定激励下板梁振动功率流最小响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以实验室承担的工程项目为背景,采用理论分析、模拟仿真相结合方法,以振动功率流大小为指标,研究了板构件在不同边界条件下、简支弹性梁构件的振动特性,具有一定的理论意义和重要实用价值。
     板梁结构大量运用于机械工程结构中,本文分析了其振动响应特性,找出在定激励作用下的最小振动响应,进行了较深入的理论研究,并具有明确的应用对象(内燃叉车)。
     对板梁结构各个结构参数影响板梁结构的振动特性进行了分析,编制了数值优化程序,以功率流峰值最大值最小的优化策略对三种不同的边界条件的板结构进行了激励点位置寻优;对比三种不同边界板结构模型的优化结果,得到三边固定一边自由板结构振动功率流峰值最小,两边固定两边自由板模型功率流峰值最大的结论。为工程上的设计提供理论参考指导。本文的研究工作包括以下内容:
     首先研究振动功率流的基本原理、基本概念、计算方法,然后基于振动理论,研究定激励作用下板的振动的分析方法,利用结构动力学、机械导纳的有关理论和处理方法,从功率流的基本概念和基本原理出发推导出了在定激励作用下两边固定两边自由板、四边固定板、三边固定一边自由板功率流表达式,并对在激励点位置、板长、板宽、板厚等参数变化时进行了数值计算,以上理论研究为叉车类车架结构的动态响应分析提供了一种方法,为这类结构的动特性改进与设计提供了理论依据。得到具有工程意义的一般性结论:
     (1)这三种边界条件的板厚度的增加,板的功率流峰值是一致减小的。所以在工程设计时,只要工程设计允许时就可以尽可能加大厚度;(2)这三种边界条件的板损耗因子增大时,功率流峰值减小,在工程设计时,若要减小振动功率峰值,要选大的损耗因子;(3)这三种边界条件的板长值由小变大时,功率流峰值一致变小,在工程设计时,尽可能选择大的板长值;(4)这三种边界条件的板宽取小值时,功率流峰值小,在工程设计时,选择小的板宽度值是有利的。小宽度板的模态有一些没有被激励起来,所以振动能量很小。在工程设计时,若能让大多数模态不被激发就是振动能量最小的,可实际工程大量运用薄壁结构件,我们要合理的结构设计,来避免模态的激发;(5)对于四边固定板、两边固定两边自由板,其边界对称,激励点在中心时的振动功率流峰值大于激励点不在中心时的情况。尽管在中心时被激发的模态数少,但此时模态一旦被激发,峰值能量就较大,激励点不在中心时,尽管激励出了较多的模态,可此时的模态峰值较小。在工程设计时,若是激励点在板中心时,一定要考察出此时是否激励出模态。对于两边固定两边自由板、三边固定一边自由板,不仅是激励点要避开中心点激励,还要避开自由边上的激励:(6)这三种边界条件的板,在工程设计时,都需要考虑激励点避开板的中心,在宽度方向上激励点位置不同,峰值出现大小交替,所以,工程设计时,必须通过仔细计算才能找到使得峰值最小位置点;(7)当激励点位置相同时,三种边界条件板各有优劣,取决于点的具体位置,工程设计时,要具体计算来确定用何种边界条件。
     针对具有工程意义的简支弹性梁结构,进行了理论分析,得出了具有工程意义的结果:(1)梁越长振动功率流峰值越小;(2)壁厚值需要适当选择;(3)梁损耗因子增大,功率流峰值一致减小,在工程设计时若主要考虑减小功率峰值,就可取较大值的损耗因子,但损耗因子增大,会使得阻尼材料的重量增加;(4)梁截面积不变,-而截面高增加,功率流峰值在减小,所以在工程设计时,当梁截面积为定值时,尽量加大截面高度减小截面宽度;(5)激励点从中间向两端移动变化时候,功率流的峰值变小,激励点尽量选择在离两端近一些。(6)得到设计简支-弹性支承梁系统的顺序是,首先根据结构需要和强度要求设计梁的基本参数,根据系统支承的稳定性及减振的需要来设计弹性支承的刚度范围,利用频率方程数值方法确定固有频率,然后根据本文总结的规律计算最终确定其刚度、梁的长、宽、高、壁厚。
     最后运用大型商业软件ANSYS对板模型、梁模型进行了模拟分析,得到了与理论分析相一致的结论,这也印证了理论分析的正确性。
     我们知道,内燃叉车的主体结构是钢板焊接而成的车架,动力装置支承在车架上,内燃叉车的振动始终困扰着生产企业,制约着内燃叉车NVH性能的改善。本文的研究结果正好可很好的应用于内燃叉车的结构设计上,有利于设计出理想NVH性能的叉车,会迅速推动企业效益的增长。
This Paper is based on the background of the projects undertaken by the laboratory. By theoretical analysis and numerical calculation method, the paper took the vibration power flow as an objective function, studied the plate with different boundary conditions, and simply supported elastic beam vibration characteristics. The results have the important theory significance and the practical value.
     A large number of plate beam structure used in mechanical engineering, its vibration response characteristics need to be researched. In order to identify the Minimum vibration response under the Action of Determine Excitation, a more in-depth research of theory is needed. This paper investigated the vibration characteristics of the plate beam structure, and those researched results have clear application object.
     By theoretical analysis and numerical calculation, the paper studied the plate structure vibration characteristics.That different structure parameters how to affect the plate structure vibration characteristics was analysed.The conclusions of designing plate structure with good vibration characteristics were drawed. It provides reference for designing the structure. A numerical optimization program was programmed with minimization peak power optimization strategy.For three different boundary conditions plate structure was optimized.After the comparison of three kinds of different boundary plate structure model of the optimized results, draw a coclution that the three fixed edges plate vibration power flow peak is minimum and the two fixed edges plate vibration power flow peak is maximum. It provides a theoretical reference guide for engineering design.
     The paper contents are as follows:
     Firstly the basic concepts, basic principles and calculation method of power flow was studied. Then, based on vibration theory, the paper studied plate vibration analysis methods under the action of determine excitation. Regards plate structure as the research object, using structural dynamics, mechanical admittance theory and processing method, From the power flow of the basic concept and the basic principle, the paper deduced the different power flow equations and numerical calculation result of the plates, such as two edges fixed and the other two edges free plate, quadrilateral fix plate, three edges fixed plate,under the action of determine excitation, with different conditions, such as the excitation point position, length, width, thickness and other parameters. The study on the plate structure dynamic response analysis provides a method for designing these dynamic characteristics and provides a theoretical basis for the design improvement. Some general conclusions of engineering significance were drawed.
     Some general conclusions of engineering significance as follows:
     For the three kind of boundary conditions of the plate,
     (1) As the thickness of the plate is increased, power flow peak is reduced.So,when a Mechanism structure is designed, as long as under the condition of the engineering design allows,the thicker the plate is,the less the power flow peak is.(2) As the Plate loss factor is increased, power flow peak is reduced. So, when a Mechanism structure is designed, we should choose the big loss factor.(3) The Plate longth increased and power flow peak reduced.So, when a Mechanism structure is designed, we should choose the longer Plate.(4) As the Plate width is increased, power flow peak is reduced, when a Mechanism structure is designed, we should choose the narrower Plate.Some modal in narrower plate was not excited, so the vibration energy was very small. The vibration is very small when the some modal are not excited. Plate structure is widly used in Practical engineering, so we should design to avoid the excited modal.(5) As Quadrilateral fixed plate and two sides fixed two sides free plate were conserned, they are Symmetric boundary; the vibration power flow peak caused by excitation point in the center of the plate is greater than those caused by the excitation point in the corner of the plate.Although the number of modal excited by in the center were a few, those mode once are excited, peak energy is larger than those that excited by incentive point not in the center, although many modal was incentived, the peak is smaller. When a Mechanism structure is designed, we should pay attention to whether those modal were excited by the incentive point in the center of the board. As three sides fixed plate and two sides fixed two sides free plate are conserned, the position of exciting point is not only to avoid the plate center, but also to avoid the free edge of it.(6) When a Mechanism structure is designed, we should pay attention not to putting the incentive point in the center of the plate. With the different incentive point position the peak changed from big to small alternately, we must calculate carefully to find the minimum peak.(7) When the excitation point position is same, each of the three kinds of boundary conditions plate has advantages and disadvantages, depending on the incentive location. When a Mechanism structure is designed, we should choose the boundary conditions by calculation.
     As the beam structure is corncerned, by analyzing in theory, we obtained a series of practical engineering significance results.
     (1)The longer of the beam structure is, the less of the power flow is.(2) Wall thickness needs to appropriate select.(3) As the Beam loss factor is increased, power flow peak is reduced. So, when a Mechanism structure is designed, we should choose the big loss factor.(4) The hight increased with the power peak decreased under the condition of constant beam cross section. So, when a Mechanism structure is designed, we should choose the big hight and small width. When incentive point position is shifting from the middle of the beam to two ends of it, power flow peak is varying with from bigger to smaller. The incentive point postion should be putted the two ends or its vicinity. The order of design pivot-elastic supported beam is designing its basic parameters, and then according to the sturucture to support the stability and vibration needs, design elastic supporting rigidity range. After using the frequency equation numerical method to determine the natural frequency, based on the summary of the law, we compute its stiffness, longth, width, hight, wall thickness.
     Finally applying the commercial software ANSYS to board model, to beam model is simulated and analyzed. Obtained consistent with the theoretical analysis conclusion, this has also verified the correctness of theoretical analysis.
     The main structure of present forklift is welded steel frame; power device is supported on the frame.
     Forklift vibration has plagued enterprises, restricting the performance improvement of forklift NVH. On the results of this study can be well applied to the structural design of the forklifts, and quickly promote forklift ideal NVH performance and the enterprise efficiency growth.
引文
[1]胡选利,螺旋桨飞机舱内噪声的定量分析和预估.西安交通大学博士学位论文,1988.
    [2]Chen-Fu B.Chao,Model Analysis of Interior Noise Fields.Ph.D.Dissertation,Faculty of Princeton University,U,S,A.,Dec.1980.
    [3]戴林钧,杨叔子,弹性空腔噪声的有限带宽预估法.振动工程学报,第4卷,第3期,1991.9,pp.27-33.
    [4]S.Suzuki,S.Maruyama and H.Ido,Boundary Element Analysis of Cavity Noise Problems with Complicated Boundary Conditions.J.Sound Vib.,130(1989),pp.79-91.
    [5]R.H.Lyon,Statistical Energy Analysis of Dynamical System:Theory and Application,MIT Press,1978.
    [6]G Pavic. Measurement of structure born wave intensity,Part Ⅰ:formulation and the methods[J].Journal of Sound and vibration,1976,49(1):35-45.
    [7]姚德源,王其政。统计能量分析原理及其应用[M].北京:北京理工大学出版社,1994.
    [8]R H Lyon,H Richard.Statistical energy analysis of dynamical systems:theory and applications[M].Cambridge:Mass MIT Press,1975.
    [9]D J Nefake,S H Sung. Power flow finite element analysis of dynamic systems: Basic theory and application to beams[J]. Journal of Vibration. Acoustics.Stress,and Reliability in Design,1989,111(1):94-100.
    [10]H G D Goyder, R G White. Vibrational power flow from machines into built-up structures.Ⅰ. Introduction and approximate analyses of beam and plate-like foundations[J]. Journal of Sound and Vibration,1980,68(1):59-75.
    [11]H G D Goyder, R G White. Vibrational power flow from machines into built-up structures.Ⅱ. Wave propagation and power flow in beam-stiffened plates[J].Journal of Sound and vibration,1980,68(1):77-96
    [12]H G D Goyder, R G White. Vibrational power flow from machines into built-up structures.Ⅲ.Power flow through isolation systems[J].Journal of Sound and Vibration.1980,68(1):97-117.
    [13]C Boisson, J L Guyader,P Millot, C Lesueur. Energy transmission in finite coupled plates. Part Ⅱ:Application to an L shaped structure[J].Journal of Sound and vibration,1982,81 (1):93-105.
    [14]J M Cuschieri.Structural power flow analysis using a mobility approach an L-shaped plate[J].Journal of the Acoustical Society of America,1990,87 (3): 1159-1165.
    [15]R S Langley.Analysis of power flow in beams and frameworks using the direct-dynamic stiffness method[J].Journal of sound and Vibration,1990,136 (3):439-452.
    [16]G Pavic. Vibration energy folw in elastic circular cylindrical shells[J].Journal of Sound and vibration,1990,142(2):293-310.
    [17]R S Langley.Wave motion and energy flow in cylindrical shells[J].Journal of Sound Vibration,1994,169(1):43-53.
    [18]L S Beale and M L Accorsi. Power flow in two-and three-dimensional frame structures[J]. Journal of Sound and vibration,1995,185(4):685-702.
    [19]A N Bercin. Assessment of the effects of in-plate vibrations on the energy folw between coupled plates[J].Journal of Sound and Vibration,1996,191(5):661-680.
    [20]J Cuschieri. In-plane and out-plane waves power transmission through an L-plate. junction using the mobility power approach[J].Journal of the Acoustic Society of America,1996,100(2):857-870.
    [21]A N Bercin. Analysis of energy flow in thick plate structures[J]. Computers and Structures,1997,62(4):747-756.
    [22]R M Grice and R J Pinnington. Method for the vibration analysis of built-up structues. Part Ⅰ:introduction and analytical analysis of the plate-stiffened beam[J].Journal of Sound and vibration,2000,230(4):825-849.
    [23]R M Giric and R J Pinnington. Method for the vibration analysis of built-up structures. Part Ⅱ:analysis of the plate-stiffened beam using a combination of finite element analysis and analytical impedances[J].Journal of Sound and Vibration,2000,230(4):851-875.
    [24]S H Seo,S Y Hong, H G Kil. Power flow analysis of reinforced beam-plate coupled structures[J].Journal of Sound and vibration,2003,259(5):1109-1129.
    [25]J T Xing, W G Price,Y P Xiong.Substructure-subdomain methods for power analysis of fluid structure interaction dynamics[M].Stockholm,Sweden:Institute of Acoustics,2003.
    [26]S V Sorokin. Analysis of vibrations and energy flows in sandwich plates bearing concentrated masses and spring-like inclusions in heavy fluid-loading conditions[J].Journal of Sound and vibration,2002,253(2):485-505.
    [27]S V Sorokin.J B Nielsen.Nolhoff. Green's matrix and the boundary integral equation method for the analysis of vibration and energy folw in cylindrical shells with and without internal fluid loading[J].Journal of Sound and vibration,2004,271(3-5):815-847.
    [28]L Ji,B R Mace,R J Pinnington. A mode-bassed approach to the vibration analysis of coupled long and short-wavelength subsystims[M]. Stockholm,Sweden:Institute of Acoustics.2003.
    [29]L Ji,B R Mace,R J Pinnington. A power mode approach to estimating vibrational power transmitted by multiple sources[J].Journal of Sound and Vibration,2003,265(2):387-399.
    [30]L Ji,B R Mace.R J Pinnington. Estimation of power trasmission to a flexible receiver from a stiff source using a power mode approach[J]. Journal of Sound and Vibration,2003,268(3):525-542.
    [31]N J Lessissoglou.Power transmission in L-shaped plates including flexural and in-plane vibration[J]. Journal of the Acoustic Society of America,2004,115(2):467-474.
    [32]E Savin.Transient transport equations for high-frequency power flow in heterogeneous cylingdrical shells[J].Waves Randon Media,2004,14(3):303.
    [33]E Savin. Radiative transfer theory for high-frequency powers in fluid-saturated,poro-visco-elastic media[J]. Journal of the Acoustical Society America,2005,117(31):1020-1027.
    [34]Y P Xiong, J T Xing. W G Price.Interactive power flow characteristics of an integrated equipment-nonlinear isolator-Traveling flexible ship excited by sea waves[J].Journal of Sound and vibration.2005,287(1-2):245-276.S
    [35]E C N Wester,B R Mace.Wave component analysis of energy flow in complex structures-Part I:A deterministic model[J].Journal of Sound and vibration.2005,285(1-2):209-227.
    [36]E C N Wester,B R Mace.Wave component analysis of energy flow in complex structures-Part Ⅱ:Ensemble statistics[J].Journal of Sound and vibration.2005,285(1-2):229-250.
    [37]E C N Wester.B R Mace.Wave component analysis of energy flow in complex structures-Part III:Two coupled plates[J].Journal of Sound and vibration.2005,285(1-2):251-265.
    [38]S Z Peng.J Pan. Flexural wave propagation and power flow in an axisymmetrical circular plate by the acoustical wave propagator technique[J]. Journal of Sound and Vibration,2006,296(4-5):1013-1027.
    [39]Y H Park.S Y Hong.Vibrational energy folw analysis of corrected flexural waves in timoshenko beam-Part Ⅰ:Theory of an energetic model[J].Shock and Vibration,2006,13(3):137-165.
    [40]Y H Park,S Y Hong.Vibrational energy folw analysis of corrected flexural waves in timoshenko beam-Part Ⅱ:Applicatioon to coupled timoshenko beams[J].Shock and vibration,2006,13(3):167-196.
    [41]Y H Park,S Y Hong.Hybrid power flow analysis using coupling loss factor of SEA for low-damping system-Part Ⅰ:Formulation of 1-D and 2-D cases[J].Journal of Sound and vibration,2007,299(3):484-503.
    [42]Y H Park,S Y Hong. Hybrid power flow analysis using coupling loss factor of SEA for low-damping system-Part Ⅱ:Formulation of 3-D case and hybrid PFFEM[J].Journal of Sound and vibration,2007,299(3):460-483.
    [43]S A Hambric. Power flow and mechanical intensity calculations in structural finite element analysis[J].Journal of vibration,1990,112(4):842-549.
    [44]L Gavric, G Pavic. Finite element method for computation of structural intensity by the normal mode approach[J].Journal of Sound and vibration.1993,164(1):29-43.
    [45]T E Rock,R singh. Structural intensity calculations for compliant plate-beam structures connected by bearings[J]. Journal of Sound and Vibration.1998,211(3):365-386.
    [46]S A Hambric,R P Szwerc.Predictions of structural intensity fields using solid finite elements[J]. Noise Control Engineering Journal,1999,47(6):209-217.
    [47]A M Wilson,L B Josefson. Combined finite element analysis and statistical energy analysis in mechanical intensity calculations[J].AIAA Journal,2000,38(1):123-130.
    [48]K M Ahmida.J R F Arruda. Spectral element-based pridiction of active power flow in timoshenko beams[J]. International Journal of Solids and Structures,2001,38(10-13):1669-1679.
    [49]X D Xu, H P Lee,C Lu, J Y Guo.Streamline representation for structural intensity fields[J].Journal of Sound and vibration,2005,280(1-2):449-454.
    [50]F Wang, H P Lee,C Lu.Relations between struchtural intensity and J-integral[J].Engineering fracture Mechanics,2005,72(8):1197.
    [51]H P Lee, S P Lim, M S Khun.Diversion of energ y flow neat crack tips of a vibrating plate using the structural intensity technique[J].Journal of Sound and vibration,2006,296(3):602-622.
    [52]N K Mandal,S Bisvas. Vibration power flow:Acritical review[J].The Shock and vibration Digest.2005,37(1):3-11.
    [53]赵其昌。振动结构中功率流的测量[J].声学学报。1989,14(4):45-59.
    [54]张小铭,张维衡。周期简支梁的振动功率流[J].振动与冲击。1990,(3):28-34.
    [55]张小铭,张维衡。在任意位置激励时周期简支梁的振动功率流[J].振动工程学报。1990,3(4):75-81.
    [56]Z X M hang,W H Zhang.Reduction of bibrational energy flow in aperiodically supported beam[J].Journal of Sound and Vibration,1991,151(1):1-7.
    [57]李天匀,张小铭。周期简支曲梁的振动波与功率流[J].华中理工大学学报。1995.23(9):112-115
    [58]李伟,仪垂杰,胡选利。梁板结构功率流的导纳法研究[J].西安交通大学学报,1995,29(7):29-35
    [59]仪垂杰,陈天宁。李伟等。.板结构功率流的参数研究[J].应用力学学报,1995,12(4):21-27.
    [60]李天匀,张小铭。有不连续材料层的组合板结构振动功率流研究[J]。声学学报,1997,22(3):274-281.
    [61]徐摹冰。圆柱壳-流场耦合系统的振动波传播与能量流研究[D]。武汉:华中科技大学,1999.
    [62]王敏庆,盛美萍。筋受力激励下加筋板结构振动功率流研究[J].西北工业大学学报,1998,16(2):137-240.
    [63]刘雁梅,簧协清,陈天宁。非阻塞性颗粒阻尼加筋板振动功率流的研究[J]。西安交通大学学报,2001,35(1):61-65.
    [64]严谨。水下复杂圆柱壳振动能量流和声辐射特性研究[D]。武汉:华中科技大学,2006.
    [65]汪国和,吴广明,沈荣瀛。振动控制中的功率流方法研究现状[J]。华中船舶工业学院学报,2003,14(4):17-22.
    [66]王术新,姜哲。振动结构功率流的研究现状及进展[J].现代制造工程,2004,8(1):104-106.
    [67]伍先俊,朱石坚,曹建华。振动能量流的计算方法研究[J].力学进展,2006,36(3):363-372.
    [68]李海飞,王敏庆,张教超.梁上附加集中质量对梁—板耦合系统功率流特性的影响[J]。振动与冲击,Vo1.31 No.12期2012年。
    [69]Dai J, L C S.etc.Investigation of vibration power transmission over a rectangular excitation area using effective point mobility [J],Journal of Sound and Vibration,1999,225(5):831-844
    [70]Bobrovnitskii Y I. Estimating the vibrational energy characteristics of an elastic structure via the input Impedance and Mobility[J],Joural of Sound and Vibration,1998,217(2):351-386]
    [71]Cuschieri J M.Vibration transmission through periodic structures using a mobility power flow approach[J], Joural of Sound and Vibration,1990,143(1):65-74]
    [72]Kim S M,Brennan M J. A Compact Matric formulation Using the Impedance and Mobility Approach for the Analysis of Structural-acoustic Systems[J],Journal of Sound and Vibration,1999,223(1):97-113
    [73]Wang M Q, Sheng M P,Cai S J. The Direct and Indirect Power flows of three Non-conservation Series Coupled Oscillators[J],Journal of Sound and Vibration,1998,212(2):231-251.
    [74]Wslsh S J,White R G,Mobility of a Semi-infinite Beam with Constant Curvature[J], Journal of Sound and Vibration,1999,221(5),887-902,
    [75]Norwood C, Williamson H,Zhao J.Structural Intensity and Surface Mobility Measurements on a Simulated Infinite Plate[C],Proceedinggs of INTRER NOISE,1995,95:673-676
    [76]Norwood C, Williamson H,Zhao J. Surface Mobility of a Circular Contact Area on an Infinite Plate[J], Journal of Sound and Vibration,1997,202(1):95-108.
    [77]钱斌。圆柱壳组合系统振动噪声的有效导纳功率流法研究[D],西安:西北工业大学,2002
    [78]Wohelver J C,Bernhard R J.Mechanical energy folw models of rods and Beams[J], Journal of Sound and Vibration,1992,153(1):1-19.
    [79]Wohelver J C.Vibrational Power Flow Analysis of Rods and Beams Master of Science Thesis(D),Purdue University,1998
    [80]Park Y H,Hong S U,Kil H K.etc. Power flow model and analysis of in-plane waves in finite coupled thin plates[J], Journal of Sound and Vibration,2001,244:651-668.
    [81]Rybak S A. Waves in plate containing random in homogeneities[J],Soviet Physics and Acoustics,1972,17:345-349
    [82]Chlesinger A. Transmission of Elastic Wave From a Cylinder to an Attached Flat Plate[J], Journal of Sound and Vibration,1995,186(5):761-780.
    [83]Bouthier O M. Bernhard R J. Models of spaced-averaged energetic of plates[J],American Institute of Aeronautics and Astronautics Journal,1992,30(3):616-623
    [84]Langley R S,Heron K H.Elastic wabe transmission through plate/beam junctions[J], Journal of Vibration ande Acoustics,1990,143:241-253.
    [85]Bouthier O M,Bernhard R J.Simple modes of the energetics of transversely vibrating plates[J], Journal of Sound and Vibration,1995,182(1):149-166.
    [86]Li W L,Daniels M,Zhou W. Vibrational Power Transmission from a Machine to its Supporting Cylindrical Shell[J], Journal of Sound and Vibration,2002,257(2):283-299.
    [87]Kim S,Singh R. Vibration transmission through an isolator modeled by continuous system theory[J], Journal of Sound and Vibration,2001,248(5):925-953.
    [88]Lee H J,Kim K J.A study of the effects of rotational terms in the power transmissin through vibration isolation system son beam-like structures[J],International Journal of Acoustrics and Viratin,2000,5(3):127-134
    [89]Petersson B.Plunt J. On effective mobilities in the prediction of structure-bore souyn transmission between a source structure and a receiving structure[J], Journal of Sound and Vibration,1982,82(4):517-529.
    [90]Langhe K De,Sas P,Vandepitte D.The use of wave-absorbing elements for the evaluation of transmission characteristics of beam junctions[J], Journal of Vibration and Acoustics,1997,119::293-303.
    [91]钱斌,杨世兴,盛美萍.利用均值导纳法研究圆柱壳组合结构的振动能量比[J],西北工业大学学报,2001,19(4):548-551.]
    [92]盛美萍,王敏庆,孙进才,周庆余。非保守耦合系统的等效内损耗因子[J],声学学报,1997,22(6):555-591.
    [93]盛美萍。复杂耦合系统的统计能量分析及其应用[D],西安:西北工业大学,1997.
    [94]盛美萍,王敏庆,邢文华,钱斌。多支承弹性非保守耦合系统导纳功率流[J],机械科学与技术,2001,20(2):249-251
    [95]盛美萍,王敏庆等。单层隔振系统中弹性基座的振动与声辐射特性[J],机械科学与技术,2000,19:94-96.
    [96]盛美萍,王敏庆,孙进才。多点连接结构振动响应的均值导纳法预测[J],西北工业大学学报,1999,17(2):171-175
    [97]陈晓利,盛美萍,王彦琴。多筋板振动特性的导纳法研究[J],噪声与振动控制,2005,3:9-11.
    [98]颜松,盛美萍,陈晓利。多源激励下浮筏隔振系统导纳功率流研究[J],噪声与振动控制,2006,26(3):26-28.
    [99]王敏庆,盛美萍,任克明,孙进才。三串联非保守耦合振子功率流Ⅰ:理论[J],声学学报1997,22(6):501-508.
    [100]王敏庆,盛美萍,任克明,孙进才。三串联非保守耦合振子功率流Ⅱ:数值分析[J],声学学报1998,23(1):82-87.
    [101]行晓亮,王敏庆,宋代科。弹性基础浮筏的导纳功率流研究[J],机械科学与技术,2005,24(7):761-763
    [102]Lyon R. Statistical Energy Analysis of Dynamical Systems:Theory and Application(D). Cambridge,1975.
    [103]Lyon R H,Dejong R G.Theory and Application of Statistical Energy Analysis[M],Boston:Butterworth Heinemann,1995.
    [104]Belov V D,Rybak S A.Tartakovskii B D.Propagation of vibrational energy in absorbing structures[J],Journalof Soviet Physics Acoustics,1977,23(2):115-119.
    [105]Lase Y.Ichchou M N.Jezequel L.Energy flow analysis of bars and beams:theoretical formulations[J], Journal of Sound and Vibration,1995,192(1):581-305.
    [106]Bouthier O M.Bernhard R J.Simple models of the energy flow in vibrating membranes[J],Journal of Sound and Vibration,1995,182(1):129-147.
    [107]Cuschieri J M,Sun J C.Use of Statistical Energy analysis for Rotating Machinery,Part Ⅰ:Determination of Dissipation and Coupling Loss Factors Using Energy Ratios[J], Journal of Sound and Vibration,1994,170:181-190.
    [108]Coupling Loss Factors between Indirectly Coupled Substructures[j], Journal of Sound and Vibration,1994,170:190-201.
    [109]Cho P,Bernhard R J.Energy flow analysis of coupled beams[J], Journal of Sound and Vibration,1998,211:593-605.
    [110]Lu L K H.Optimum damping selectiong by statistical energy analysis[C],Statistical Energy Analysis,winter Annual Meeting,Boston,1995,9-14
    [111]Cho P E,Energy flow analysis of Coupled Structures(D),West Lafayette:Purdue University,1993
    [112]Vlahopoulos N,Ahao X,Allen T.An approach for evaluating power transfer coefficients for spot welded joints in an energy finite elemeng formulation[J], Journal of Sound and Vibration,1999,220:135-154.
    [113]Shankar K,Keane A J.Vibrational Energy flow analysis Using a Substructure Appoach the Application of Receptance Theory to FEA and SEA[J],Journal of Sound and Vibration,1997,201(4):491-513.
    [114]Shankar K,Keane A J. A Study of the vibrational Energies of two Coupled Beams by Finite Element and Green Function (Receptance)Methods[J], Journal of Sound and Vibration,1995,181(5):801-838.
    [115]Pai M A.Computer Techniques in Power System Analysis[J],Tata Mcgraw Hill Inc,1979,194:120-121
    [116]Shankar K,Keane A J.Energy Flow Predictions in a Structure of rigidly Joined Beams Using receptance Theory[J], Journal of Sound and Vibration,1995,185(5):867-890.
    [117]Park Y H,Hong S Y.Hybrid power flow analysis using coupling loss factor of SEA flow damping system Part Ⅱ:Formulation of 3-D case and hybrid PFFEM[J], Journal of Sound and Vibration,2006,56(3):1010-1016.
    [118]Park Y H,Hong S Y.Hybrid power flow analysis using coupling loss factor SEA for low-damping system-Part I:Formulation of 1-D and 2-D cases[J]. Journal of Sound and Vibration,2007,299:484-503.
    [119]Kim N H,Dong J.Choi K K,Energy flow analysis and design sensitivity of structural problems at high frequencies[J], Journal of Sound and Vibration,2004,269:213-250.
    [120]Sun J C.Lalor N.Richards E J.Power flow and Energy Balance of Non-conservatively Coupled Structures,I:Theory[J], Journal of Sound and Vibration,1987,112(2):321-330.
    [121]Sun J C.Lalor N,Richards E J.Power Flow and Energy Balance of Non-conservatively Coupled Structures,Ⅱ:Experimental Verifiction of Theory[J], Journal of Sound and Vibration,1987,112(2):331-343.
    [122]NiordsonF.Ⅰ., The optimum design of a vibrating beams, Quarterly of Applied Mathematics,1965,23(1),47-53
    [123]E J豪格,JS阿罗拉.实用最优设计.北京:科学出版社,1985
    [124]林家浩.结构动力优化设计发展综述.力学进展,1983,13(4),423-431
    [125]Grandhi R. Structural optimization with frequency constraints are view. Journal AIAA,1993,31(12),2296-2303
    [126]陈建军,车建文.结构动力优化进展述评与展望.力学进展,2001,31(2),181-192
    [127]BendsoeusM P, Kikuchi Noboru. Generating homogenization method. Computer optimal topologies in structural design Methods in Applied and Engineering,71
    [128]冯淼林,吴长春.基于三维均匀化方法的复合材料本构数值模拟.中国科学技术大学学报,2000,(30):692-699
    [129]董纪伟,孙良新等.基于均匀化方法的三维编织复合材料等效弹性性能预测.宇航学报,2005,(26):482-486
    [130]HASSANI B, HINTON E. A review of homogenization and topology optimization Ⅰ-homogenization theory for media with periodic structure. Computers & Structures.1998,69(6):707-717.
    [131]HASSANI B, HINTON E. A review of homogenization and topology optimization Ⅱ - analyticaland numerical solution of homogenization equations. Computers & Structures.1998,69(6):719-738.
    [132]Xie Y M, Steven G P. Evolutionary structural optimization with the 2nd Asian-Pacific Conference on computational Mechanics FEA. Proceedings of Part 1.1993,27-34
    [133]Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization. Computers &Structures.1993,49(5):885-896
    [134]D.Nha Chu, Y.M.Xie, A.Hira, G.P.Steven. On various aspects of evolutionary structural optimization for problems with stiffness constraints. Finite Elements in Analysis and Design,1997,24:197-212
    [135]Chongbin Zhao, G.P.Steven, Y.M.Xie. Effect of initial nondesign domain on optimal topologies of structures during natural frequency optimization. Computers & Structures.1997,62(1):119-131
    [136]Xie Y M, Steven G P. Evolutionary Structural Optimization, Springer,1997
    [137]Xie Y M, Steven G P. Evolutionary structural optimization for dynamic problems Computers & Structures.1996,58(6):1067-1073
    [138]Qing Li, G.P.Steven, O.M. Querin, Y.M.Steven. Stress based optimization of torsional shafts using an evolutionary procedure. International journal of solids and structures.2001,38:5661-5677
    [139]荣见华,姜节胜,胡德文,颜东煌,付俊庆.基于应力及其灵敏度的结构拓扑渐进优化方法.力学学报,2003,35(5):584-590
    [140]彭高华,王国丽.弹性力学基础[M].北京:石油工业出版社,1993.
    [141]吴连元.板壳稳定性理论[M].武汉:华中理工大学出版社,1996
    [142]王俊平,唐寿高,江理平.弹性力学复习及解题指导[M].上海:同济大学出版社,2003.
    [143]吴家龙.弹性力学[M].北京:高等教育出版社,2001.
    [144]江丽平,唐寿高,王俊民.工程弹性力学[M].上海:同济大学出版社,2002.
    [145]钟阳,殷建华.两对边固支另两对边自由弹性矩形薄板理论解.重庆建筑大学学报[J],Vol.27 No.6Dec.2005.
    [146]岳建勇,曲庆璋.两对边固定两对边自由矩形板的精确解.青岛建筑工程学院学报[J].Vo1.21 No22000.
    [147]刘永丰.正交各向异性板受力偶作用时的响应.扬州职业大学学报[J].Vo1.8 No.2 Jun.2004
    [148]刘永丰.在集中力偶作用下薄板弯曲的近似计算.扬州职业大学学报[J].Vo1.3 No.2 Jun.1999.
    [149]刘永丰.在动力偶作用下薄板的动力响应.扬州职业大学学报[J].Vol.6No.1 Mar.2002
    [150]曲庆璋,章权,季求知,等。弹性板理论[M].北京:人民交通出版社,1999.
    [151]刘人怀.板壳力学[M].北京:机械工业出版社,1990.
    [152]徐芝伦.弹性力学[M].4版.北京:高等教育出版社,2006.
    [153]Mace B R.Power Flow between Two Coupled Beams[J],Journal of Sound and Vibration,1992,159(2):305-325.
    [154]Mace B R,Shorter P J.Energy flow models from finite element analysis[J],Journal of Sound and Vibration,2000,233(3):369-389.
    [155]Nefske D J,Sung SH.Power flow finite element analysis of dynamic systems:Basic theory and application to beans[J],Journal of Vibration,Acoustics,Stress and Reliability in Design,1989,111:94-100.
    [156]J.M.Cuschieri,Power Flow as a Complement to SEAand FEA.NASA-CX-180679,Feb.1987.
    [157]J.M.Cuschieri,Estimating the Vibration Level of an L-shaped Beam Using Power Flow Techniques NASA-CR-180680,Mar.1987.
    [158]曹志远,板壳振动理论[M]。中国铁道出版社.
    [159]朱石坚,楼京俊,何其伟等,振动理论与隔振技术。国防工业出版社,2006
    [160]倪振华,振动力学。西安交通大学出版社,第六、七章,1989.
    [161]曹国雄,弹性矩形薄板振动。中国建筑工业出版社,第一、第二章,1983.
    [162]P.M.Morse and K.U,lngard,Theoretical Acoustics,McGraw-Hill,New York,1968,Section7.4
    [163]F,J,Fahy,Sound and Structural Vibration,Transmission and Response.London,Academic Press,1985.
    [164]Fahy F J,Yao D Y.Power Flow between Non-conservatively Coupled Oscillators[J],Sound Vibration,1987,114(I):1-11.
    [165]王听,敷设粘弹性阻尼材料的板和加筋板的声振特性和降噪优化[Master],武汉理工大学,20070501.
    [166]郭亚娟,空调配管系统的减振研究与阻尼优化设计[博士学位论文],上海交通大学博士学位论文,2009.12.
    [167]周红,王开和,许玮等.阻尼技术在窗式空调器减振降噪中的应用.噪声与振动控制,2000,20(6):45-48。
    [168]Bagley R L, Torvik P J. Fractional calculus-a different approach to analysis of viscoelastically damped structures. AIAA.1983,21:741-748。
    [169]Lesieutre, G. A. and Lee, U. A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastic. Journal of Smart Materials and Structures.1996,5:615-627.
    [170]Lesieutre, G. A. and Lee, U. A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastic. Journal of Smart Materials and Structures.1996,5:615-627.
    [171]Parin M, Levraca V, Rogers L. An importance of add-on Damping Increscent for Life Extension of the F-15 Upper Eing Skin, Proceeding of Damping 1991,San Diego, California,1-30。
    [172]Chen YC.Hunag SC.An optimal placement of CLD treatment for vibration suppression of plates.Int J Mech Sci,2002,44:1801-1821.
    [173]金基铎,杨晓东,邹光胜。两端支承输流管道的稳定性和临界流速分析[J].机械工程学报,2006,42(11):131-136
    [174]蒋通,马超勇,张听。弹性条件下车-桥体系的振动分析[J].力学季刊,2004,25(2):256-263
    [175]包日东,闻邦椿。水下悬跨管道动力响应分析[J],振动与冲击,2007,26(8):140-143
    [176]赵冬艳,石慧荣。基于遗传算法的约束阻尼梁减振优化分析[J],力学与实践,2011年8月。
    [177]Cai C,Zheng H,Liu GR.Vibration analysis of a beam with PLCD Patch.Applied Acoustics,2004,65:1057-1076.
    [178]Wang G,Wereley NM.Spectral finite element analysis of sandwich beams with passive constrained layer damping.ASME,2002,124:376-386
    [17刃程耿东,顾元宪。序列二次规划在结构动办优化中的应用[J].振动与冲击,1986,5(1):12-20
    [180]宿新东,官迪华。利用双向渐进结构优化法对结构固有振型的优化[J].机械强度,2004,26(5):542-546.
    [181]Chahande A I,Arora J S.Development of a multiplier method for dynamic response optimization problem[J].Structural Optimizatio,1993,6:69-78
    [182]顾松年,徐斌,荣见华,姜节胜。结构动力学设计优化方法的新进展[J]。机械强度,2005,27(2):45-52.
    [183]陈建军,车建文,崔明涛。结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-192.
    [184]Cassia J H,Schmit L A.Optimal structural designs with dynamic constraints[J].ASCEJ. Struct.Div.,1976,102:2053-2071.
    [185]杨德庆,李应典,戴浪涛。卫星肼瓶系统减振优化设计[J].宇航学报,2005,26(6):804-807.
    [186]孙凌玉。大型复杂结构动态性能自动优化设计的实现[J].农业机械学报,2005,36(12):106-109.
    [187]Ramana Grandhi.Structural optimization with frequency constraints a revieew[J].American Institute of Aeronautics and Astronautics Journal(AIAA Journal),1993,31(12):2296-2303.
    [188]毛为民,曹跃云,朱石坚。船舶动力机械混合隔振系统的优化设计[J].海军工程大学学报,2004,16(6):78-83.
    [189]龚曙光,黄云清编著有限元分析与ANSYS APDL编程及高级应用[M],北京:机械工业出版社,2009.2]
    [190]李伟,罗红波,唐才学。基于Ansys的内置式双减少振镗杆参数优化。组合机床与自动化加工技术[J],No.9 Sep.2011.P43-46.
    [191]王灯,喻道远,舒彪。基于ANSYS的退火台结构优化设计。机械设计与制造[J].2012年4月。P41-43.
    [192]高琛,方宗德,刘琳辉,孔穴圆柱齿轮钻孔参数的优化计算,振动与冲击第30卷第1期
    [193]李海飞,王敏庆,张教超,梁上附加集中质量对梁—板耦合系统功率流特性的影响,振动与冲击,第31卷第12期,Vo1.31 No.122012
    [194]史瑞航,胡永祥,梁鑫光,姚振强,螺旋铣孔装备单元内套筒动态性能分析与优化,组合机床与自动化加工技术,2012年4月,No.4,Apr.2012
    [195]邬钱涌,程文明,赵南,苏军朝,门式起重机动态及灵敏度分析。2012年4月噪声与振动控制.
    [196]王东升,钟继根,周桐,某结构在振动-加速度复合环境下的响应优化,航天器环境工程,第29卷第2期航天器环境工程,2012年4月。
    [197]熊润娥,严根华,水工闸门止水结构动力特性与体型优化,振动、测试与诊断,第31卷第6期,2011年12月。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700