,李萍,等. 电焊工人血清锰及脂质过氧化物测定的意义 [J]. 微量与健康研究,2003,20,2:39-40.
    [26] 张本延,朱长才,叶方立,等. 锰对仔鼠脑组织一氧化氮合酶活性的影响 [J]. 卫生毒理学杂志,1999,13,4:255-265.
    [27] 倪诚,张力平. 诱导性一氧化氮合酶及其调节机制 [J]. 国外医学临床生物化学与检验学分册, 2003,24,2:84-86.
    [28] 卢玲,张龙连,郭文瑞. 电焊作业工人血中几种生物指标变化的探讨 [J]. 中国公共卫生,2003,19,12:1513-1514.
    [29] 陈小敏. 电焊作业职业危害研究进展 [J].职业与健康, 2004,20,12:20-21.
    [30] 刘继文,赵效国. 低锰作业对工人体内某些微量及常量元素的影响 [J]. 中国工业医学杂志,1997,10,4:241-243.
    [31] 李亚洁,周春兰,韦安阳. 微量元素锌在保护自由基损伤中的作用 [J]. 广东微量元素科学,2001,8,7:1-3.
    [32] 张龙连,李国君,卢玲,等. 锰电焊作业工人血清中 5 种微量元素变化的探讨 [J]. 中国公共卫生, 2001,17,9:783-784.
    [33] 沈宏家,谭同均. 癌症患者脂质过氧化水平与血清铁铜的关系探讨 [J]. 四川省卫生管理干部学院学报, 2002,21,1:13-14.
    [34] 宗敏,汤立新,韩维嘉,等. 抗氧化微量元素与心血管疾病的防治 [J]. 广东微量元素科学, 2004,11,4:14-17.
    [35] 谢尔凡. 氧化气体对肺表面活性物质作用的研究进展 [J]. 国外医学卫生学分册, 1994,21,6:276,324-327.
    [36] 周军富,张瑗,郭芳珍,等. 复印作业对人体氧化和过氧化的影响 [J]. 中华劳动卫生职业病杂志, 1998,16,3:143-146.
    [37] 王旭红,贾琛兰,翟力军,等. 复印作业场所臭氧、氮氧化物危害的研究 [J]. 中国预防医学杂志.2001,2,3:201-203.
    [38] 张秀莲,于强,刘健,等. CO 作业工人体内脂质过氧化及抗氧化水平的变化 [J]. 中华劳动卫生职业病杂志, 1999,4,17:224-225.
    [39] 赵肃,王任群,曹昆,等. 焊工血脂质的过氧化改变 [J]. 中国工业医学杂志, 1998,11,6:321-323.
    [40] 沈静,汤浩,章晓芳,等. ATP 对噪声接触豚鼠耳蜗一氧化氮合酶活性的影响 [J]. 听力学及言语疾病杂志, 2000,8,4:207-211.
    [41] 姜鸿彦,黄维国,王锦玲,等. 白噪声对豚鼠耳蜗一氧化氮合酶活性的影响 [J]. 临床耳鼻咽喉科杂志, 1999,12:64.
    [42] 孙德义,李学佩. 噪声刺激对耳蜗一氧化氮合酶的影响 [J]. 临床耳鼻咽喉科杂志, 2000,14,8:373-374.
    [43] 史秀凤,郭丰涛,梁振福,等. 窄带噪声接触后豚鼠血 SOD、MDA 和 GSH 的变化 [J]. 航 天医学与医学工程, 1998,11,4:282-285.
    [44] 徐庆华,刘广青,史秀凤. 白噪声暴露大鼠听力损失与血清 4 种金属元素间的关系[J]. 海军医学杂志, 2000,21,3:200-202.
    [1] Lamm, K., Arnold, W. The effect of prednisolone and nonsteroidal antiinflammatory agents on the normal and noisedamaged guinea pig inner ear [J]. Hear. Res, 1998, 115: 149-161.
    [2] Attanasio, G., Buongiorno, G., Piccoli, F., et al. Laser Doppler measurement of cochlear blood flow changes during conditioning noise exposure [J]. Acta Otolaryngol, 2001, 121: 465-469.
    [3] Goldwin, B., Khan, M.J., Shivapuja, B., et al. Sarthran preserves cochlear microcirculation and reduces temporary threshold shifts after noise exposure[J]. Otolaryngol.Head Neck Surg, 1998, 118: 576-583.
    [4] Hu, B.H., Zheng, X.Y., McFadden, S.L., et al. Rphenylisopropyladenosine attenuates noiseinduced hearing loss in the chinchilla [J]. Hear. Res, 1997, 113: 198 -206.
    [5] Liu, Z. Experimental study on the mechanism of free radical in blast trauma induced hearing loss. Chung Hua Erh Pi Yen Hou Ko Tsa Chih, 1992, 27: 24-26.
    [6] Quirk, W.S., Shivapuja, B.G., Schwimmer, C.L., et al. Lipid peroxidation inhibitor attenuates noiseinduced temporary threshold shift [J]. Hear. Res, 1994, 74: 217-220.
    [7] Yamane, H., Nakai, Y., Takayama, M., et al. Appearance of free radicals in the guinea pig inner ear after noiseinduced acoustic trauma [J]. Eur. Arch. Otorhinolaryngol, 1995, 252: 504-508.
    [8] Yamane, H., Nakai, Y., Takayama, M., et al. The emergence of free radicals after acoustic trauma and strial blood flow [J]. Acta Otolaryngol. Suppl, 1995, 519: 87-92.
    [9] Yamasoba, T., Schacht, J., Shoji, F., et al. Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell linederived neurotrophic factor in vivo [J]. Brain Res 1999, 815: 317-325.
    [10] Lim, H.H., Jenkins, O.H., Myers, M.W., et al. Detection of HSP 72 synthesis after acoustic overstimulationin rat cochlea [J]. Hear. Res, 1993, 69: 146-150.
    [11] Hu, B.H., Henderson, D. Changes in Factin labeling in the outer hair cell and the Deiters cell in the chinchilla cochlea following noise exposure [J]. Hear. Res,. 1997, 110: 209-218.
    [12] Jacono, A.A., Hu, B.H., Kopke, R.D., et al. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla [J]. Hear. Res, 1998, 117: 31-38.
    [13] Wang, J., Dong, W.J., Chen, J.S. Changes in endocochlear potential during anoxia after intense noise exposure [J]. Hear. Res, 1990, 44: 143-149.
    [14] Mulroy, M.J., Fromm, R.F., Curtis, S. Changes in the synaptic region of auditory hair cells during noiseinduced temporary shift [J]. Hear. Res, 1990, 49: 79-88.
    [15] Deepak Prasher, Thais Morata, Pierre Campo, et al. Noisechem: an European commission research project on the effects of exposure to noise and industrial chemicals on hearing and balance [J]. Occup Med Envir Health, 2002, 15 (1): 5-11.
    [16] Fechter, L.D., Thorne,P.R., Nuttall,A.L. Effects of carbon monoxide on cochlear electrophysiology and blood flow [J]. Hear. Res, 1987, 27: 37- 45.
    [17] Kowalska, S. State of the organ of hearing and equilibrium in acute carbon monoxide poisoning [J]. Med. Prog, 1980, 31: 63 - 69.
    [18] Kowalska, S. State of the hearing and equilibrium organs in workers exposed to carbon monoxide [J]. Med. Prog, 1981, 32: 145 -151.
    [19] 杨英, 毛辉青. 接触低浓度硫化氢对听力的影响 .职业医学 1998;25(6).
    [20] Lataye R, Campo P, Loquet G. Toulene ototoxicity in rats: assessment of the frequency of hearing deficits by electrocochleography [J]. Neurotoxicol Teratol, 1999, 21: 267-76.
    [21] Ye liu, Laurence D .Fechter. Toluene disrupts outer hair cell morphometry and intracellular calcium homeostasis in cochlear cells of guinea pigs [J]. Toxicology and applied Pharmacology, 1997, 142: 270 -277.
    [22] P.Campo, R.Lataye, B.Cossec, et al. Tolueneinduced hearing loss: a midfrequency location of the cochlear lesions [J]. Neurotoxicology and Teratology, 1997, 19, 2: 129-140.
    [23] Rybak LP. Hearing: the effects of chemicals [J]. Otolaryngol Head Neck Surg, 1992, 106: 677-86.
    [24] Otto DA, Fox DA. Auditory and visual dysfunction following lead exposure [J]. Neurotoxicology, 1993, 14: 191-207.
    [25] G.H. Liang, L. Ja¨rlebark, M. Ulfendahl, et al. Lead (Pb2+) modulation of potassium currents of guinea pig outer hair cells [J]. Neurotoxicol Teratol, 2004, 26: 253-260.
    [26] Pawlas KM. Hearing of workers exposed to metallic mercury vapors. In:Proceedings of 8th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health., 2002, 23 -26.
    [27] Urban P, Lukas E, Benicky L, et al. Neurological and electrophysiological examination on workers exposed to mercury vapors [J]. Neurotoxicology ,1996,17,1:191- 6.
    [28] JiunnJye Chuu, ChuanJen Hsu, ShoeiYn LinShiau. Abnormal auditory brainstem responses for mice treated with mercurial compounds: involvement of excessive nitric oxide [J]. Toxicology, 2001, 162: 11-22.
    [29] Fabriziomaria Gobba. Occupational Exposure to Chemicals and Sensory Organs: A Neglected Research Field [J]. NeuroToxicology, 2003, 24 : 675-691.
    [30] Odkvist LM, Bergholtz LM, ?hlfeldt H, et al. Otoneurological and audiological findings in workers exposed to industrial solvents[J]. Acta Otolaryngol, 1982, (Suppl 386):249-251.
    [31] Morata TC, Johnson AC, Nylen P, et al. Audiometric findings in workers exposed to low levels of styrene and noise[ J]. Occup Environ Med, 2002, 449:806-814.
    [32] Teixeira CF, Giraldo da Silva L, MorataTC. Occupational exposure to insecticides and their effects on the auditory system [J] . Noise Health, 2002, 4:31-39.
    [33] Fridberger, A., Flock, A., Ulfendahl, M., et al. Acoustic overstimulation increases outer hair cell Ca2+ concentrations and causes dynamic contractions of the hearing organ. Proc. Natl. Acad. Sci. 1998, 95:7127-7132.
    [34] Natalie L. M. Cappaert, Sjaak F.L. Klis a,Hans Muijser,et al. Simultaneous exposure to ethylbenzene and noise: synergistic effects on outer hair cells [J]. Hear Res, 2001, 162 : 67-79.
    [35] Deepa B. Rao, Laurence D. Fechter. Increased noise severity limits potentiation of noise induced hearing loss by carbon monoxide [J]. Hear Res, 2000, 150 : 206-214.
    [36] Richard Cary,Simon Clarke, Julian Delic. Effects of combined exposure to noise and toxic substances. Ann.occup.Hyg. 1997;4 :455465.
    [37] Antti A. Makitie, Ulla Pirvola , Ilmari Pyykko, et al. The ototoxic interaction of styrene and noise [J]. Hear Res, 2003, 179: 9-20.
    [38] Fechter, L. Effects of acute styrene and simultaneous noise exposure on auditory function in the guinea pig [J]. Neurotoxicology and Teratology, 1993, 15: 151-155.
    [39] Morata TC, Pierre Campo. Ototoxic effects of styrene alone or in concert with other agents [J]. Noise Health, 2002,4, 14 : 15-24.
    [40] Morata, T. C., Dunn, D. E., Kretschmer, et al. Effects of occupational exposure to organic solvents and noise on hearing [J]. Scand Work Environ Health, 1993, 19: 245-254.
    [41] ShuJu chang, tungsheng shih, Tzuchieh chou et al. Hearing loss in workers exposed to carbon disulfide [J]. Environ Health Pers, 2003, 111, 13: 1620-1624.
    [42] 宋晋, 马娟. 苯和噪声联合作用对听力损伤的影响 [J]. 职业卫生与应急救援, 2003, 21, 1:50.
    [43] 张铭强,张天尧, 王建平,等. 铅烟与噪声对听力损伤的联合影响 [J]. 工业卫生与职业病, 1997, 23,5:261.
    [44] 杜冰, 王心如.职业性听力损伤的危险因素 [J]. 中华劳动卫生职业病杂志, 2004,22,2:150-152.
    [45] 马来记, 金锡鹏,范卫,等. 噪声与化学物的联合作用 [J]. 职业卫生与应急救援, 1998,16,4:186-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700