钢筋混凝土核心筒抗震性能试验及非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高层及超高层建筑结构中,钢筋混凝土核心筒常被用作主要的抗侧力构件。其抗震性能的好坏直接影响着高层建筑结构的受力性能。本文围绕混凝土核心筒的抗震性能,通过试验研究、理论分析和数值模拟等方法,对核心筒在水平荷载下的受力性能、地震破坏机理、极限承载力计算方法和基于宏观模型的非线性反分析方法进行研究。主要包括以下几方面的内容:
     通过4个模型试验,研究不同工况下混凝土核心筒在低周反复荷载作用下的破坏形态、滞回特性、耗能性能、承载能力、变形性能以及延性性能等。主要分析了在相同轴压比作用下,核心筒高宽比、连梁尺寸和加载角度对钢筋混凝土核心筒抗震性能的影响。结果表明高宽比增加,核心筒极限承载力降低,延性系数未必提高;连梁跨高比降低,核心筒极限承载力提高,但变形能力较差;加载角度减小,极限承载力提高,结构变形能力下降不明显。
     在已有的剪力墙极限承载力计算原理的基础上,总结出混凝土核心筒的极限承载力计算方法,并结合试验,计算了3个核心筒试件的极限承载力,理论值与试验值较为吻合,说明这套计算理论的可靠性;分析计算了连梁的抵抗弯矩,通过与核心筒整体抗弯承载力的对比,说明了连梁在核心筒抗弯能力中的重要作用。应用三维结构非线性分析与性能评估软件PERFORM-3D,对钢筋混凝土核心筒进行数值模拟,以纤维模型为基础,研究核心筒在单调荷载作用下的受力性能;考虑不同影响因素,如轴压比、连梁配筋率、加载角度及边缘约束构件配筋率等对核心筒抗震性能的影响。
In high-rise and super high-rise building structure, the reinforced concrete core wall is often used as a main component of anti-force measurement. It`s Seismic performance directly impact the Mechanical performance of high-rise building structure. In this paper, Around the seismic behavior of concrete core wall, Some aspect are studied when horizontal loading is applied, such as the Mechanical performance, Mechanism of earthquake damage, Calculated method of ultimate bearing capacity and Nonlinear analysis method based on Macroscopic model. In this process, three methods are used, it are experimental research, theoretical analysis and numerical simulation. The main content include following aspects:
     Through four model test, when cyclic loading is applied, some aspects for concrete core wall are studied such as failure modes, hysteretic behavior, energy dissipation, carrying capacity, deformation and ductility. Mainly analyzes the effect of aspect ratio, coupling beams size and load angle to seismic performance of reinforced concrete core wall. The results show that when aspect ratio`s increased, the core wall`s ultimate strength is reduced, ductility factor may not increase; when cross-height ratio is reduced, bearing capacity is increased, but deformation capacity is reduced; when load angle is decreased, the ultimate bearing capacity is increased, but no significant decline in the deformation capacity.
     Based on the calculation principle of the shear wall ultimate strength, Summed up the method of the core wall ultimate bearing capacity. Calculate the ultimate bearing capacity of the test model in this formula. By comparing the theoretical values agree well with the experimental value, indicating the reliability of this computational theory. Calculate and analysis the resist bending of coupling beams, indicating its important role in the resist bending ability of core wall.
     In this paper, the reasonable nonlinear macro model of concrete core wall will established, based on the PERFORM-3D-Nonlinear Analysis and Performance Assessment for 3D Structure software. Analysis effect on the seismic performance of the core walls, Such as axial compression ratio, reinforcement ratio of coupling beams,load angle and Boundary element reinforcement ratio.
引文
[1]方鄂华,钱稼茹,叶列平编著.高层建筑结构设计[M].北京:中国建筑工业出版社,2003.
    [2]包世华.新编高层建筑结构(第二版)[M].北京:中国水利水电出版社、知识产权出版社,2005.
    [3] Bahrain M.Shahrooz,Bingnian Gong,Gokhan tunc,Jeremy T.Deason.An overview of reinforce wall-steel frame structures.Prog.Struct.Engng mater,ASCE.2001(3):149~158.
    [4]史庆轩,梁兴文.高层建筑结构设计[M].北京:科学出版社,2006.
    [5]方鄂华,钱稼茹.我国高层建筑抗震设计的若干问题[J].土木工程学报,1999,32(1):3~8
    [6] Kenichi Sugaya etc. Experimental Study on Carring Shear Force Ratio of 12-Story Coupled Shear Wall. 12WCEE, Paper No.2152, Feb 2000Society for Earthquake Engineering, 2000.
    [7] Makoto Maruta etc. Structural Capacities of H-shaped RC Core Wall Subjected to Lateral Load and Torsion.12WCEE, Paper No.1028, Feb 2000.
    [8] T.Nakachi etc. Experimental Study on Deformation Capacity of Reinforced Concrete Core Wall after Yielding. 11WCEE, Paper No.1747, June, 1996.
    [9]吕西林,李俊兰.钢筋混凝土核心筒体抗震性能试验研究[J].地震工程与工程振动, 2002,22(3):42-50.
    [10]曹万林,黄选明,卢智成,等.钢筋混凝土带暗支撑核心筒体抗震性能试验研究[J].地震工程与工程振动, 2005, 25(3):81-86.
    [11]李国强,周向明等.钢筋混凝土剪力墙非线性动力分析[J].世界地震工程,2000, 16(2):13~18.
    [12]孙景江.钢筋混凝土剪力墙非线性分析模型综述分析[J].世界地震工程,1994,(1):43~46.
    [13]王涛.钢筋混凝土框架-剪力墙结构弹塑性地震反应分析[D].北京:中国地震局工程力学研究所.2007.
    [14] Kabeyasawa,Shioara T.H And OtaniSU.S-Japan Cooperative research on RC Full-scale Building Test- Part 5: Discussion on Dynamic Response System .Procs 8th WCEE, 1984,Vol.6, 627~634.
    [15]孙景江,江近仁.简化剪力墙模型及框架-剪力墙结构的非线性随机地震反应分析[C]//第三届全国地震工程学术会议论文集,1990.
    [16]司林军,李国强,孙飞飞.钢筋混凝土剪力墙二元件模型的有效性研究[J].结构工程师,2008(8): 19~24.
    [17]门俊,陆新征等.分层壳模型在剪力墙结构计算中的应用[J].防护工程,2006,28(3)
    [18] GB 50011—2001.建筑抗震设计规范[S].2001.( GB 50011—2001 Code for seismic design ofbuildings[S].( in Chinese) )
    [19]朱礼敏,宋涛,马明.天津慈海桥摩天轮结构的抗震性能分析[J].建筑结构,2008,38( 2) : 70-73.
    [20]胡幸贤.地震工程学[M].北京:地震出版社,2006.(Hu Xingxian.Earthquake engineering[M].Beijing: Earthquake Press,2006. )
    [21]沈聚敏,周锡元,高小旺,刘晶波.抗震工程学[M].中国建筑工业出版社2000.
    [22]汪梦甫,周锡元.高层建筑结构静力弹塑性分析方法的研究现状与改进策略[J].工程抗震,2003(4):37-38.
    [23]汪梦甫,周锡元.关于结构静力弹塑性分析(Push-over)方法中的几个问题[J].结构工程师,2002(4):23-24.
    [24]李俊兰,吕西林.钢筋混凝土筒体的非线性有限元分析模型[J].地震工程与工程振动,2003,23 (5):109-116.
    [25]郭丰雨.钢筋混凝土核心筒非线性地震反应分析方法研究[D].北京:中国地震局工程力学研究所,2004.
    [26]林旭川,陆新征,缪志伟,叶列平,郁银泉,申林.基于分层壳单元的RC核心筒结构有限元分析和工程应用[J]土木工程学报,2009,3(42):51-56.
    [27] Franklin.Y.Cheng. Inelastic Analysis of 3-D Mixed Steel and Reinforced Concrete Seismic Building Systems, Computers & Structures, 1981, Vol.13, 189-196.
    [28]赵西安.高层建筑组合结构分层模型弹塑性动力分析[J].建筑结构学报,1989,9(6):25-31.
    [29]文娲.钢筋混凝土筒体结构的非线性地震反应分析方法研究[D].南京:河海大学,2005.
    [30]程绍革.钢—混凝土筒混合结构弹塑性反应分析及探讨[J].建筑结构,1998,28(6):11-15.
    [31]刘英,王松涛,赵军.钢—混凝土核心筒组合结构抗震性能研究[J].工程力学(增刊),1999:439-442.
    [32]杨淑玲.钢框架—混凝土核心筒混合结构弹塑性地震反应分析方法[D].北京:北京工业大学,2005.
    [33]廖晓璐,王松涛,陈向东.钢框架—混凝土筒结构阻尼实用计算方法[J].工程力学(增刊),1999.
    [34]李国强,丁翔,郑敬有,周向明.高层建筑钢—混凝土混合结构分区耦合分析模型及开裂层位移参数分析[J].建筑结构,2002,32(2):16-21.
    [35]周向明,李国强,丁翔.高层钢—混凝土混合结构弹塑性地震反应简化分析模型[J].建筑结构,2002,32(5):14-18.
    [36]丁翔.高层建筑钢—混凝土混合结构非线性抗震性能理论与试验研究[D].上海:同济大学,2001.
    [37]李国强,姜丽人,张晓光.高层建筑钢—混凝土混合结构简化分析模型[J].建筑结构,1999,29(6):38-43.
    [38]侯炜,史庆轩,王伟,钢筋混凝土核心筒受力性能非线性有限元研究[J].西安建筑科技大学学报(自然科学版)2010,42(2):236~240.
    [39] JGJ 101—96.建筑抗震试验方法规程[S].( JGJ101—96 Specification of testing methods for earthquake resistantbuilding[S]. ( in Chinese))
    [40]李俊华.低周反复荷载下型钢高强混凝土柱受力性能试验研究[D].西安:西安建筑科技大学,2005.
    [41]朱伯龙.结构抗震实验[M].北京:地震出版社,1989.
    [42] M,R,Ehsani etc.,Confinement steel requirements for connections in ductile frames,Journal of Structures Engineering,Vol.116,No.3,March,1990,pp751~767.
    [43]姚谦峰,陈平.土木工程结构试验[M].北京:中国建筑工业出版社,2001.
    [44]中华人民共和国行业标准.钢筋混凝土高层建筑结构设计与施工规程(JGJ3—91).北京:中国建筑工业出版社,1999.
    [45]中华人民共和国国家标准.混凝土结构设计规范(GB50010—2002).北京:中国建筑工业出版社,2002.
    [46]钱稼茹,吕文,方鄂华.基于位移延性的剪力墙抗震设计[J].建筑结构学报.1999,20(3):42-49.
    [47] T.鲍雷,M.J.N.普里欺特利著,戴瑞同,陈世鸣等译.钢筋混凝土和砌体结构的抗震设计[M].北京:中国建筑工业出版社,1999.
    [48]中华人民共和国行业标准.高层建筑混凝土结构技术规程(JGJ3—2002).北京:中国建筑工业出版社,2002
    [49]王建区.基于能力原理的双肢剪力墙极限承载力分析及其弹塑性性能研究[D].广州:华南理工大学,2005.
    [50] Nutan Kumar Subedi.RC-Coupled Shear Wall Structures I:Analysis of Coupling Beams.J.Structural Engrs,ASCE.1991,117(3):667-680.
    [51]史庆轩,门进杰,王伟,侯炜,基于纤维模型的钢筋混凝土核心筒非线性分析[J].工程抗震与加固改造.2009,31{6}:5~9.
    [52] Rangy G,Petrangeli M.A Fiber Finite Beam Element With Section Shear Modeling for Seismic Analysis of Structures[J],Journal of Earthquake Engineering,1998,2 (3):443-473.
    [53] Marini,Alcssandra,Spacone.Analysis of Reinforced Concrete Elements Including Shear Effects ,Aci Structural Journal,2006,103 (5):645~655.
    [54]苏志彬,述涛.结构非线性分析与性能评价软件PERFORM-3D[J].建筑结构.通讯技术[J],1999: 25-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700