真江蓠和孔石莼提取物对酪氨酸酶活性抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酪氨酸酶(EC 1.14.18.1,Tyrosinase)是一种结构复杂的多亚基含铜氧化还原酶,广泛存在于微生物、动植物及人体中,是生物体内合成黑色素的关键酶,具有独特的双重催化功能。多年来,对酪氨酸酶抑制剂的研究一直备受国内外学者的关注,因此,筛选酪氨酸酶的天然抑制剂可以为其在医疗美容、食品工业、农业抗虫等多个领域提供理论依据。
     我国海域辽阔,海洋生物资源丰富,海藻养殖技术居于世界领先水平。真江蓠和孔石莼也是黄海、渤海海域常见的大型经济海藻,其丰富的营养成分和活性物质也被逐渐应用于医疗保健、饲料养殖、生态修复等多个方面。本文深入研究了真江蓠和孔石莼乙醇提取物对酪氨酸酶的抑制作用,通过超声波提取,单因素分析和正交试验设计相结合的方法确定了这两种海藻提取物的最佳提取条件;酶动力学方法系统研究了两种海藻提取物对酪氨酸酶的抑制作用机理和抑制作用类型。相关研究内容及结果如下:
     1超声波提取真江蓠中酪氨酸酶的抑制活性物质,通过单因素试验与正交试验相结合的方法优化提取条件。最佳提取条件为:超声时间20min,超声功率100w,料液比1g:16mL,乙醇浓度70%。采用有机溶剂萃取真江蓠乙醇提取物,分别得到乙酸乙酯组分、石油醚组分和水溶性组分,酶活性抑制实验发现:真江蓠这三种组分对酪氨酸酶均具有不同程度的抑制作用,半数抑制浓度IC50分别为0.6mg/mL、22.32 mg/mL和7.85 mg/mL,其中,乙酸乙酯组分抑制效果显著。Lineweaver-Burk图显示:真江蓠乙酸乙酯组分、石油醚组分对酪氨酸酶具有非竞争性抑制作用,抑制常数(KI=KIS)分别为0.86 mg/mL和1.96 mg/mL;水溶性组分对酪氨酸酶具有竞争性抑制作用,抑制常数KI为0.81mg/mL。
     2超声波提取孔石莼中酪氨酸酶抑制活性物质的最佳提取条件为:超声时间8min,超声功率100w,料液比1g:20mL,乙醇浓度70%。有机溶剂萃取实验发现,孔石莼石油醚组分对酪氨酸酶的抑制作用不明显,乙酸乙酯组分和水溶性组分对酪氨酸酶具有一定的抑制作用,IC50分别为1.75mg/mL和11.53mg/mL,乙酸乙酯组分抑制效果显著。动力学分析表明:孔石莼乙酸乙酯组分对酪氨酸酶表现为非竞争性抑制,抑制常数KI=KIS为1.92mg/mL;水溶性组分对酪氨酸酶表现为竞争性抑制,抑制常数KI为1.11mg/mL。
     3综合两种海藻对酪氨酸酶的抑制作用研究,真江蓠和孔石莼提取物中均含有多种对酪氨酸酶具有抑制作用的活性成分,且抑制作用显著成分都集中在乙酸乙酯萃取物组分,其活性成分可能是同类物质。
Tyrosinase(EC 1.14.18.1)is a copper-constaining redoxidase enzyme which has complex constructure, widely distributed in microorganisms, animals, plants and human beings. It is a key enzyme involved in the melanin biosynthesis, which has a unique double catalytic functions. Over these years, the study on tyrosinase inhibitors has been a major concern of domestic and international academics. So, the study of screening new naturally tyrosinase inhibitors would provide a theoretical basement for the medical cosmetology, food industry and agriculture resist insects fields. There are vast sea areas as well as rich marine resources in china, and the seaweed growing techniques are in the world leading level. Gracilaria asiatica and Ulva pertusa kjellm are large economic algae resources rich in the huanghai sea and the bohai sea areas. Their rich nutrition ingredients and active substances had applied to medical care, food culture and ecological restored aspects.
     This article made a deep research on the tyrosinase inhibition of the ethanol extracts that extracting from Gracilaria asiatica and Ulva pertusa kjellm. The optimum ultrasonic extracting conditions of the substances from the seaweeds were confirmed by single factor and orthogonal experiment; the inhibitory mechanism and types of the extracts on tyrosinase were studied using enzyme kinetic method. The contents and results were as follows.
     1 The antienzyme components were extracted from Gracilaria asiatica with the ultrasonic technology, using single factor and orthogonal experiment method to optimize the extracting conditions. The optimum extracting conditions were ultrasonic time 20min, ultrasonic power 100w, the liquid-solid ratio 16mL:1g, ethanol concentration 70%. The Gracilaria asiatica ethanol extracts was leached with organic solvents to obtain the ethyl acetate fraction, the petroleum ether fraction and the substance in water. The results showed that all of the three components had different inhibition on the activity of the tyrosinase. The concentration of Gracilaria asiatica extracts corresponding to 50% inhibition (IC50) was 0.6mg/mL, 22.32 mg/mL and 7.85 mg/mL, respectively, the ethyl acetate fraction showed a prominent inhibition. The inhibition kinetics analysis based on the Lineweaver-Burk plots showed that the inhibition of the Gracilaria asiatica ethyl acetate fraction and the petroleum ether fraction belongs to noncompetitive inhibition, the KI(KIS) was 0.86 mg/mL and 1.96 mg/mL, respectively; the substance in water belongs to competitive inhibition, the KI was 0.81mg/mL.
     2 The optimum extracting conditions with ultrasonic technology to extract the antienzyme components from Ulva pertusa kjellm were ultrasonic time 8min, ultrasonic power 100w, the liquid-solid ratio 20mL:1g, the ethanol concentration 70%. The organic solvents leached experiments showed that the petroleum ether fraction from Ulva pertusa kjellm had no inhibition on the activity of tyrosinase, the ethyl acetate fraction and the substance in water can inhibit the activity of tyrosinase. The concentration of extracts corresponding to 50% inhibition (IC50) was 1.75mg/mL and 11.53mg/mL, respectively, the ethyl acetate fraction showed a prominent inhibition. The Lineweaver-Burk plots showed that the ethyl acetate fraction belongs to noncompetitive inhibition, the KI(KIS) was 1.92mg/mL; the substance in water belongs to competitive inhibition, the KI was 1.11mg/mL.
     3 Synthesizing the tyrosinase inhibition of the two algaes, the extracts from Gracilaria asiatica and Ulva pertusa kjellm both have different antienzyme active components, and the distinct antienzyme components are both on the ethyl acetate fraction, its active ingredients may be the similar substance.
引文
[1] Fenoll L G, Penalver J N, et al. Tyrosinase kinetics: discrimination between two models to explain the oxidation mechanism of monophenol and diphenol substrates. The International Journal of Biochemistry &Biology, 2004, (36): 235~246
    [2] Kubo I, Chen Q X, N IHEI K I, et al. Molecular design of antibrowning agents: antioxidative tyrosinase inhibitors. Food Chemistry, 2003 (81): 241~247
    [3]赵会全,刘望夷.酪氨酸酶的分子生物学研究进展.国外医学分子生物学分册,1999,13(6):273~292
    [4]王君玲,口如琴,成汇,等.马铃薯酪氨酸酶的部分纯化及理化性质的研究.山西大学学报(自然科学版),1995,18(2):184~189
    [5]刘华珍.用幼蚕液筛选黑素生物合成抑制剂和测定绿木霉菌素抑制活性新方法.国外医药抗生素分册,1996,17(2):143~144
    [6]张晓晴.香樟果实酪氨酸酶的分离、纯化和性质分析:[硕士学位论文].无锡:江南大学,2008
    [7]李洪武,朱文元.治疗黄褐斑的中药复方对酪氨酸酶活性的影响.中华皮肤科杂志,2000,33(2):93~95
    [8]李洪武,朱文元.酪氨酸酶及其抗体与自身免疫性白癜风.国外医学皮肤性病学分册,2000,26(1):19~22
    [9] Fitzpatrick T B, Eisen A Z, Wolff K, et al. Dermatology in General Medicine. New York, McGraw-Hill, 1983: 205~225
    [10]孟凤霞,高希武,张岚,等.昆虫酪氨酸酶的研究进展.中国媒介生物学及控制杂志,2004,15(6): 496~499
    [11]尹丽红,王深柱,钦俊德.棉铃虫齿唇姬蜂对棉铃虫血淋巴酚氧化酶的影响.科学通报,2001,46∶1303~1307
    [12]琴启联,李馨,丁翠,等.粘虫受中红侧沟茧蜂寄生后德生理变化.应用与环境生物学报,2000,6:554~559
    [13] Cai J, Ye GY, Hu C. Effect of parasitization by the pupal endoparisitoid, Pteromalus puparum (Hymenoptera: Pteromalidae). Entomol Sin, 2001, 8:335~342.
    [14]许传俊,李玲.植物多酚氧化酶的研究进展.生命科学研究.2002,6(1):45~48+55
    [15]韩涛,李丽萍.果实和蔬菜中多酚氧化酶的作用.北京农学院学报,1998,13(2):115~124
    [16]赵淑娟,王坤波,傅冬和.微生物多酚氧化酶研究进展.中国茶业,2008,3:18~20
    [17]王戈林,彭珍荣,沈萍.酪氨酸酶用于废水处理.环境科学与技术,1996,(3):44~45
    [18]李韶勇,孙命,曲娜,等.黑色素的合成及其常见抑制剂的作用机理.天津师范大学学报(自然科学版),2002,22(1):17~21
    [19]王正辉,杨壮群.黑素及影响黑素生成的因素.中国美容医学,2002,11(3):278~280
    [20]汪涌,何清濂,林子豪.黑素细胞与影响皮肤色素沉着的因素.实用美容整形外科杂志,1997,8(3):152~155
    [21]潘兴华,陈志龙,黄丽娜.黑素细胞及黑素的生成与调节.生理科学进展,1998,29(2):179~181
    [22]陈清西,宋康康.酪氨酸酶的研究进展.厦门大学学报(自然科学版),2006(5):731~737
    [23] Urs K, Denise M N, Grazia T, Konrad L. Isolation and characterization of the tyrosinase gene from Neurospora crassa .J.Biol.Chem, 1989, 264: 17250~17258
    [24] Nwlsin D, Maria AR, Alessandro DA. Applications of laccase and tyrosinase (phenoloxidase) immobilized on different supports. Enzyme Microbial Technol, 2002, 31:907~931
    [25] Duran N, Rosa MA, D’Annibale A, Gianfreda L. Applications of laccases and tyrosinase(phenosidases) immobilized on different supports:a review. Enzyme Microbial Technol, 2002(31):907~931
    [26] Espín J C. Kinetic characterization of the substrate specificity and mechanism of mushroom tyrosinase. Eur.J.Biochem, 2000, 267:1270~1279
    [27] Solomon E.I, Lowery M.D. Structure contributions to function in bioinorganic chemistry. Science, 1993, 259(5101):1575~81
    [28]郭云集,陈清西.效应物对蘑菇酪氨酸酶的抑制作用及其抑制机理的研究:[硕士论文].福建:厦门大学,2008
    [29]曹水,杜伟娇,宋鑫,等.恶性黑色素瘤生物治疗进展.实用肿瘤杂志,2010,25(2):113~117
    [30]黄浩,周秀玲,吕美云.还原性谷胱甘肽、抗坏血酸对酪氨酸酶的抑制作用.中国生化药物杂志,2009,30(2):95~102
    [31]沈金玉,黄家音,李晓莉.果蔬酶促褐变机理及其抑制方法研究进展.食品研究与开发,2005,26(6):150~156
    [32]韩涛,李丽萍.果蔬多酚氧化酶的抑制及褐变的防治因素.北京农学院学报,1999,14(10):88~93
    [33]解先业,姜林.菜青虫酚氧化酶抑制剂的合成及活性研究:[硕士学位论文].山东:山东农业大学,2008
    [34]王镜岩,朱胜庚,徐长法.生物化学.北京:高等教育出版社,2002.368~370
    [35]李航,赵国华,阚建全,等.天然产物对酪氨酸酶的抑制及抑制机理的研究进展.日用化学工业,2003,33(6): 383~386
    [36] Thomeby-andersson K, Sterner O, Hansson C. Tyrosinase-mediated formation of a reactive quinone from the depigmenting agents,4-tert-butyphenol and 4-tert-butyl-catechol. PigmentCell Res, 2000, 13:33~38
    [37]陈清西,林建峰,宋康康.酪氨酸酶抑制剂的研究进展.厦门大学学报(自然科学版),2007,46(2):274~282
    [38]龚盛昭,邓相庆,李仕梅.对羟基肉桂酸抑制酪氨酸酶活性的动力学研究.日用化学工业,2006,36(3):159~162
    [39] Juan Carlos Espin, Happy J Wichers. Slow-binding inhibition of mushroom (agaricus bisporus) tyrosinase isoforms by tropolone. J Agric Food Chem, 1999, 47: 2638 ~2644
    [40]王自强,曾晓军.酪氨酸酶活性的抑制研究及皮肤美自化妆品的研制.福建轻纺, 2002,7:l~6
    [41]王芳.桑叶中酪氨酸酶抑制成分的研究:[博士学位论文].浙江:浙江工商大学食品科学,2008
    [42] Kim Y M, Yun J, Lee C K, etal. Oxyresveratrol and hydroxystilbene compounds. Inhibitory effect on tyrosinase and mechanism of action. J Biol Chem, 2002, 277(18): 16340 ~16344.
    [43]闫军,陈声利,李春阳.酪氨酸酶抑制剂及对黑素生物合成的影响.国外医学(皮肤性病学分册),2003,29(4):250~253
    [44]汪吕国,金抒,李华山.皮肤美自剂进展.日用化学工业,2002,32(4):56~60
    [45]丁大鹏.酪氨酸酶抑制剂的研究进展.实用医学杂志,2005,21(12):1364~1366
    [46]焉翠蔚,徐睿,孙妍,等.菲律宾蛤仔提取物抑制酪氨酸酶活性的研究.中国海洋大学学报(自然科学版),2009,39(6):1233~1236+1260
    [47]谢秋玲,戴云,林剑,等.一种海洋生物提取物的美白机理探讨.日用化学工业,2002,32(2):85~86
    [48]宋永相,孙谧,王跃军,等.海洋活性胶原肽的抗氧化性及对酪氨酸酶的抑制作用与初步分离研究.中国食品学报,2009,9(5):7~13
    [49] Leng B, Liu X D, Chen Q X. Inhibitory effects of anticancer peptide from Mercenariaon the BGC-823 cells and several enzymes. FEBS Letters, 2005, 579: 1187~1190
    [50] Oszmianskii J, Lee C Y. Inhibition of polyphenol oxidase activity and browning by honey. J Agric Food Chem, 1990, 38:1892~1895
    [51]陈龙,陈栋梁,杨国燕,等.鱼胶原肽抑制酪氨酸酶活性能力的比较研究.中国美容医学, 2008,17(10):1512~1514
    [52]傅国强,马鹏程,吴勤学,等.196味中药乙醇提取物对酪氨酸酶的抑制作用.中华皮肤科杂志,2003,26(2):103~106
    [53]刘之力,涂彩霞,史月君,等.54味中药乙醇提取物对酪氨酸酶活性抑制作用的研究.中国麻风皮肤病杂志,2003,19 (3) :257
    [54]陈雅英,李咏悦.熊果苷在化妆品中的用途.日用化学工业,1995(6):31~33
    [55]李安良,杨淑琴,郭秀茹,等.熊果苷的进展.日用化学工业,2000(2): 62~65
    [56]沈钧,何莉萍,张瑞斌.甘草提取物对酪氨酸酶活性的抑制作用.中国临床药理学与治疗学,2006,11(8):940~942
    [57] Nerya O, Vaya J, Musa R, et al. Glabrene and isoliquiritigenin as tyrosinase Inhibitors from licorice root. Jouranal of Agricultural and Food Chemistry, 2003, 51(5):1201~1207
    [58] Fu B Q, Li H, Wang X R, et al. Isolation and identification of flavonoids in licorice and a study of their inhibitory effects on tyrosinase. Journal of Agricultural and Food Chemistry, 2005, 53(19):7408~7414
    [59]龚盛昭,程江,杨卓如.丹皮酚抑制蘑菇酪氨酸酶催化氧化L-Dopa的动力学.药学学报,2006,41(6):561~564
    [60]雷铁池,朱文元,夏明玉,等.中药对黑素生物合成影响研究I.82味中药乙醇提取物对酪氨酸酶活性的抑制作用.中草药,1999,30(5):336~339
    [61]曾祖平,张秀梅,李萍,等.柿叶提取物对黑素细胞增殖和酪氨酸酶活性的影响.中国民族民间医药,2009(20):1~2
    [62]徐鹏,钱竹.27味中药醇提物对酪氨酸酶体外活性的影响.天然产物研究与开发,2006,18(6):986~988
    [63] Kubo I, Kinst-Hori I. Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem, 1999, 47(10):4121~4125
    [64] Jones K, Hughes J, Hong M, et al. Modulation of melanogenesis by aloesin: A competitive inhibitor of tyrosinase. Pigment Cell Research, 2002, 15(5):335~340
    [65]刘德育,雷焕强.杨梅黄素及蛇葡萄素对酪氨酸酶的抑制作用.生物化学杂志,1996,12(5):618~620
    [66]王继龙,李江南,赵伟,等.16种长白山野生植物提取物对酪氨酸酶抑制作用.中国野生植物资源,2008,27(3):42~44
    [67] Baurin N, Arnoult E, Scior T, et al. Preliminary screening of some tropical plants for anti-tyrosinase activity. Journal of Ethnopharmacology. 2002, 82: 155~158
    [68]王富花,沈发治.当归、甘草、芦荟美白护肤霜的研制.广州化工.2009,37(8):207~209
    [69]赵谋明,刘通讯,吴晖,等.江蓠藻的营养学评价.营养学报,1997,19(1):64~70
    [70]华玉琴,孙健华,李会轻,等.我国真江蓠生物活性物质PG的检出.中国海洋药物杂志,2000(3):31~32
    [71]许忠能,林小涛.江蓠的资源与利用.中草药,2001,32(7):654~657
    [72]徐姗楠,温珊珊,吴望星.真江蓠(Gracilaria verrucosa)对网箱养殖海区的生态修复及生态养殖匹配模式.生态学报,2008,28(4):1467~1475
    [73]肖美添,叶静,汤须崇.江蓠藻膳食纤维降血脂作用研究.食品科学,2010,31(11):241~243
    [74]王艳梅,李智恩,牛锡珍,等.孔石莼多糖降血脂活性的初步研究.中国海洋药物,2003,91(2):33~35
    [75]徐秀丽,范晓,宋福行.中国经济海藻提取物生物活性.海洋与湖沼,2004,35(1):55~6
    [76] Liu Z. Y. , Xie L. Y. , Wu Z. J. e.t al. Purification and Characterization of an Anti-TMV Protein from a Marin AlgaeUlva pertusa. Acta Phytopathologica Sinica, 2005, 35(3): 256~261
    [77]罗广华,王爱国,柯德森.海藻中清除氧自由基的物质.热带亚热带植物学报,1998,6(1):15~18
    [78]仲锡铜,冯崇华,张薇.中药提取方法的特点与应用.山东医药工业,2002,21(6):23~26
    [79]杨文宇,牛锐,韩丽.天然活性成分生物技术制备的方法.北京:化学工业出版社,2007:23~24
    [80]曹明霞,徐溢,赵天明.超临界萃取在天然植物成分提取中的应用进展.广州化工,2010,38(8):23~25+37
    [81]麻林.微波提取原理及其设备的应用与设计.机电信息,2010,35:42~45
    [82]黄忠良,蒋利华,熊远福,等.植物功能成分提取技术研究进展.河南化工,2009,26(12):17~20
    [83]卢行芳.超声波热效应的应用研究.浙江工贸职业技术学院学报,2008,8(4):47~51
    [84]周斌.用超声波提取中药材.安徽科技,2005(4):23~24
    [85]王育慷.超声波原理与现代应用探讨.贵州大学学报(自然科学版),2005,22(3): 287~290
    [86] Osvaldo Z, Antonella B, Patrizia C, et al. Truffle-thio-flavours reversibly inhibit truffle tyrosinase. FEMS Microbiology Letters, 2003(220):81~88
    [87]温拥军,鄢东.超声辅助乙醇提取菌丝体中红曲色素的研究.中国调味品,2010,35(10):100~103
    [88]宋康康,丘陵,黄瑛,等.熊果苷作为化妆品添加剂对酪氨酸酶抑制作用.厦门大学学报(自然科学版),2003,42(6) :91~794
    [89]赵永芳.生物化学技术原理及应用.北京:科学出版社,2002
    [90]刘振学,黄仁和,田爱民.实验设计与数据处理.北京:化学工业出版社,2005
    [91]李八方,徐杰,赵雪,等.海洋生物活性物质.青岛:中国海洋大学出版社,2007
    [92]龚静,张飞伟,韩锐.红景天水提液对酪氨酸酶抑制效果的初步研究.四川大学学报(自然科学版),2006,43(2):468~471
    [93]邱凌,钟雪,庄江兴.芦荟皮酪氨酸酶抑制剂有效成分的提取与分析.厦门大学学报(自然科学版),2008,47(2):227~230
    [94]范晓,张士璀,秦松,等.海洋生物技术新进展.北京:海洋出版社,1999
    [95]孙煜煊,常建波.孔石莼多糖抗氧化作用的初步研究.现代农业科学,2009,16(4):6~8
    [96]康凯.绿藻孔石莼中克生活性物质的分离与鉴定:[硕士学位论文].青岛:中国海洋大学,2006
    [97]苏秀榕,李太武,常少杰.孔石莼营养成份的研究.中国海洋药物,1997,1:33~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700