宁南苜蓿草田轮作土壤环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以宁南旱区人工苜蓿草地为研究对象,在2004~2005年连续两年中,对不同生长年限紫花苜蓿草地0~700cm和0~1000cm深层土壤水分状况进行了测定;于2003~2005年期间,对10年生紫花苜蓿与春小麦、谷子和马铃薯进行了为期3年的田间定位草田轮作试验,分析比较了不同轮作方式的作物水肥利用特征、总产量、水分利用效率、降水生产效率、氮素利用效率以及不同草田轮作方式完成后的茬口养分和土壤酶活性差异。研究结论对宁南旱区草地管理及草田轮作具有重要的理论及实践意义,主要研究结果如下:
     1.通过连续两年对宁南山区不同生长年限的苜蓿土壤深层水分进行测定,结果表明:(1)随着苜蓿生长年限的增加,土壤整体上干燥化程度加剧。2004年测定的4、7和12年生苜蓿地0~700cm土层平均含水率分别为5.30%、5.22%和5.01%,2005年测定的3、6和10年生苜蓿地0~800cm平均含水率分别为6.26%、5.60%和5.27%。3年生以后,苜蓿根系已达300cm以下,对300cm~800cm土层水分消耗强烈,而对300cm以上土层水分消耗减缓。(2)根据不同生长年限苜蓿土壤深层水分分布和动态分析,可将土壤剖面分为四个层次:降水蒸发易变层(0~100cm)、降水继续扩散层(100~300cm)、根系耗水干燥层(300~800cm)和深层储水调节层(800cm~1000cm以下)。(3)苜蓿在6年生前,耗水深度和干层厚度逐年迅速增加;6年生时耗水深度和干层厚度均超过1000cm,0~1000cm平均含水率仅5.73%,土壤水分亏缺严重;7~12年生苜蓿生长衰退,耗水深度和干层厚度有所减小,300~700cm干层湿度仅维持在4.0%左右水平,而800~1000cm水分有回升现象。
     2.草田轮作对恢复退化苜蓿草地土壤干层水分有可行性。以各类作物农田水分为对照,连续两年对宁南山区不同生长年限紫花苜蓿深层土壤水分以及10年生紫花苜蓿地耕翻后轮作不同年份作物农田的水分进行了测定,结果表明,随着苜蓿生长年限的增加,干层深度与厚度先增加后减小。3年生苜蓿干层深度为720cm,6年生干层最深可达1000cm以下,10年生干层深度为920cm,3~12年生苜蓿地0~700cm土层基本上均属于土壤干层范围。苜蓿地0~800cm土壤湿度随生长年限增加而降低,2004年测定的4、7和12年生苜蓿地0~700cm土层平均含水率分别为5.30%、5.22%和5.01%;2005年测定的3、6和10年生苜蓿地0~800cm土层湿度分别为6.26%、5.60%和5.27%;而800~1000cm土层湿度在一定年限后有恢复趋势。300cm为苜蓿地降水下渗的最大临界深度,300cm以下土壤干层一旦形成,将长期存在,7~12年生苜蓿300~700cm土层湿度仅维持在4.0%左右。苜蓿地和农田的土壤干层厚度与湿度有较大差异,草田轮作可使苜蓿土壤干层水分基本恢复到农田湿度,而且轮作年份越长,土壤各层次水分恢复效果越好,10年生苜蓿轮作18年后土壤水分基本恢复到农田状态。
     3. 2002~2004年对宁南旱区不同生长年限紫花苜蓿土壤理化性状和紫花苜蓿-谷子轮作进行了试验研究,结果表明,随着紫花苜蓿生长年限延长,土壤生态环境得到改善。紫花苜蓿3~22年生期间,0~100cm土壤容重减小了0.213 g/cm3,孔隙度增加8.03%,饱和持水率增加14.17%,持水能力增强。6~22年生期间,0~60cm土层有机质和氮素平均含量分别增加1.60 g/kg和11.02 mg/kg,pH值降低了0.09,为轮作作物生长创造了良好的土壤环境。紫花苜蓿轮作年份越早,土壤水分恢复效果越好,轮作作物水分利用效率(WUE)越高;反之,紫花苜蓿生长时间过长,轮作后不利于土壤水分的恢复。6、10和22年生紫花苜蓿地轮作谷子收获后,0~200cm土壤水分恢复量分别为63.06 mm、55.22 mm和-42.55mm,轮作谷子产量分别为1725.95 kg/hm2、1485.80 kg/hm2和1560.75 kg/hm2,水分利用效率分别为12.0116 kg/mm.hm2、8.4325 kg/mm.hm2和5.8161 kg/mm.hm2,紫花苜蓿实行草田轮作的最适宜年限为5~6年生。
     4. 2003年~2005年在黄土高原宁南旱区10年生退化苜蓿草地上进行了连续3年不同作物组合方式的轮作试验。结果表明,轮作地0~60cm土层易受降水和地面蒸发影响,轮作作物对土壤水分消耗主要集中在0~120cm土层;在120 cm ~ 200cm土层范围内,随着轮作年限的增加,土壤水分表现出不断恢复趋势。
     5.经过在10年生退化苜蓿草地进行了连续3年的27种草田轮作方式的试验表明,轮作第一年对苜蓿土壤水分的恢复是主要的。轮作作物种类和组合方式不同,对土壤水分消耗的强度及深度不同,导致土壤含水量出现较大差异。在草田轮作的3种轮作作物中,无论在何种降水年型下,马铃薯都表现出较高的产量、水分利用效率和降水生产效率,达到对有限降水资源的充分利用,适应宁南山区的气候条件,是草田轮作的首选作物。春小麦收获后休闲期有利于雨季降水在土壤的下渗,保持了农地水分的平衡。所以,苜蓿翻耕后轮作第一年以种植马铃薯为宜,当土壤水分过耗时种植春小麦可利用收获后的休闲期集纳雨季降水,以促进农田水分平衡。
     6.苜蓿草地耕翻轮作后,土壤有机质含量不断下降,尤其高产作物连作导致有机质含量下降幅度最大;氮素受作物产量和土壤水分的影响变幅较大;轮作可提高磷的有效性,土壤水分也影响作物对磷素的吸收,马铃薯对磷素需求量较大;轮作后pH值先升高后降低,低于苜蓿草地,因此草田轮作可降低土壤盐碱化程度。
     7.不同轮作方式下的第三年春小麦产量及土壤养分、pH值、酶活性各指标间差异性达到显著水平。0~60cm土层有机质、全氮、碱解氮和速效钾平均含量均下降,降幅分别为0.05~2.24 g/kg、0.019~0.325 g/kg、0.118~12.280mg/kg和8.87~166.88 mg/kg,pH值下降0.03~0.31。前一、二年轮作作物对水肥料的消耗有叠加效应,且随耕作年限递减。轮作第一年作物对养分的消耗是主要的,而且作物种类不同,消耗量不同。第一年为春小麦的轮作方式对土壤氮素和磷素消耗最少,为谷子时次之,为马铃薯时最多。谷子是喜钾作物,前茬有谷子参与时对土壤速效钾消耗最多,有马铃薯时次之,有春小麦时最少。轮作方式中马铃薯和谷子产量高,耗水量大,导致土壤pH值保持较高水平。作物连作导致土壤脲酶活性降幅较大,马铃薯连作使碱性磷酸酶活性降低,禾本科作物连作的土壤蔗糖酶活性较高。
     8. 10年生苜蓿草地翻耕后轮作的马铃薯-马铃薯-春小麦(PPW)方式为最佳的轮作模式,能够充分利用有限的降水资源。轮作结束后,土壤水分恢复效果较好,0~200cm土壤含水量、作物总产量、水分利用效率、降水生产效率和氮素利用效率均较高,分别为254.58mm、5214.5 kg/hm~2、9.3786 kg/hm~2·mm~(-1)、6.8711 kg/hm~2·mm~(-1)和19.612 kg/kg.hm~(-2),与其它轮作模式间差异达显著或极显著水平。
This paper takes artificial alfalfa grassland in The arid area of southern Ningxia as object of study. During 2004~2005 year, the soil moisture status of different year old alfalfas grasslands are mensurated in soil layer with 0~700 cm and 0~1000 cm . And during 2003 to 2005, with the 10-year-old alfalfa grassland as previous stubble and take spring wheat, millet and potato as rotation grains, a three-year alfalfa-grain rotation orientation experiment has been carried out in HaiYuan, south Ningxia. The differences of 27 kinds of rotation patterns have been analyzed and compared in crops water and nutrition use characteristic, crops total yield, water use efficiency(WUE), precipitation productive efficiency, nitrogen use efficiency(NUE), and soil nutrition and enzyme activety in the crop rotation end. Research conclusion has important theory and practice significance for grassland management and alfalfa-grain rotation in arid area of southern Ningxia .The main results of the study are as followings:
     1. Deep soil profile moisture of different growth age alfalfa fields has been measured during successive 2 years (2004 and 2005 years) in southern Ningxia dry area. Results indicate: With the increasing of alfalfa’s growth age, soil desiccation degrees intensify in whole. Average contain moisture rates in 0~700cm soil layer of 4,7,12 growth age alfalfa fields, which has measured in 2004, is in turn 5.30%、5.22% and 5.01%; And those in 0~800cm depth of 3,6,10 growth age alfalfa fields, which has measured in 2005, is in turn 6.26%、5.60% and 5.27%. After 3 growth year, alfalfa taproot has reached under 300cm depth. So soil moisture of 300~800cm depth be consumed in intensity and 0~300cm soil moisture increase than before. According to moisture distribution and dynamic characteristics analysis on deeper soil profile of different growth age alfalfa fields, the soil profile be divided into four layers: Soil layer that moisture easy to change by precipitation and evaporation(0~100cm), Soil layer of precipitation continue to seep (100 to 300cm),Dry soil layer that water exhausted by alfalfa root system (300cm to 800cm) and layer regulated by water under deep soil that stored up(800~below 1000cm). Before 6 growth age, alfalfa’s soil moisture consumption depth and thickness are increasing by each year quickly. And in 6 growth age, both exceed 1000cm depth, and contain water in soil severely decrease, which 0~1000cm soil layer average moisture is only 5.73%. Alfalfa growth decline during its 7~12 growth age, soil moisture’s consumption depth and thickness are decreasing slightly, which contain moisture of 300~700cm dry soil layer only maintain 4% level, and those of 800~1000cm depth layer soil moisture has increase .
     2. Alfalfa-grain rotation has the feasibility in restores soil moisture of the degenerated alfalfa’s dry layer soil. In two consecutive years, the study measured the soil moisture content of farmland on which alfalfa had grown for different periods and the soil water content of farmland on which alfalfa had grown for ten years and then rotated with other crops in different years and then compared with the soil water content of those in different croplands. The study indicated that while alfalfa growth was prolonged the depth and thickness of the soil dry layer first increased and then declined. The depth of soil dry layer was 720 cm in the farmland with alfalfa growing for three years, at most 1000 cm in the farmland with alfalfa growing for six years , and 920 cm in the farmland with alfalfa growing for ten years and soil dry layer spanned from zero to nearly 700 cm soil in the farmlands with alfalfa growing for 3~12 years. In alfalfa farmlands, the average moisture content declined in 0~800 cm soil as the growth of alfalfa was prolonged. In 2004, the average soil moisture content was measured to be 5.30%, 5.22% and 5.01% in 0~700 cm soil in the farmlands with alfalfa growing for 4, 7 and 12 years respectively. In 2005, the soil moisture was measured to be 6.26%,5.60% and 5.27% in 0-800 cm soil in farmlands with alfalfa growing for 3, 6 and 10 years respectively. But the soil moisture tended to rebound in 800~1000 cm after alfalfa grew for a certain period. A soil depth of 300 cm is the maximum depth to which the rainwater could infiltrate. Thus the soil dry layer, tended to stay permanently once it formed in soil below 300 cm deep. The soil moisture remained only 4.0% in 300~700 cm soil in the farmlands with alfalfa growing for 7~12 years. The thickness and moisture content of the soil dry layer differed greatly between alfalfa farmland and cropland, but alfalfa-crop rotation made the soil moisture of the soil dry layer recover substantially worse than those of the croplands and this effect was intensified in different soil layers as the rotation was prolonged. Furthermore, the 18-year alfalfa-crop rotation made the farmland with alfalfa growing for 18 years recover its soil moisture content to a level similar to that of cropland.
     3. It is studied that soil physical and chemical properties of different year old alfalfas and alfalfa-millet crop rotation in Arid Region of Southern Ningxia during from 2002 to 2004 year. The results indicated that with the increasing of alfalfa growth year, soil ecological environment be improved. Alfalfa was growing during from 3 to 22 years old, soil bulk density reduced 0.213 g/cm3, soil porosity added 8.03%, and soil hold water saturation ratio increased 14.17%, so soil hold capacity was strengthened. During from 6 to 22 years old of alfalfa, soil organic matte and nitrogen content in 0~60cm depth increased 1.60 g/kg and 11.02 mg/kg respectively. And pH value felt for 0.09, which supply better soil growing environment for rotation crops. The more ahead that alfalfa rotation year is, the better effect of soil moisture restoration is and the higher Water Use Effect of rotation crop is. When millets be harvested in farmlands after 6,10 and 22 years old alfalfa, which soil water restoration content in 0~200cm depth were 63.06 mm、55.22 mm and -42.55 mm, respectively. Millet yields that alfalfa-grain crop rotation , after 6,10 and 22 years old alfalfa ,were 1725.95 kg/hm2、1485.80 kg/hm2 and 1560.75 kg/hm2, and their WUE were 12.0116kg/mm.hm2、8.4325kg/mm.hm2 and 5.8161kg/mm.hm2, respectively. The alfalfa optimum growth year in grass-grain rotation is 5~6 year old.
     4. Experiment has been carried out that three kinds of crops including spring wheat, potato and millet are rotated on the 10-year-old degenerate alfalfa grassland in the drought areas of southern Ningxia on the loess plateau during 2003~2005. Results indicate, in alfalfa-crop rotation farmland, 0~60cm soil layer is apt to be influenced by precipitation and ground evaporation, the rotation crop mainly consumes water in 0-120cm soil layer; Within the range of 120 cm - 200cm soil layer, with the increasing of rotation year, the soil moisture show that trend is resuming constantly.
     5. The rotation experiments on the 10-year-old degenerated alfalfa grassland, which carried out for 3 years and included 27 kinds of alfalfa-crop rotation patterns, indicate that is mainly the first year rotation that crops restore the alfalfa soil moisture. The rotation grains’type and combination method are different, so causes that the soil moisture consumption's intensity and the depth are different, and causes the soil moisture content to have the big difference. Regardless of under what kind of precipitation year, potato has much higher yields, water use efficiency and precipitation production efficiency than other two rotation crops, which make full of the limited precipitation resources and adapt climatic conditions of south Ningxia, so is first choice crop of alfalfa-grain rotation. After spring wheat harvest, the fallow period was advantageous in the rainy season precipitation infiltrates in soil, maintained farmland moisture content balanced. It suggest that, after alfalfa ploughing, the crop rotation first year should plant potato, and when soil moisture consuming too much, should rotate spring wheat to save water in growing period and convergence rainwaterl down the depth soil layer during the fallow period, and promotes the farmland water balance.
     6. After the alfalfa grassland be plowed and rotated by the crops, the soil organic matter content drops unceasingly, especially the high-yield crops plant in succession causes to drop much quickly; The nitrogen is greatly influenced by the crop output and soil moisture. The crop rotation may enhance the phosphorus validity. The soil moisture also affects the crops absorption for the phosphorus element. The potato demand the phosphorus element is much. After the crop rotation, the pH value begin to increase and then decrease, ultimately is lower than those of the original alfalfa grassland, therefore,the alfalfa-crop rotation may reduce the salting of soil degree.
     7. There are significant differences at above indexes of the third year rotation spring wheat of 9 kinds of alfalfa-grain rotation patterns. Organic matter、Tot. N、Alk.-hydr.N、Avai.K average contents and pH values of 0~60cm soil layers all decreased, which breadths is 0.05~2.24 g/kg、0.019~0.325 g/kg、0.118~12.280mg/kg、8.87~166.88 mg/kg and 0.03~0.31, respectively. It has cumulation effect that No.1 and No.2 year rotation grains absorb soil water and nutrients,which decrease by rotation year adds. It is dominating that rotation crops consume soil nutrient at the first rotation year and consumption quantity was different with crop species. When the first rotation crop is spring wheat, consumption of this rotation pattern’s soil N and P is the least of all, it is second when it is millet, and it is the most when it is potato. As millet favor to Avai.K, soil Avai.K was use greatly when former stubble grains was millet, it is more little than millet when former stubble grains was potato, and it is the least when spring wheat. Soil organic matter and Avai.P decrease greatly when those three grains rotate with free arrange in groups. In all rotation patterns, potato and millet use greatly soil water than spring wheat, so it leads to soil keep high pH value. In the alfalfa-grain rotation patterns, grain succession pattern induce to soil urease activity decline, which breath is much more than others. Potato succession pattern lead to soil Alkaline Phosphatase activity fall, soil invertase activity of crop succession pattern is more high than others.
     8.“10 years old alfalfa-Potato- Potato-Spring wheat”is optimal rotation pattern that soil restoring-water effects is better than other patterns and take full advantage of limit rainwater resources. Its 0~200 cm depth soil moisture, crops’total yields, WUE,Precipitation Productive Efficiency and NUE are higher than others, which are in turn 254.58mm、5214.5 kg/hm2、9.3786 kg/hm2·mm-1、6.8711kg/hm2·mm-1and 19.612kg/kg.hm-2. and has significantly differences(P< 0.05 or P< 0.01)between those of other patterns respectively.
引文
[1] 罗其友,姜文来等.旱地农业决策基础研究][M]. 北京:气象出版社,1999: 113~142
    [2] 张明恢 一些国家的旱地农业和旱作技术[J]. 江苏农业科技,2000,16(3):45
    [3] 赵松龄. 集水农业引论. 西安:陕西科技出版社,1996.
    [4] 马 强 , 宇 万 太 , 沈 善 敏 等 . 旱 地 农 田 水 肥 效 应 研 究 进 展 . 应 用 生 态 学报 2007 18 (03): 665~673
    [5] 李凤民,王 静,赵松龄. 半干旱黄土高原集水高效旱地农业的发展. 生态学报,1999,19 (2) :259~264
    [6] 山仑,孙纪斌,刘忠民. 宁南山区主要粮食作物生产力和水分利用的研究. 中国农业科学.1988,21(2):9~16.
    [7] 李世清,李生秀. 水肥配合对玉米产量和肥料效果的影响.干旱地区农业研究.1994,12(1):47~53.
    [8] Rhoads FM. Mansell RS. Hammond LC. 1978. Influence of water and fertilizer management on yield and water input efficiency of corn. Agronomy Journal, 70. 305–308.
    [9] Mengel K, Kirby EA. 1987. Principles of Plant Nutrition. Bern: International Potash Institute: 25–112
    [10] Bremner JM. 1983. Nitrogen availability indices//Black CA, ed. Methods of Soil Analysis. Part2: Chemical and Microbiological Properties. Madison, Wisconsin: American Society of Agronomy: 1324–1345.
    [11] Campbell CA, Paw EA. 1978. Effects of fertilizer N and Soil moisture on mineralization, N recovery and A-values under spring wheat grown in small lysimeters. Canadian Journal of Soil Science, 58: 39–51
    [12] 何丙辉,廖纯艳,张小林,张凡著.长江流域水土保持生态修复的实践与发展.化学工业出版社. 北京. 2006.
    [13] 程荣香,张瑞强. 发展节水灌溉是我国干旱半干旱草原区人工草地建设的必然举措. 草业科学,2000 ,17 (2) :53~56.
    [14] 王 俊,徐进章.半干旱地区发展集水型生态农业模式研究[J].中国生态农业学报,2005,13(4):207~209.
    [15] 孙建华,王彦荣. 国内主要苜蓿品种产量品质及多样性研究. 应用生态学报,2004,15(5) :803~ 808.
    [16] 王无怠. 草田轮作的实践作用[J]. 草业科学,1988, 5 (1): l~3.
    [17] 王无怠. 草田轮作新进展[J]. 草业科学, 1989,6(4):20~24.
    [18] 山仑,刘忠民,辛业全等. 宁南山区草田轮作研究 Ⅰ不同轮作方式的生产力及效益[J]. 水土保持学报, 1992,6(4):60~68.
    [19] 李凤民,徐进章,孙国钧.半干旱黄土高原退化生态系统的修复与生态农业发展[J].生态学报, 2003, 23(9): 1901~1 909.
    [20] 朱邦长. 我国热带亚热带地区草地农业的某些生态问题[J]. 四川草原, 1988 2):l~6.
    [21] 任继周. 草地农业生态学[M].北京:中国农业出版社, 1995.
    [22] 刘成龙,王静,郭亚男. 草田轮作粮食增产效果分析. 内蒙古农业科技2007(6):58.
    [23] Hoyt P.B.,Leitch R.H. Effects of forage legume species on soil moisture, nitrogen and yields of succeeding barley crops .Can,J, Soil Sci .,1983,63:125–136.
    [24] Kroontje W., Kehr W.R. Legume top and root yields in the year of seeding and subsequent barley yields. Agron.J.,1956,48:127–131
    [25] 耿华珠, 吴永敷, 曹致中. 中国苜蓿[M ]. 北京: 中国农业出版社, 1995. 25~58.
    [26] 李福岭,鲁北滨海地区三县苜蓿引种、推广 草田轮作初报[J]. 草业科学,1993,10(1):30~34
    [27] 谭超夏,李继云. 晋南的苜蓿栽培与轮作[J].农业学报,1957,8(3):314~327.
    [28] Badaruddin M.,Meyer D.W. Forage legume effects on soil nitrogen and grain yield, and nitrogen of wheat .Agron.J.,1989,81:419–424.
    [29] Tucker B.B., Cox M.B., Eck H.V. Effects of rotation, tillage methods ,and N fertilization on winter wheat production,Agron,J.,1971,63:699–702.
    [30] Adatns W.E., Morris H.D., Darson R.N, Effect of cropping systems and nitrogen levels on corn yields in the southern piernount region, J., 1970,62:655–659.
    [31] Bolton E.E.,Dirks V.A.,Aylesworth J.W. Some effects of alfalfa ,fertilizer, and lime on corn yield in rotations on clay soil during a range of seasonal moisture condition, Can,J.Soil Sci.,1959,56:21–25.
    [32] Fribourg H.A.,Bartholornew W.V. Availability of nitrogen from crop residues during the first and second seasons after application .Soil Sci. Soc, Am.Proc.,1956,20:505–508.
    [33] Hesterman OB,Sheaffer CC,Barnes DK,et al.1986.Alfalfa dry matter and nitrogen production,and fertilizer nitrogen response in legume-corn rotations. Agron J, 78: 19–23.
    [34] Stickler F.D.,Shrader W.D.,Johnson I.J.Comparative value of legum and fertilizer nitrogen for corn production .Agron.J.,1959,51:157–160.
    [35] Triplett G.B.,Haghiri Jr.F.,Van Doren D.M. Plowing effect on corn yield response to N following Alfalfa. Agron.J., 1979, 71:801–803.
    [36] Caporali F., Onris A. Validity of rotation as an effective agroecological principle for a sustainable agriculture. Agriculture, Ecosystem and Environment ,1992,41:101–113
    [37] 程云波. 怎样提高土壤肥力[J]. 农家参谋. 2002(2):36.
    [38] 袁宝财,达海莉,王琛.宁夏经济的新亮点——苜蓿[J]. 内蒙古畜牧科学,2001, 22(2):33~35.
    [39] 杨改河编著. 旱区农业理论与实践[M], 北京:世界图书出版社, 1993:166~167.
    [40] 王庆锁,张玉发,苏加楷. 苜蓿-作物轮作研究. 生态农业研究,1999,7(3):35~38.
    [41] 西北农业大学,固原地区农科所. 固原半干旱旱作农区农业结构改革及效益研究[R],1986.
    [42] 吕胜利等,陇东,黄土高原“草地农业生态户研究”初报[J].中国草原与牧草,1986,3(1):42~45.
    [43] 高农. 优质牧草在畜牧业生产中的作用[J].河南畜牧兽医, 2002,23(3):42~45
    [44] Tawainga Katsvairo, et al. Tillage and Rotation Effects on Soil Physical Characteristics. Agronomy Journal, 2002(94):299–304.
    [45] Chan K Y, Heenan D P. Effect of tillage and stubble management on soil water store,crop growth and yield in a wheat-lupine rotation in southern NSW Aust. J. Agric. Res., 1996(47):479–488.
    [46] 王沛. 玉米等作物茬口效应综述.国外农学— 杂粮作物 1999,19(4):34~35
    [47] 王晓凌,陈明灿,李凤民,等. 黄土高原土壤干层水分恢复与作物产量响应[J]. 水土保持研究,2007,14(3):1~4.
    [48] Barber S.A. The influence of alfalfa, brome grass, and corn on soil aggregation and crop yield ,Soil Sic .Am.Proc.,1959,23:258–259.
    [49] Bruulsema T.W., Christie B.R. Nitrogen contribution to succeeding corn from alfalfa and red clover .Agron.J., 1987, 79:96–100.
    [50] Hoyt P.B.,Hennig A.M.F. Effects of alfalfa and grasses on yield of subsequent wheat crops and some chemical properties of a gray wooded soil .Can.J.Soil Sci.,1971,51:177–183
    [51] Hobbs J.A. Yields and protein contents of crops in various rotations.Agron.J.,1987,63:832–836.
    [52] 容维中,吴国芝. 旱农区草田轮作研究报告[J]. 甘肃畜牧兽医,1997, 133(2):14~17.
    [53] 杨珍奇,兰志先. 紫花苜蓿在陇东农牧业生产中的地位[J].甘肃农业科技,1984(2):42~45
    [54] 唐 亚 陈克明 谢嘉穗 等. 论固氮植物在山区农业持续发展中的应用. 地理研究.1999,18(1):73~78
    [55] Anthony MW, Graeme JB,et al. 2000. Managing legume leys,residues and fertilizers to enhance the sustainability of wheat yields and nutrient balance 1.The effects on wheat yields and nutrient balances. Soil Till Res,54:63–75
    [56] Anthony MW, Graeme JB,et al. 2000. Managing legume leys, residues and fertilizers to enhance the sustainability of wheat yields and nutrient balance 2.Soil physical fertility and carbon. Soil Till Res,54:77–89
    [57] Benediktas J, Genovaite J.2002.Erosion-preventive crop rotations for landscape ecological stability in upland regions of Lithuania. Agric Ecosyst Environ,95:1–14
    [58] 党廷辉.黄土旱塬区轮作培肥试验研究[J]. 水土保持学报.1998.4(3):44~47.
    [59] Galantini JA,Landriscini MR,Iglesias JO,et al.2000.The effects of crop rotation and fertilization on wheat productivity in the Pam-pean semiarid region of Argentina 2. Nutrient balance,yield and grain quality.Soil Till Res,53:137–144
    [60] Holford ICR, Crocker GJ.1997.A comparison of chickpeas and pasture legumes for sustaining yiels and nitrogen status of subsequent wheat. Aust J Agric Res, 48:305–315
    [61] Holford ICR, Schweitzer BE, Crocker GJ.1998.Comparative effects of subterranean clover, medic, lucerne, and chickpea in wheat rotations, on nitrogen, organic carbon, and moisture in two contrasting soils. Aust J Soil Res,36:57–72
    [62] Karunatilake UP,van Es HM.2002.Rainfall and tillage effects on soil structure after alfalfa conversion to maize on a clay loam soil in New York.Soil Till Res,67:135–146
    [63] Latta RA,Cocks PS,Matthews C.2002.Lucerne pastures to sustain agricultural production in southwestern Australia.Agric Water Man,53:99–109
    [64] Li FR,Gao CY,Zhao HL,et al.2002.Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China.Agric E-cosys Environ,91:101–111.
    [65] MaCallum MH,Peoples MB,Connor DJ.2000.Contributions of nitrogen by field pea(Pisum sativumL.) in a continuous cropping sequence compared with a Lucerne(Medicago sativaL.)-based pasture ley in the Victorian Wimmera.Aust J Agric Res,51:13–22
    [66] Miglierina AM,I glesias JO, Landriscini MR, et al.2000.The effects of crop rotation and fertilization on wheat productivity in the Pam pean semiarid region of Argentina 1.Soil physicaland chemical properties. Soil Till Res, 53:129–135
    [67] Yang X M, Kay BD.2001.Rotation and tillage effects on soil organic carbon sequestration in a typic Hapludalf in Southern Ontario.Soil Till Res, 59:107–114
    [68] 石凤翎,王明玖,王建光编著. 豆科牧草栽培[M],北京:中国林业出版社, 2003:120.
    [69] Fribourg H.A., Johnson I.J. Dry matter and nitrogen yields of legume tops and roots in fall of the seeding years. Agron. J., 1955, 47: 73–77.
    [70] Stickler F.D., Shrader W.D., Johnson I.J.Comparative value of legum and fertilizer nitrogen for corn production. Agron.J., 1959, 51:157–160.
    [71] 卞东娴,孟昭仪. 苜蓿和沙打旺增氮改土的生态效益[A]. 中国草地科学研究与发展战略-中国草原学会第三届代表大会暨第五次全国学术会议论文选编[M] 北京:中国科学技术出版社.1991.
    [72] 刘自学. 中国草业的现状与展望[J]. 草业科学, 2002,19(1):23~25
    [73] 荆新海,田魁祥.河北省黑龙港地区苜蓿发展与水分生态系统分析[J]. 农业现代化研究,1992,13(4):218~222
    [74] 侯向阳,姚军,赵昕,等.西部大开发退耕还草的成功经验与措施[EB/OL].中国畜禽牧草种质资源信息网, 2005.
    [75] C.A.Campbell等著,王经武译. 长期不施肥生产下作物对土地肥力的相对反应[J].Canadian J.of Plant Science,1996,Vol.76:401~406 麦类作物, 1997,17(5):36~39.
    [76] 王鑫. 紫花苜蓿在现代农业中的作用[J]. 甘肃农业,2003,206(9):20
    [77] 张春霞,郝明德,魏孝荣等.黑垆土长期轮作培肥土壤有机质氧化稳定性的研究[J]. 土壤肥料,2004(3):10~13
    [78] 党廷辉, 高长青, 彭琳等.长武旱源轮作与肥料长期定位试验[J]. 水土保持研究,2003,10(1):61~65
    [79] Hesterman O.B.et al. Nitrogen utilization of fertilizer and legume residuals in legume-corn rotation. Agron.J., 1987, 79: 726–731
    [80] 王旭东,张一平,吕家珑.不同施肥条件对土壤有机及胡敏酸特性的影响[J].中国农业科学,2000,33(2):75~81.
    [81] 张爱君,张明普. 长期施用有机和无机肥料对黄潮土有机质含量及组成的影响[J].江苏农业科学,2001,22(3):30~33.
    [82] 鲁鸿佩,孙爱华. 草田轮作对粮食作物的增产效应[J]. 草业科学,2003 20(4):10~13.
    [83] 彭琳,彭样林. 土粪和粪肥的增产效果及其施用条件[J]. 土壤肥料,1981,(6):29~30
    [84] 杨平,彭琳,戴鸣钧. 渭北旱源小麦连作中肥料对土壤养分的影响[A].土壤肥力研究进展[M],北京:中国科学技术出版社,1991,46~49.
    [85] 刘晓宏,郝明德.长期种植苜蓿对土壤氮素营养的作用[J].中国生态农业学报,2001,9(2):82~85.
    [86] 王 俊,李凤民,贾 宇 等. 半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化[J]. 应用生态学报,2005, 16(3)∶439~444.
    [87] 马艳梅. 长期轮作连作对不同作物土壤磷组分的影响. 中国农学通报.2006,22(7):355~358.
    [88] 王葆芳,贾宝全,杨晓晖 等. 干旱区土地利用方式对沙漠化土地恢复能力的评价. 生态学报.2002,22(12):2030~2035.
    [89] 孙 波,赵其国.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标.土壤,1997 (5):225~234
    [90] 任天志.持续农业中的土壤生物指标研究.中国农业科学,2000,33(1):68~75
    [91] 沈善敏.长期土壤肥力试验的科学价值.植物营养与肥料学报,1995,1(11):1~9
    [92] 高 瑞,吕家珑. 长期定位施肥土壤酶活性及其肥力变化研究. 中国生态农业学报.2005,13(1):143~145
    [93] 樊军; 郝明德.黄土高原旱地轮作与施肥长期定位试验研究 Ⅰ.长期轮作与施肥对土壤酶活性的影响. 植物营养与肥料学报.2003, 9(1):9~13
    [94] 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义. 土壤, 1997 (2) : 61~69.
    [95] 陈国潮,何振立,黄昌勇. 红壤微生物生物量碳周转及其研究. 土壤学报, 2002,39 (2) :152~160.
    [96] 于贵瑞 连作与轮作体系中土壤微生物的动态分析[J] 辽宁农业科学, 1989,3.
    [97] 张春霞,郝明德,魏孝荣 等. 不同农田生态系统土壤微生物生物量碳的变化研究. 中国生态农业学报2006,14(1):81~83.
    [98] 马效国, 樊丽琴, 陆妮 等.不同土地利用方式对苜蓿茬地土壤微生物生物量碳、氮的影响[J]. 草业科学.2005,22(10):13~17.
    [99] 来璐,郝明德,王永功.黄土高原旱地长期轮作与施肥土壤微生物量磷的变化.植物营养与肥料学报.2004,10(5):546~549
    [100] 王俊鹏,蒋 骏,韩清芳等. 宁南半干旱地区春小麦农田微集水种植技术研究. 干旱地区农业研究,1999 ,17 (2) :8~13.
    [101] Benediktas J ankauskas , Genovaite Jankauskiene. Erosion-preventive crop rotations for landscape ecological stability in upland regions of Lithuania. Agriculture ,Ecosystems and Environment , 2002 ,1986∶1–14
    [102] 李琪. 陇东紫花苜蓿现状[J ]. 草地科学, 1992, 9 (5) : 7~11.
    [103] 成红,杜峰,赵克学等. 宁南山区苜蓿生产现状与产草量提高途径[J]. 草地学报, 2002,10(3):231~236.
    [104] 王庆锁, 张玉发, 苏加楷等.苜蓿-作物轮作研究[J]. 生态农业研究,1999,7(3):35~38
    [105] 郭清毅, 黄高宝, Guangdi Li. 保护性耕作对旱地麦- 豆双序列轮作农田土壤水分及利用效率的影响. 水土保持学报.2005,19(3):165~169.
    [106] 陈文庆,李 鹏. 黄土区农业种植模式的选择及优化[J]. 水土保持研究,2003,10(1):115~117.
    [107] 马月存,秦红灵,高旺盛,等.农牧交错带不同耕作方式土壤水分动态变化特征. 生态学报,2007,(6):2523~2530.
    [108] 辛 平,黄高宝,张国盛,等. 耕作方式对表层土壤饱和导水率及紧实度的影响.2005,40(2):203~207.
    [109] Arvidsson J. Influence of soil texture an organic matter content on bulk density, air content, compression index and crop yield in field and laboratory compression experiments[J]. Soil Till Res, 1998, 49(1-2): 159–170.
    [110] 卢宗凡,等.中国黄土高原生态农业[M].西安:陕西科学技术出版社,1997.
    [111] 张立峰,刘玉华.论作物生产系统的结构与功能[A].中国耕作制度研究会.面向21世纪的中国农作制[M].石家庄:河北科学技术出版社,1998: 355~388.
    [112] 张立峰,边秀举,刘玉华.冀北高塬作物耗水特性与倒茬效应研究[J].中国农业科学, 2001,34(1):1~4
    [113] 郝明德, 张春霞, 魏孝荣 等. 黄土高原地区施肥对苜蓿生产力的影响. 草地学报.2004,12(3):195~198
    [114] 杨文耀. 阴山丘陵旱农区豆科牧草在轮作周期中的用养培肥效应[J]. 内蒙古草业.,1994 (3):30~33
    [115] 刘忠民,山仑. 宁南半干旱山区农田土壤水分蒸发损失及其对策研究[J]. 宁夏农林科技,1993,(2):47~50
    [116] 吴素琴,杨瑞全. 草地农业在宁夏农业种植结构调整中的切人点[J]. 宁夏农学院学报, 2001,22(4):22~25
    [117] 田秀平, 薛菁芳, 韩晓日. 长期轮作和连作对白浆土中氮素的影响. 水土保持学报.2007.27(1):185~187.
    [118] 张桂兰, 宝德俊, 王英, 等.长期施用化肥对作物产量和土壤性质的影响[J ]1 土壤通报, 1999, 30 (2) : 64~67.
    [119] 钱 成,蔡晓布,张永青. 旱地轮作对西藏中部土壤恢复过程的影响[J]. 水土保持学报.2005,19(4):43~46
    [120] 赵其国.现代土壤学与农业持续发展[J].土壤学报,1996,33(1):1~11.
    [121] 章明奎.退化红壤肥力恢复性能与土壤性质的关系[J].水土保持学报,2000,14(3):131~136.
    [122] 孙波 , 王兴祥 , 张桃林 . 丘陵红壤耕作利用过程中土壤肥力的演变和预测 [J]. 土壤学报,2002,39(6):836~843.
    [123] 邹应斌. 国外作物免耕栽培的研究与应用[J]. 作物研究.2004,3:127~132.
    [124] [日]大久保隆弘著, 巴恒修, 张清沔译. 作物轮作技术与理论[M].北京:农业出版社,1982
    [125] 魏 军,曹仲华, 罗创国. 草田轮作在发展西藏生态农业中的作用及建议. 黑龙江畜牧兽医.2007,9:98~100
    [126] 邵华, 彭少麟. 农业生态系统中的化感作用[J]. 中国生态农业学报, 2002,10(3):80~84.
    [127] 於凤安. 利用植物化感作用灭螺效果的研究[J]. 应用生态学报, 1996,7(4):407~410.
    [128] Miller D.A. Allelo pathy in forage crop systems. Agron.J.,1996,88:854–859
    [129] Donald C M. The progress of Australian agriculture and the role of pasture in environmental change [J]. Australian Journal of Science, 1989, 27: 187–198.
    [130] 山仑, 李玉山, 许 辛, 等. 澳大利亚旱地农业考察情况和几点建议[J]. 水土保持通报, 1984, (3) : 53~56.
    [131] 朱显灵. 澳大利亚的持续农业[J ]. 世界农业, 1993, (11) : 32~33.
    [132] 成广仁. 国外某些干旱半干旱地区发展农业的道路[J ]. 世界农业, 1984, (2) : 29~30.
    [133] 钮薄.北方旱农地区农业生态类型及综合开发途径[J].干旱地区农业研究,1990(1):1~11.
    [134] 惠富平,牛文智著. 中国农书概说[M]. 西安:西安地图出版社 1999:67~70
    [135] 杨青川,王堃主编. 牧草的生产与利用[J]. 北京:化学工业出版社, 2002:324~331
    [136] 王勇,刘学义. 苜蓿产业发展前景[J]. 内蒙古农业科技,2004,(1):45~46.
    [137] 张卫建,谭淑豪,江海东.南方农区草业在中国农业持续发展中的战略地位[J].草业学报,2001,10(2):1~6.
    [138] 于贵瑞 . 大豆、向日葵等作物连作障碍与轮作效应机理的研究初报 [J]. 生态学杂志,1988,7(2):1~8.
    [139] 杨东云.不同连作、轮作、复种下土壤腐殖质性质的研究[J].土壤学报,1988,25(4):405~409.
    [140] 黄鹏,张恩和,柴强.施氮对新灌区不同间套种植模式产量及茬口养分特性的影响[J].草业学报,2001,10(1):86~91.
    [141] 祝廷成,王昱生.实行草田轮作,建立草地生态工程[N].中国科技报,1989-6-2.
    [142] 王宁, 谢应忠, 田军仓. 宁夏盐池县缓坡丘陵区草地生态农业模式研究[J]. 水土保持研究,1994,1(1):29~32
    [143] 孙世文,杨汉森,李岳坤.宁夏实施可持续发展战略研究[M].宁夏:宁夏人民出版社,1998
    [144] 唐振华,张静,贾志宽. 宁夏南部旱区农业水资源开发与可持续利用[J]. 中国农学通报,2003,19(4):189~194.
    [145] 宁夏回族自治区气象局.宁夏气象志[M].北京:气象出版社,1995.
    [146] 黄思明,吴素琴,樊振军等. 紫花苜蓿在宁夏平罗县农业系统中的耦合效应及发展前景[J]. 草业科学,2002,19(9):45~47
    [147] OTTMENM J, TICKES B R, ROTH R L. Alfalfa yield and stand response to irrigation termination in an arid environment [J].Agronomy Journal, 1996, 88: 44–48.
    [148] HALIM R A, BUXTON D R, HATTENDORFM J, et al,Water-deficit effect on alfalfa at various growth stages [J]. Agronomy Journal, 1989, 81: 765–770
    [149] 王宁,李克昌,黄兆鸿等. 宁夏大农业内部系统耦合初探-Ⅱ 论系统内资源单一利用的后果及解决农业持续发展的途径[J].草业科学,2000,17(5):31~36.
    [150] 何志明.论紫花苜蓿在庆阳地区经济建设中的作用[J].草业科学, 1995, 12(6): 50~52
    [151] 胡跃高.中国苜蓿产业发展战略分析[J].草业科学,1996, 13(4): 44~50
    [152] 毛一鹏.山西配合饲料资源成分及营养价值表[M].太原:山西人民出版社, 2002.
    [153] 黄素珍.肉蛋奶以及罐头的卫生检验[M].北京:中国农业出版社, 1995.
    [154] 刘建仁,胡跃高,陈越.苜蓿替代乳牛日粮中部分粗饲料的效益评估[J].草与畜杂志, 1996, (4): 13~14
    [155] 廖允成,王立祥,温晓霞.黄土高原苜蓿草业基地组建的可行性分析[J].草业科学, 1996, 13(6): 45~48
    [156] 林茂兹,王静,肖国举.传统农业养地观与生态农业[J].草业学报, 2005, 14(1): 6~10
    [157] 张玉发.试论苜蓿生产在我国农业三元种植结构调整中的地位和作用[J].草业科学,1999, 16(2): 10~12.
    [158] 李雪枫,王宁,吴韶寰.苜蓿的应用价值及展望[J].宁夏农学院学报, 2003, 24(1): 76~82.
    [159] 叶志华,侯向阳. 我国草业发展的现状、问题及科技对策[J]. 中国农业科技导报,2002,4(2):69~73
    [160] 兰明建, 泽 柏. 畜牧业在西部开发中的地位和作用初探[J]. 四川畜牧兽医科学,2002,29(5):33~35
    [161] 马红彬,王宁. 宁夏草地的分类[J].宁夏农学院学报,2000 ,21(2):62~67.
    [162] 刘建平,李彩之,梁新民. 草田轮作、种草养畜效应研究. 云南畜牧兽医.2004,3:16~18.
    [163] 黄金良,洪华生,张珞平.宁夏南部山区海原县农业可持续发展模式探讨[J].农业现代化研究 2003,24(2):111~115
    [164] 高崇岳. 轮作的实践意义, 见: 任继周主编. 中澳技术合作-甘肃草地农业系统研究与发展项目. 兰州: 甘肃科技出版社, 1994. 56~60.
    [165] 李锋瑞, 高崇岳. 陇东黄土高原若干轮作复种模式的生态交流比较研究. 草业学报, 1994, 3 (1) : 48~55.
    [166] L i F R, Zhao S L , Geballe G T. Water use patterns and agronomic performance for some cropping systems with and without fallow crops in a semi-arid environment of northwest China.Agriculture Ecosystem s & Environment, 2000, 79: 129–142.
    [167] 杜世平, 王留芳, 龙明秀. 宁南山区旱地紫花苜蓿土壤水分及产量动态研究. 草业科学, 1999, 18 (1) : 12~15, 17.
    [168] 中国科学院南京土壤研究所. 土壤理化分析[M].上海:上海科学技术出版社,1983.
    [169] 刘沛松,贾志宽,李军 等. 宁南山区紫花苜蓿土壤干层水分动态及草田轮作恢复效应.生态学报. 2008.28(1):183~191
    [170] Bullied, W.J., Entz, M.H., 1999. Soil water dynamics after alfalfa as influenced by crop termination technique. Agronomy Journal 91, 294–305.
    [171] 陈洪松,邵明安,王克林. 黄土区深层土壤干燥化与土壤水分循环特征. 生态学报,2005,25(10):2491~2498.
    [172] 李玉山. 黄土高原森林植被对陆地水循环影响的研究. 自然资源学报,2001,16(5):427~432
    [173] 王力,邵明安,侯庆春. 土壤干层量化指标初探[J].水土保持学报,2000, 14 (4), 87~90.
    [174] 李军,陈兵,李小芳等. 黄土高原不同干旱类型区苜蓿草地深层土壤干燥化效应[J].生态学报2007,27(1):75~89.
    [175] 李玉山.苜蓿生产力动态及其水分生态环境效应[J].土壤学报,2002,(5):404~411.
    [176] 李裕元, 邵明安. 黄土高原气候变迁、植被演替与土壤干层的形成. 干旱区资源与环境, 2001, 15 (1) : 72~76.
    [177] 杨文治, 邵明安. 黄土高原土壤水分研究. 北京: 科学出版社, 2000. 259~ 276.
    [178] M cCallum M H, Conno r DJ ,O’Leary G J. Water use by lucerne and effect on crop s in the Victorian Wimmera. Aust. J. Agric. R es., 2001, 52: 193–201.
    [179] M cCallum M H, Peoples M B, Connor D J. Contributions of nitrogen by field pea (Pisum sativum L.) in a continuous cropping sequence compared with a Lucerne (Medicago sativa L. ) based pasture ley in the Victorian Wimmera. Aust. J. Agric. Res., 2000, 51: 13–22.
    [180] Ridley A M , Christy B, Haines P J , et al. Lucerne in crop rotations on the Riverine Plains I soil water balance. Australian Journal of Agricultural Research, 2001, 52: 263–277.
    [181] 张兴昌, 卢宗凡. 坡地土壤水分动态及耗水规律研究. 水土保持研究, 1996, 3 (2) : 46~56.
    [182] 韩仕峰.宁南山区苜蓿草地土壤水分利用特征[J].草业科学,1990,7(5):47~52.
    [183] 刘沛松,李军,贾志宽等. 宁南旱区苜蓿草地土壤水分消耗规律及粮草轮作土壤水分恢复效应研究[J].中国农学通报, 2005,(9):270~274.
    [184] 郭忠升 , 邵明安 半干早区人工林草地土壤旱化与土壤水分植被承载力 [J]. 生态学报.2003,(8):1640~1647.
    [185] 杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社,1992.
    [186] 王俊,刘文兆,李风民. 半干旱区不同作物与苜蓿轮作对土壤水分恢复与肥力消耗的影响. 土壤学报. 2004,44(1):179~183
    [187] 黄高宝,郭清毅,张仁陟等. 保护性耕作条件下旱地农田麦-豆双序列轮作体系的水分动态及产量效应[J].生态学报.2006,(4):1176~1185.
    [188] 关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986.
    [189] 程积民,万惠娥,王静. 黄土丘陵区苜蓿生长与土壤水分变化[J]. 应用生态学报[J]. 2005, 16 (3):435~438.
    [190] 刘忠民,山仑,邓西平. 宁南山区草田轮作研究(不同耕作制度下的农田水分平衡) [J].水土保持学报,1993, 7( 4) : 67~71.
    [191] 王志强,刘宝元,路炳军. 黄土高原半干旱区土壤干层水分恢复研究[J]. 生态学报, 2003(9):1944~1950.
    [192] 张春霞, 郝明德, 魏孝荣,等. 黄土高原沟壑区苜蓿地土壤水分剖面特征研究[J].植物营养与肥料学报,2004 ,10(6) :604~607.
    [193] 樊军,邵明安,王全九. 陕西水蚀风蚀交错区苜蓿地土壤水分过耗与恢复[J]..草地学报. 2006,14(3):261~264.
    [194] 陈洪松,邵明安. 黄土区深层土壤干燥化程度的评价标准[J]. 水土保持学报2004,18(3):164~166.
    [195] 杨文治,邵明安,彭新德等.黄土高原环境的旱化与黄土中水分关系[J]. 中国科学((D辑),1998,28(4):357~365.
    [196] 杨文治. 黄土高原水资源与植树造林[J].自然资源学报.2001,16(5):433~438.
    [197] 沈禹颖,南志标,高崇岳等. 黄土高原苜蓿-冬小麦轮作系统土壤水分时空动态及产量响应[J].生态学报.2004,24(3):640~647.
    [198] 朱显谟. 黄土高原土壤与农业[M].北京:农业出版社,1989.2- 26,342~365.
    [199] 韩仕峰,李玉山,张孝中等.黄土高原地区土壤水分区域动态特征[J].中国科学院西北水土保持研究所集刊,1989(10):161~167.
    [200] 孙长忠,黄宝龙. 黄土高原“林分自创性”有效水分供给体系的研究[J]. 生态学报,1999,19(5): 615~621.
    [201] 袁建平,蒋定生. 黄土丘陵沟壑区小流域降雨入渗产流点面转化[J]. 地理科学,2001, 21( 3)262~266.
    [202] 王恒俊. 黄土高原地区土壤资源及其合理利用[M]. 北京:中国科学技术出版社,1991. 205~241.
    [203] 樊军,郝明德,邵明安. 黄土旱塬农业生态系统土壤深层水分消耗与水分生态环境效应[J].农业工程学报2004,20(1):61~65.
    [204] 程积民,万惠娥,王静,等.黄土丘陵区沙打旺草地土壤水分过耗与恢复.生态学报,2004,24(12):2979~2983.
    [205] 李玉山. 黄土区土壤水分循环特征及其对陆地水分循环的影响. 生态学报, 1983, 3 (2) : 91~101.
    [206] 杨文治. 黄土丘陵区人工林草地的土壤水分生态环境. 中国科学院西北水土保持研究所集刊, 1985.(2): 18~28.
    [207] 赵凤岐,董宽虎,刘文忠. 山西苜蓿产业化发展模式与内涵的探讨[J]. 草业学报,2007,16(3):120~127.
    [208] 冷石林,韩仕峰,王立祥.中国北方旱地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996.166~172.
    [209] 侯军岐 主编.农业技术经济学[M],西安,陕西科学技术出版社,1993:97~99.
    [210] Ma Callum M H , Peoples M B , Connor D J . Contributions of nitrogen by field pea ( Pisum sativum) in a continuous cropping sequence compared with a Lucerne (Medicago sativa)-based pasture ley in the Victorian Wimmera [J] . Australian Journal of Agricultural Research , 2000 , 51 :13–22.
    [211] Hossain S A, Strong W M, Waring S A. Comparison of legume based cropping systems at Warra, Queensland II. Mineral nitrogen accumulation and availability to the subsequent wheat crop [J] .Australian Journal of Soil Research, 1996, 34 :289–297.
    [212] 孙鸿良. 西北地区农牧业发展方向的探讨[J] . 草业学报,2003 ,12 (4) :1~6.
    [213] 王俊,刘文兆,李凤民,等. 半干旱黄土区苜蓿草地轮作农田土壤氮素变化[J]. 草业学报,2006,15(5):32~37.
    [214] 邹亚丽,马效国,沈禹颖,等. 苜蓿后茬冬小麦对氮素的响应及土壤氮素动态研究[J].草业学报,2005 ,14 (4) :82~88.
    [215] 魏臻武,符昕,曹致中,等.苜蓿生长特性和产草量关系的研究[J]. 草业学报,2007,16(4):1~8.
    [216] 山仑, 陈国良主编. 黄土高原旱地农业的理论与实践[M]. 科学出版社,北京,1993,256~280.
    [217] 李玉山. 旱作高产田产量波动性和土壤干燥化[J],土壤学报,2001.38(3), 353~356.
    [218] B.C. Xu, P. Gichuki, L. Shan, F.M. Li. 2006. Aboveground biomass production and soil water dynamics of four leguminous forages in semiarid region, northwest China. South African Journal of Botany,72, 507–516.
    [219] Bagayoko M, Mason S C, Traore S and Eskridge K M 1996 Pearl millet/cowpea cropping systems yield and soil nutrient levels.African Crop. Sci. J. 4, 453–462.
    [220] Bationo A, Lompo F and Koala S 1998 Research on nutrient flows and balances in West Africa: state-of-the-art. Agric. Ecosyst. Environ. 71, 19–35.
    [221] Nicou R 1978 Etude de successions culturales au Sénégal: resultants et méthodes. Agron. Trop. 33, 51–61.
    [222] Baldock J O, Higgs R L, Paulson W H, Jackobs J A and Shrader W D 1981 Legume and mineral N effects on crop yields in severalcrop sequences in the Upper Mississippi Valley. Agron. J. 73, 885–890.
    [223] Pierce F J and Rice C W 1988 Crop rotation and its impact on efficiency of water and nitrogen use. In Cropping Strategies for Efficient use of Water and Nitrogen. Ed. WL Hargrove. pp 21–42. ASA Special Publication Number 51. ASA-CSSA-SSSA, Madison, WI. USA.
    [224] 严昌荣, 居 辉, 彭世琪,等. 中国北方旱农地区农田水分动态变化特征[J]. 农业工程学报.2002,18(2):11~14.
    [225] Fischer, R.A.; Santiveri, F.; Vidal, I.R.Crop rotation, tillage and crop residue management for wheat and maize in the sub-humid tropical highlands I. Wheat and legume performance. Field Crops Research. 2002,79(2):107-122.
    [226] Gregory MM, Shea KL, Bakko EB. 2005. Comparing agroecosystems: Effects of cropping and tillage patterns on soil, water, energy use and productivity. Renewable Agriculture and Food Systems. 20 (2): 81–90
    [227] Gouranga Kar, Ravender Singh, H.N. Verma. 2004. Alternative cropping strategies for assured and efficient crop production in upland rainfed rice areas of eastern India based on rainfall analysis. Agricultural Water Management 67 :47–62
    [228] 田秀萍,邱泳宁,肖桂才等.茬口对农作物产量影响的研究[J].黑农江八一农垦大学学报,2000,12(1):19~23.
    [229] N. Sanginga. 2003. Role of biological nitrogen fixation in legume based cropping systems:a case study of West Africa farming systems. Plant and Soil 252: 25–39,
    [230] Gudni Hardarson, Craig Atkins. 2003. Optimizing biological N2 fixation by legumes in farming systems. Plant and Soil. 252: 41–54.
    [231] O'Hara, G.W., 1998.The role of nitrogen fixation in crop production. Journal of Crop Production 1, 115–138.
    [232] Lal, R., 2001. World cropland soils as a source or sink for atmospheric carbon. Adv. Agron. 71, 145–191.
    [233] Hao, Y., Lal, R., Owens, L.B., et al. 2002. Effect of cropland management and slope position on soil organic carbon pool at the Appalachian Experimental Watersheds. Soil Tillage Res. 68, 133–142
    [234] S.S. Malhi a,R. Lemke. 2007. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gas emissions in a second 4-yr rotation cycle. Soil & Tillage Research 96 :269–283.
    [235] S. Alvey, M. Bagayoko, G. Neumann et al. 2001.Cereal/legume rotations affect chemical properties and biological activities in two West African soils. Plant and Soil 231: 45–54
    [236] Drinkwater, L.E., Wagoner, P., Sarrantonio, M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396, 262–264.
    [237] M. Nuruzzaman, Hans Lambers, Mike D.A. et al. 2005. Phosphorus benefits of different legume crops to subsequent wheat grown in different soils of Western Australia. Plant and Soil 271: 175–187
    [238] 王立祥主编.耕作学[M].重庆:重庆出版社,2001.
    [239] 张保烈. 提高草木樨在粮草轮作中效益的探讨[J].土壤通报,1984,2:211~213.
    [240] 王俊,李凤民,贾宇,等.半干旱黄土区苜蓿草地轮作农田土壤氮、磷和有机质变化[J] 应用生态学报,2005,16(3)∶439 ~ 444.
    [241] 刘孟雨,但野利秋,刘会灵.苜蓿改良的盐碱土壤对小麦的效应研究—对小麦生长及产量的影响[J].生态农业研究,1998, 6(2):58 ~ 60.
    [242] 樊廷录 , 周广业2, 王 勇 等. 甘肃省黄土高原旱地冬小麦—玉米轮作制长期定位施肥的增产效果. 植物营养与肥料学报2004 ,10 (2) : 127~131.
    [243] Bandick A K, Dick R P. Field management effects on soil enzyme activities[J]. Soil Boil & Biochem,1999, 31: 1471–1479.
    [244] 和文祥,来航线,武永军,等. 培肥对土壤酶活性影响的研究[J].浙江大学学报,(农业与生命科学版),2001,27(3): 265~268.
    [245] 和文祥,朱铭莪. 陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报,1997,34(4):392~397.
    [246] Verstraete W. Soil microbial and biochemical characteristics in relation to soil management and fertility[J]. Soil Biology & Biochemistry, 1977,(9):253–258.
    [247] 邱莉萍,刘军,王益权,等. 土壤酶活性与土壤肥力的关系研究[J].土壤营养与肥料学报,2004,10(3):277~280.
    [248] 樊军,郝明德. 黄土高原旱地轮作与施肥长期定位试验研究.Ⅱ.土壤酶活性与土壤肥力.植物营养与肥料学报,2003,9(2):146~150.
    [249] 高瑞,吕家珑.长期定位施肥土壤酶活性及其肥力变化研究,中国生态农业学报,2005,13(1):143~145.
    [250] 邱莉萍,张兴昌. 子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006(6): 965~972.
    [251] 王晓凌,陈明灿,李凤民,等. 苜蓿草地土壤干层对土壤脲酶活性和土壤蛋白酶活性的影响

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700