光与物质间相互作用力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们对光辐射压力的研究与应用越来愈广泛,光镊技术和光学升力是人们利用光辐射压力的两个重要方面,特别是光镊在微生物领域的运用,光镊不但可以无损伤的移动细胞完成基因融合,还能冷却和重新排列原子,而近两年才开始的光学升力的研究,对未来光对物体操控和微观机械力学的发展更是有着深远的意义。
     本文首先根据里查德-沃耳夫矢量积分理论,研究了径向偏振光在大数值孔径透镜聚焦下,透镜球差和像散对瑞利粒子受到的光阱力的影响。研究结果表明,球差系数和像散系数的存在,改变了光阱力的大小,也影响了有效作用区域,还导致光阱中心发生偏移。而且正负球差系数对光阱力的影响并不总是对称的,正球差系数使得梯度力的零点位置往z轴正向偏移,负球差系数使得梯度力的零点位置往z轴负向偏移。通过改变适当的条件,可以改善球差系数和像散系数对光阱力的影响,这些结果对于光镊等精密仪器的操作具有参考价值。
     其次应用平面波角谱理论,研究了在高斯光束的照射下,透明介质平板的受力分布。利用光压差产生光学升力,深入分析了光束的光腰半径、平板的摆放位置以及倾斜角度等参数对透明介质平板受力分布的影响。研究结果表明:适当选取光腰半径和摆放位置,平板受到的横向力可以增大到足以克服重力,使其在光束的照射下升起来。还可以通过缔造可以产生更大辐射力的光束的角谱方程,来返回推导并构造这一类型的激光光束,使其照射物体时,物体能够受到更大的光学升力。
     然后研究了一特殊形状微型物体,在涡旋光束照射下的旋转情况。根据动量和角动量守恒定理,推导了微型物体在x、y和z方向上受力旋转的力矩公式。通过数值计算,得到了微型物体在不同表面倾斜角度的情况下,该微型物体旋转的特性。研究结果表明,由于涡旋光束的轨道角动量与光束动量的相互作用,改变涡旋光束的拓扑荷数,既可以使微型物体保持静止,也可以改变微型物体旋转的方向和旋转的速度。这对微观机械力学和其他高精密仪器的发展提供了理论依据。
     最后研究了底面为钝角三角形三棱柱的光学升力及其旋转效应。从理论上证明了在某些特定的轰击角度下,这种三棱柱可以稳定的做垂直向上的运动,同时得到了使三棱柱稳定抬升的最佳角度。利用这种光压差,对任意形状的透明物体进行研究,研究结果对未来的航天领域、微观机械力学和医药等领域具有很重要的意义。此外,也可以通过理论分析,利用不同模式的光束进行照射,加大这种光压差,使透明物体受力更大。
     论文所得到的这些结果为未来光操控物体提供了理论依据。
Optical radiation forces attract more and more attention recently. Optical tweezers and optical lift are important studies in the research of optical radiation forces. Because optical tweezers can move cells without broken, it is now wildly used in gene fusion, rearrange and cooling atoms. Optical lift was discovered one year ago. It is soon arouse attention by researchers and has a lot meaning in solar sails and micro machines etc
     In the first part, we investigate the effect of primary spherical aberration and astigmatism on radiation forces of Raleigh particles, when radial polarized beam is focused by a high numerical-aperture system based on Richards-Wolf vector diffraction method. The research results show that when changing the primary spherical aberration and astigmatism, influences not only reflect on the magnitude of the radiation forces, but also reflect on the balance position and the valid area. These changes caused by positive and negative primary spherical aberration are not always in the same patterns, for the positive spherical aberration make the forward direction gradient forces increases at first and then decreases while this trend also happens on the backward direction gradient forces with negative primary spherical aberration. Under different conditions, the degree of primary spherical aberration will also change and we can make use of it to reduce these influences.
     In this forth chapter, we employed angular spectrum theory to study the radiation forces on a transparent plate illuminated by a Gaussian beam under geometric optics model. Unlike optic traps, it is depends only on the deference of light pressure to produce the optical lift. The influences of waist radius, transparent plate location and inclination angle are investigated and the distributions of forces are illustrated in longitudinal and transverse components. The numerical results show that if we choose the appropriate parameters there will be enough transverse forces to conquer the gravity force to move the plate upwards. We can also construct a type of angular spectrum which can produce more forces and in turn to derive this type of beam.
     Then we employ ray-optic (RO) model to study the torque on a specially shaped micro object produced by a vortex beam. Based on conservation of momentum and orbital angular momentum, the formulas for the torque along x, y and z direction are derived. The numerical calculation is given to show the dependence of the optical torques on the inclination angle of the micro object. It is shown that the torque is dependent upon both the light momentum and orbital angular momentum (OAM) of the incident vortex beam. We can control the rotation of the micro object by modulating the topological charge of the incident light beam. Moreover we can make the micro object stop. These results seem important, and may find applications in micro machines and other high-precision instruments.
     In the end, we investigate on the optical radiation forces and stability upon a triangular prism with the undersides of obtuse triangle under geometric optics model. According to the law of conservation of momentum, the expressions of the optical radiation forces and torque are derived. The distributions of radiation forces and torque are obtained after numerical calculations taken with varying values of rotation angle. The research results show that the triangular prism can get stable uplift under some rotation angles. If the optical power strong enough, the uplift forces can conquer the gravity force to move the triangular prism upwards.
     These results obtained in this paper provides a theoretical basis for future optical manipulation of objects.
引文
[1]K. Dholakia, G. Spalding and M. MacDonald. Optical tweezers:the next generation. Physics world, 2002.
    [2]K. Svoboda, S. K. Block. Biological Application of Optical Forces. Annu. Rev.Biophys. Biomol.Struct. 1994,23:247-285
    [3]A.Ashki, Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters,1970, 24(4):156-159
    [4]Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observationof asingle beam gradient force optical trap for dielectric particles[J].Optics Letters, 1986,11 (5):288-290.
    [5]Zhou Pu, Hou Jing, Liu Yinjin, Zhao Yijun. Photon propulsion and its feasibility analysis[J]. Infrared and Laser Engineering, 2007, 36(6):805~808周朴,侯静,刘泽金,赵伊君.光子推进及其可行性分析[J].红外与激光工程,2007,36(6):805-808
    [6]Grover A. Swartzlander, Jr, Timothy J. Peterson. Alexandra B. Artusio-Glimpse and Alan D. Raisanen, Stable optical lift[J]. Nature Photonics,2010,5:48-51
    [7]Zhang Zhi-ming, Pu Ji-xiong, Wang Xi-qing. Focusing of Cylindrically Polarized Bessel-Gaussian Beams through a High Numerical-Aperture Lens[J]. Chinese Journal of Lasers, 2009, 35 (3):401-405张志明,蒲继雄,王喜庆.圆柱偏振贝塞耳-高斯光束经高数值孔径透镜的聚焦[J].中国激光,2009,35(3):401-405
    [8]Hua Li-min, Chen Zi-yang, Chen Bao-suan, Lin Hui-chuan, Pu Ji-xiong. High Numerical-Aperture Focusing Characteristics of a Partially Polarized Light Beam[J]. Chinese Journal of Lasers, 2009, 37(7):1739-1743华黎闽,陈子阳,陈宝算,林惠川,蒲继雄.部分偏振光束的大数值孔径聚焦特性[J].中国激光,2009,37(7):1739-1743
    [9]Chen Bao-suan, Pu Ji-xiong. Focusing of Elliptically Polarized Vortex Beams through a High Numerical-Aperture Objective[J]. Chinese Journal of Lasers, 2009, 36(s1):244-250陈宝算,蒲继雄.椭圆偏振涡旋光束经高数值孔径透镜的聚焦[J].中国激光,2009,36(s1):244-250
    [10]Lin Hui-chuan, PU Ji-xiong, SUN Xi. Tight focusing of double ring shapedradially polarized vortex beam through dielectric interface. High Power Laser and Particle Beams, 2010. 22 (8):1761-1765林惠川,蒲继雄,孙希.双环径向偏振涡旋光束经介质界面的深聚焦[J].强激光与粒子束, 2010.22(8):1761-1765
    [11]Wang Zhen-hua, LI Jin-song. The generation of a radially polarized beam and its application in the modern optics[J]. Laser Journal, 2009, 30 (1):8-10王振华,李劲松.径向偏振光的产生及在现代光学中的应用.激光杂志,2009,30(1):8-10
    [12]Cui Yang-xia, CHEN Jun, YANG Zha-hua. Research progress on radially polarized beam[J]. Laser Journal, 2009,30(1):7-10崔详霞,陈君,杨兆华.径向偏振光研究的最新进展.激光杂志,2009,30(1):7-10
    [13]Lin Huichuan, Liu Hui, Pu Jixiong. Extra cavity coherent superposition for generation of radially polarized beam [J]. Chinese J. Lasers, 2009, 36(s1):251~256林惠川,刘辉,蒲继雄.腔外相干叠加产生径向偏振光[J].中国激光.2009,36(s1):251-256
    [14]Lin Liang-hong, Li Yin-mei, Lou Li-ren, Zhang Da, Chen Hong-tao. Experimental Research of Doughnut, a New Kind of Laser Trap[J]. Chinese Journal of Lasers, 2003.30 (3):211-215尹良红,李银妹,楼立人,张达,陈洪.涛空心新型光阱的实验研究[J].中国激光,2003,30(3):211-215
    [15]Chen Jun-feng, Zhang Yao-ju. Calculation of the Trapping Forces on a Spherical Particle Induced by Focused Plane Wave[J]. Journal ofWenzhou University ·Natural Sciences, 2008, 29 (5):22~27陈俊峰,张耀举.聚焦平面波中介质球光阱力的计算[J].温州大学学报-自然科学版,2008,29(5):22-27
    [16]Wang, Li-Gang; Zhao, Cheng-Liang; Wang, Li-Qin; Lu, Xuan-Hui; Zhu, Shi-Yao. Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere [J]. Optics Letters, 2007, 32 (11): 1393-1395
    [17]Yasuhiro Harada, Toshimitsu Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J].Optics Communications, 124(5-6):529-541
    [18]Li Jin-song, Gao Xiu-min. Effect of concentric zones phase plate on gradient force pattern of radially polarized beam. High Power Laser and Particle Beams, 2009, 21 (1):39-42李劲松,高秀敏.相位板偏振偏转角对径向偏振光的梯度力分布的影响[J].强激光与粒子束,2009,21(1):39-42
    [19]M. Gu, Advanced optical imaging theory [M], Springer. Heidelberg. 2000.154
    [20]K. S. Youngworth and Brown T. Fcusing of high numerical aperture cylindrical-vector beams [J]. Optics Express, 2000, 7 (2):77-87
    [21]Rishi Kanta. An Analytical Method of Vector Diffraction for Focusing Optical Systems with Seidel Aberrations II:Astigmatism and Coma [J]. Journal of Modern Optica,1995,42(2):299-320
    [22]Chen Jian-nong, YU Yong-jian, The Effect of Primary Spherical Aberration and Aperture on Focusing Radially Polarized High-Prder Vector Bessel-Gauss Beams[J]. Acta Optica Sinica, 2010, 30 (9): 2724-2729陈建农,于永江.初级球差及孔径对径向偏振高阶矢量贝塞尔高斯光束聚焦的影响[J].光学学报,2010,30(9):2724-2729
    [23]Liu Yong, CHEN Jia-bi. Effect of Primary Spherical Aberration on Focuesing Field of Cylindrical-Vector Bessel-Gaussian Beams[J]. Act a Optica Sinica, 2009,29(7):1996-1999刘勇,陈家璧.初级球差对矢量柱状贝塞耳-高斯光束聚焦场的影响[J].光学学报,2009,29(7):1996-1999
    [24]Liang Chong-qing, Tang Zhi-lie, Guo Li-na. Effect of Primary Spherical Aberration on Tight Focusing of Elliptically Polarized Vortex Beams[J]. Acta Optica Sinica, 2010,30(11):3317-3322梁重庆,唐志列,郭利娜.初级球差对椭圆偏振涡旋光束深聚焦场的影响[J].光学学报,2010,30(11):3317-3322
    [24]Ziyang Chen and Jixiong Pu. Propagation characteristics of aberrant stochastic electromagnetic beams in a turbulent atmosphere[J]. Journal of Optics, 2007, 9:1123-1130
    [25]Haigang Liu, Baida Lv. Focusing Properties of Nonuniformly Polarized Beams through an Astigmatic Lens with Annular Aperture[J]. Acta Photonica Sinica. 2009, 38(7):1602-1607刘海岗,吕百达.非均匀偏振光束通过环状光阑像散透镜的聚焦特性[J].光子学报,2009,38(7):1602-1607
    [26]Rishi Kant. An analytical method of vector diffraction for focusing optical systems with Seidel aberrations II:Astigmatism and coma[J]. Journal of Modern Optics. 1995,42(2):299-320
    [27]Wang Qi, Li Qi, Shang Tieliang. Laser propulsion principle and development[J].Laser & Infrared, 2003,33(1):3-7王骐,李琦,尚铁梁.激光推进原理与发展状况[J].激光与红外.2003,33(1):3-7
    [28]Yang Ding, Nick Gravish and Daniel I. Goldman, Drag Induced Lift in Granular Media[J]. Physcal Review Letters. 2011, 106(2):028001
    [29]Wu Xian-yun, Li Kun and Zhang Bin. Analysis of wide bandwidth THG by using angular spectral dispersion[J]. Laser Joural. 2007,28(1):41-43 吴显云,李混,张彬.采用角谱色散补偿法的宽带三倍频方案分析[J].中国激光.2007,28(1):4143
    [30]Xie Jianping, Lu Yonghua, Wang Pei. Zhang Jiangying, Wu Yunxia and Ming Hai. Analysis of Neap Field Distribution of Solid Immersion Lens by Angular Spectrum[J], Acta Optica Sinica,2002, 22(4): 413-416谢建平,鲁拥华,王沛章.江英,吴云霞,明海.用角谱方法分析固体浸没透镜的近场光场[J].光学学报,2002,22(4):413-416
    [31]Li Junchang. FFT Computation of Angular Spectrum Diffraction Formula and its Application in Wavefront Reconstruction of Digital Holography[J], Acta Optica Sinica, 2009, 29(5):1163-1167李俊昌.角谱衍射公式的快速傅里叶变换计算及在数字全息波面重建中的应用[J].光学学报,2009,29(5):1163-1167
    [32]Jiang Ji, Fu Qiang. Zhu Xiaoli, Liu Xinghua, Xu Xiping. Xie Changqing and Liu Ming. Design and Analyze of Amplitude Sieves Based on Angular Spectrum[J], Acta Photonica Sinica, 2008, 37(9): 1734-1738姜骥,付强,朱效立,刘兴华,徐熙平,谢常青,刘明.基于角谱法的振幅型光子筛的设计和分析[J].光子学报.2008,37(9):1734-1738
    [33]Jin-Hua Zhou, Hong-Liang Ren, Jun Cai and Yin-Mei Li. Ray-tracing methodology:application of spatial analytic geometry in the ray-optic model of optical tweezers[J]. Applied Optics, 2008, 47:6307-6314
    [34]Li-Gang Wang, Cheng-Liang Zhao, Li-Qin Wang, Xuan-Hui Lu and Shi-Yao Zhul. Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere[J]. Optis Letters, 2007, 32(11): 1393-1395
    [35]Brandon A. Kempl and Tomasz M. Grzegorczyk. The observable pressure of light in dielectric fluids[J]. Optics Letters,2011.36(4):493
    [36]Zhu Yanying, Ding Xifeng, Gao Qiujuan and Wang Mingli. The calculation and numerical simulation on optical trapping force in lateral way of One-beam laser optical tweezers[J]. Laser Journal,2006,27(1): 69-72朱艳英,丁喜峰,高秋娟,王明利.单光束光镊横向光阱力的计算与仿真分析[J].激光杂志,2006,27(1):69-72
    [37]L. Allen, M. W. Beijersbergen, R. J. Spreeuw and J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A.1992.45(11):8185-8189.
    [38]S. M. Barnett and L. Allen. Orbital angular momentum and nonparaxial light beams[J]. Optics Communications,1994,110(5-6):679-688.
    [39]H. He, M. E. J. Friese.N. R. Heckenberg and H. Rubinsztein-Dunlop. Directobservation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity [J]. Phys. Rev. Lett., 1995,75(5):826-829.
    [40]I P Ivanov and V G Serbo. Scattering of twisted particles: Extension to wave packets and orbital helicity[J]. Physical Review A,2011,84(3):033804
    [41]Masud Mansuripur, Armis R.Zakharian and Ewan M. Spin and orbital angular momenta of light reflected from a cone[J], Physical Review A,2011,84(3):033803
    [42]Jack Ng, Z F Lin and C T Chanl. Theory of optical trapping by an optical vortex beam[J]. Physical Review Letters,2010,104(10):103601
    [43]S F Arnold, L Allen and M Padgett. Advances in optical angular momentum[J]. Laser & Photonics Review, 2008,2(4):299-313
    [44]G C G Berkhout and M W Beijersbergen. Method for Probing the Orbital Angular Momentum of Optical Vortices in Electromagnetic Waves from Astronomical Objects[J]. Physical Review Letters,2008, 101(10):100801
    [45]C Paterson. Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication[J]. Physical Review Letters.2005,94(15):153901
    [46]S Feng and P Kumar. Spatial Symmetry and Conservation of Orbital Angular Momentum in Spontaneous Parametric Down-Conversion[J]. Physical Review Letters, 2008, 101(16):163602
    [47]E Santamato, A Sasso, B Piccirillo and A Vella. Optical angular momentum transfer to transparent isotropic particles using laser beam carrying zero average angular momentum[J] Optics Express,2002, 10(17):871-878
    [48]Gao Qiujuan,Zhu Yanying.Shi Jinshan.Li Yalin,Wang Mingli,Wei Yong. Rotation of Particles by Using the Beam with Spin Angular Momentum[J]. Chinese Journal of Lasers,2008,35(10):1505~1509高秋娟,朱艳英,史锦珊.李亚林,王明利,魏勇.利用具有自旋角动量的光束实现微粒的旋转[J].中国激光,2008,35(10):1505~1509
    [49]Sun Yufen. Li Yinmei, Lou Liren. Optical rotation of crystal CaCO3 micro-particle in optical tweezers [J]. Chinese J. Lasers,2005,32(3):315~318孙玉芬,李银妹,楼立人.光阱中的CaCO3晶体微粒的光致旋转[J].中国激光,2005,32(3):315~318
    [50]Y Harada and T Asakura. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Optical Communications. 1996. 124(5-6):529-541
    [51]A L Porta and M D Wang. Optical Torque Wrench:Angular Trapping. Rotation, and Torque Detection of Quartz Microparticles[J]. Physical Review Letters. 2004. 92(19):190801
    [52]Cao Qing. Guo Hong and Deng Ximing 郭弘, 邓锡铭. The Axial Component of Beam Cross-section Angular Momentum is Conserved[J]. Chinese Journal of Lasers, 1996, 23(2):161~165曹清,郭弘,邓锡铭.光束截面角动量的轴向分量是守恒量[J].中国激光,1996.23(2):161-165
    [53]Robert N. C. Pfeifer, Timo A. Nieminen, Norman R. Heckenberg and Halina Rubinsztein-Dunlop. Momentum of an electromagnetic wave in dielectric media[J]. Reviews of Modern Physics 2007, 79 (4): 1197-1216
    [54]Peter W. Milonni, Robert W. Boyd. Momentum of Light in a Dielectric Medium[J]. Advances in Optics and Photonics. 2010, 2:519-553
    [55]M. G. Burt and Rudolf Peierls. The Momentum of a Light Wave in a Refracting Medium[J]. Proc. R. Soc. Lond.A,1973. 333:149-156
    [56]Robert N C Pfeifer, Timo A Nieminen, Norman R Heckenberg and Halina Rubinsztein-Dunlop. Optical tweezers and paradoxes in electromagnetism[J]. Journal of Optics, 2011,13:044017 (7)
    [57]Masud Mansuripur. Electromagnetic force and torque in ponderable media[J]. Optics Express, 2008, 16(19):14821-14835

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700