模拟氮沉降对暖温带油松林土壤碳循环过程的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国已成为全球三大N沉降区之一。日益增加的N沉降能否增加森林土壤C吸存以及N沉降驱动下的森林土壤C吸存潜力有多大,目前科学界仍存在很大的争论。油松(Pinus tabulaeformis)是我国特有树种,研究N沉降对油松林土壤C循环过程的影响既可以填补我国有关N沉降对暖温带森林生态系统研究的空白,又可为该地区进一步开展N沉降以及全球变化研究打下基础。
     本文通过原位模拟N沉降方法,N沉降水平分为NO(0kg N·hm-2·a-1)、N1(50kg N·hm-2·a-1)、N2(100kg N·hm-2·a-1)和N3(150kg N-hm·a-1),对比分析了油松人工林和天然林土壤C循环关键过程对模拟N沉降的响应过程和机制。主要研究结果如下:
     (1)N沉降对人工林土壤微生物量无显著影响,而显著降低了天然林表层土壤微生物量。不同凋落物处理显著影响过氧化氢酶、纤维素酶、脲酶和蔗糖酶活性,对照样方土壤酶活性显著高于去凋切根或去凋样方的土壤酶活性。N1水平表现为促进上壤过氧化氢酶活性,而N2和N3水平表现出抑制效应;N沉降抑制了多酚氧化酶、过氧化物酶和蔗糖酶活性,而对纤维素酶、脲酶和磷酸酶影响并不显著。
     (2)N沉降显著促进了人工林针叶分解,抑制了天然林辽东栎阔叶分解,促进了天然林针叶早期分解,抑制其后期分解,分解12个月时,N沉降促进油松-辽东栎混合叶分解,随后对混合叶分解无显著影响。凋落物中K元素在整个分解过程中为释放模式,其他各元素均有不同程度的富集。在前期营养控制阶段,凋落物养分释放速度较快,而在分解后期木质素等难降解物质的积累导致凋落物释放养分速度变慢。
     (3)凋落物处理显著影响土壤呼吸速率,去凋切根和去凋样方上壤呼吸速率显著低于对照样方。人工林和天然林去凋切根样方,N沉降均降低了土壤呼吸速率,但不同N水平间无显著差异;去凋样方,N沉降均促进了土壤呼吸,且人工林土壤呼吸速率随N沉降量增加而增加,而天然林N2水平土壤呼吸速率最大;对照样方,N沉降亦促进了土壤呼吸。对照样方土壤呼吸温度敏感性Q10显著高于去凋切根和去凋样方且N沉降降低了人工林和天然林土壤呼吸的温度敏感性。
     (4)N沉降引起上壤各层有机C含量的减少,表层土壤(0-20cm)有机C下降幅度大于深层土壤(20-40cm,40-60cm)且有机C含量下降幅度随N沉降增加而增大。N沉降显著增加了人工林表层土壤全N含量,但对天然林表层土壤全N含量影响并不明显。
     N沉降通过促进油松林土壤呼吸,减小了整个生态系统土壤C贮存。未来持续N沉降背景下,油松林生态系统土壤C库对N沉降的响应值得进一步深入研究。
China has become one of the three biggest area of nitrogen deposition in the world. There has been a lasting controversy over the point that if nitrogen deposition can enhance forest soil carbon sequestration and how is the potential of forest soil carbon sequestration under the drive of nitrogen deposition. Chinese pine(Pinus tabulaefortnis) is endemic to China, researches on the effects of simulated nitrogen deposition on soil carbon cycling processes in Chinese pine forests can not only fill the gap of nitrogen deposition studies in warm temperate area, but also lay a solid foundation for researches on the nitrogen deposition and global change in this region.
     Through in situ simulated nitrogen deposition, nitrogen levels were implemented as:NO (0kg N·hm-2·a-1), N1(50kg N·hm·a-1), N2(100kg N·hm·a-1), and N3(150kg N·hm·a-1). We compared and investigated the responses and underlying mechanisms of soil carbon cycling key processes to nitrogen deposition in both plantation (PF) and natural forests (NF) of Chinese pine. The main results were as follows:
     (1) Nitrogen deposition had no significant effect on soil microbial biomass in PF, but significantly decreased soil microbial biomass at0-10cm depth in NF. Litter treatment significantly affected hydrogen peroxidase, cellulase, urease and invertase activities. It showed that soil enzyme activities were higher in control (CK.) subplot than those in both litter and root exclusion (LRE), and only litter exclusion (LE) subplots. Hydrogen peroxidase activity was increased at N1level, but decreased at N2and N3levels. Nitrogen deposition inhibited polyphenol oxidase, peroxidase and invertase activities, but had no significant effects on cellulase, urease and phosphatase activities.
     (2) Nitrogen deposition significantly promoted P. tabulaeformis decomposition in PF. The decomposition of Quercus liaotungensis was suppressed by nitrogen deposition in NF. Nitrogen deposition promoted P. tabulaeformis decomposition at the beginning of decomposition and suppressed its decomposition at the end of decomposition in NF. Nitrogen deposition facilitated P. tabulaeformis-Q. liaotungensis mixed litter decomposition before12months and then had no significant effect on mixed litter decomposition. K was almost realeased while other nutrients were showed enrichment during decomposition. At the beginning of early nutrition control stage, the litter nutrient release was very fast. The accumulation of lignin at the end of decomposition led to slow release of litter nutrients.
     (3) Litter treatment significantly affected soil respiration. Soil respiraiton in LRE and LE subplots was significantly lower than that in CK subplot. Nitrogen deposition reduced soil respiration in LRE subplot in both PF and NF, however, soil respiration was not significantly different between different nitrogen levels. Nitrogen deposition increased soil respiration in LE subplot in both PF and NF, and soil respiration increased with nitrogen levels in PF while soil respiration was the highest in the N2level in NF. Nitrogen deposition also increased soil respiration in CK subplot in both PF and NF. Temperature sensitivity of soil respiration Q10was significantly higher in CK subplot than that in both LRE and LE subplots. Nitrogen deposition decreased Q10in both PF and NF.
     (4) Nitrogen deposition decreased soil organic carbon at different depths. The decrease of soil organic carbon at0-20cm depth was larger than that at20-40cm and40-60cm depth and soil organic carbon decreased with nitrogen levels. Nitrogen deposition significantly increased soil total nitrogen at0-20cm depth in PF, but had no significant effect on the soil total nitrogen at0-20cm depth in NF.
     Nitrogen deposition reduced soil C storage by promoting soil respiration in Chinese pine forests. How soil carbon pool respond to nitrogen deposition under the background of future high nitrogen deposition is worth further study.
引文
1. 曹文强.山西太岳山主要树种树干液流研究[D].北京:北京林业大学,2003.
    2. 常运华,刘学军,李凯辉,等.大气氮沉降研究进展[J].干早区研究,2012,29(6)972-979.
    3. 陈浩,莫江明,张炜.氮沉降对森林生态系统碳吸存的影响[J].生态学报,2012,32(21):6864-6879.
    4. 陈立新.落叶松人工林施肥对土壤酶和微生物的影响[J].应用生态学报,2004,15(6):1000-1004.
    5. 陈能汪,洪华生,肖健,等.九龙江流域大气氮干沉降[J].生态学报,2006,26(8)2602-2607.
    6. 陈书涛,古敏,贾刘敏,等.冬小麦返青拔节期土壤的自养和异养呼吸研究[J].环境科学学报,2008,28(5):938-944.
    7. 邓君俊,王体健,李树,等.南京郊区大气氮化物浓度和氮沉降通量的研究[J].气象科学,2009,29(1):25-30.
    8. 邓琦,刘世忠,刘菊秀,等.南亚热带森林凋落物对土壤呼吸的贡献及其影响因素[J].地球科学进展,2007,22(9):976-986.
    9. 邓小文,韩士杰.氮沉降对森林生态系统土壤碳库的影响[J].生态学杂志,2007,26(10):1622-1627.
    10.杜春艳.中亚热带韶山森林的大气沉降特征及其酸沉降的生态响应研究[D].长沙:湖南大学,2010.
    11.杜红霞,刘增文,潘开文,等.外源性C、N干扰对森林土壤酶活性的影响[J].西北林学院学报,2006,21(2):35-38.
    12.樊后保,黄玉梓.陆地生态系统氮饱和对植物影响的生理生态机制[J].植物生理与分子生物学学报,2006,32(4):395-402.
    13.樊后保,廖迎春,刘文飞,等.模拟氮沉降对杉木幼苗养分平衡的影响[J].生态学报,2011,31(12):3277-3284.
    14.樊后保,刘文飞,李燕燕,等.亚热带杉木(Cunninghamia lanceolata)人工林生长与土壤养分对氮沉降的响应[J].生态学报,2007,27(11):4630-4642.
    15.樊后保,刘文飞,裘秀群,等.杉木人工林凋落物量对氮沉降增加的初期响应[J].生态学杂志,2007,26(9):1335-1338.
    16.樊后保,刘文飞,徐雷,等.杉木人工林土壤酶活性对氮沉降的响应[J].林业科学,2012,48(7):8-13.
    17.樊后保,刘文飞,杨跃霖,等.杉木人工林凋落物分解对氮沉降增加的响应[J].北京林业大学学报,2008,30(2):8-13.
    18.樊后保,刘文飞,徐蕾,等.氮沉降对杉木(Cunninghamia lanceolata)人工林凋落叶分解过程中C、N元素动态变化[J].生态学报,2005,25(6):2546-2553.
    19.樊后保,苏兵强,林德喜,等.杉木人工林生态系统的生物地球化学循环Ⅱ:氮素沉降动态[J].应用与环境生物学报,2000,6(2):133-137.
    20.樊后保,袁颖红,工强,等.氮沉降对杉木人工林土壤有机碳和全氮的影响[J].福建林学院学报,2007,27(1):1-6.
    21.樊后保.酸雨与森林衰退关系研究综述[J].福建林学院学报,2003,23(1):88-92.
    22.方华,莫江明.氮沉降对森林凋落物分解的影响[J].生态学报,2006,26(9):3127-3136.
    23.方熊,刘菊秀,张德强,等.降水变化、氮添加对鼎湖山主要森林土壤有机碳矿化和土壤微生物碳的影响[J].应用与环境生物学报,2012,18(4):531-538.
    24.关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    25.何容,王国兵,汪家社,等.武夷山不同海拔土壤微生物量的季节动态及主要影响因[J].生态学杂志,28(3):394-399.
    26.侯琳,雷瑞德,刘建军,等.秦岭火地塘林区油松(Pinus tabulaeformis)林休眠期的土壤呼吸[J].生态学报,2008,28(9):4070-4077.
    27.侯琳,雷瑞德,张硕新,等.秦岭火地塘林区油松林土壤呼吸时空变异[J].生态学报,2010,30(19):5225-5236.
    28.胡红玲,张健,刘洋,等.模拟氮沉降对华西雨屏区巨桉林掉落叶分解的影响[J].林业科学,2011,47(8):25-30.
    29.胡正华,李涵茂,杨燕萍,等.模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响[J].环境科学,2010,31(8):1726-1732.
    30.黄玉梓,樊后保,李燕燕,等.氮沉降对杉木人工林土壤呼吸与土壤纤维素酶活性的影响.福建林学院学报,2009,29(2):97-102.
    31.黄玉梓.模拟氮沉降对杉木人工林碳库及其化学机理的影响[D].福州:福建农林大学,2009.
    32.黄忠良,丁明憋,张祝平,等.鼎湖山季风常绿阔叶林的水文学过程及其氮索动态[J].植物生态学报,1994,18(2):194-19.
    33.李德军,莫江明,方运霆,等.木本植物对高氮沉降的生理生态响应[J].热带亚热带植物学报,2004.
    34.李德军,莫江明,彭少麟,等.南亚热带森林两种优势树种幼苗的元素含量对模拟氮沉降增加的响应[J].生态学报,2005,25(9):2165-2172.
    35.李德军,莫江明,方运霆,等.氮沉降对森林植物的影响[J].生态学报,2003,23(9)1891-1900.
    36.李贵才,韩兴国,黄建辉,等.森林生态系统土壤矿化影响因素研究进展[J].生态学报,2001,21(7):1187-1195.
    37.李国雷,刘勇,甘敬,等.飞播油松林土壤酶活性对间伐强度的季节响应[J].北京林业大学学报,2008,30(2):82-88.
    38.李欠欠,汤利.大气氮沉降的研究进展[J].云南农业大学学报,2010,25(6):889-902.
    39.李仁洪,胡庭兴,涂利华,等.华西雨屏区慈竹林凋落物叶分解过程养分释放对模拟氮沉降的响应[J].林业科学,2010a,46(8):8-14.
    40.李仁洪,涂利华,胡庭兴,等.模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响[J].应用生态学报,2010b,21(7):1649-1655.
    41.李仁洪,胡庭兴,涂利华,等.模拟氮沉降对华西雨屏区慈竹林凋 落物分解的影响[J].应用生态学报,2009,20(11):2588-2593.
    42.李仁洪.华西雨屏区慈竹林凋落物分解、养分释放及其对模拟氮沉降的响应[D].雅安:四川农业大学,2009.
    43.李生秀,寸待贵,高业军,等.黄土旱塬降水向土壤输入的氮素[J].干旱地区农业研究,1993,11(S1):83-92.
    44.李新艳,李恒鹏.江西省陆地生态系统氮平衡的时空分布规律研究[J].环境科学学报,2011,31(6):1320-1329.
    45.李雪峰,张岩,牛丽君,等.长白山白桦(Betula platyphylla)纯林和白桦山杨(Populus davidiana)混交林凋落物分分解[J].生态学报,2007,27(5):1782-1789.
    46.李跃林,李志辉,彭少麟,等.典范相关分析在桉树人工林地土壤酶活性与营养元素关系研究中的应用[J].应用与环境生物学报,2002,11(5):544-549.
    47.廖利平,高摇洪,汪思龙,等.外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J].植物生态学报,2000,2(1):34-39.
    48.廖利平,Lindley D K,杨永辉.森林叶凋 落物混合分解的研究I.缩微(Microcosm)实验[J].应用生态学报,1997,8(5):459-464.
    49.刘保新.生长季山西太岳山油松人工林土壤呼吸速率研究[D].北京:北京林业大学,2011.
    50.刘洁.山西省煤炭开发利用中的“三废”污染及防治模式研究[J].陕西师范大学学报(自然科学版),1999,27(2):103-111.
    51.刘世荣.兴安落叶松人工林生态系统营养元素生物地球化学循环特征[J].生态学杂志,1992,11:1-6.
    52.刘文飞,樊后保,张子文,等.杉木人工林针叶养分含量对模拟氮沉降增加的响应[J]. 应用与环境生物学报,2008,]4(3):319-323.
    53.刘文飞,樊后保,杨跃霖,等.氮沉降对杉木人工林凋落物微量元素含量的影响[J].福建林学院学报,2007,27(4):322-327.
    54.刘文飞,樊后保,袁颖红,等.氮沉降对杉木人工林凋落物大量元素归还量的影响[J].水土保持学报,2011,25(1):137-141.
    55.刘文飞,樊后保,张子文,等.杉术人工林针叶养分含量对模拟氮沉降增加的响应[J].应用与环境生物学报,2005,14(3):319-323.
    56.鲁显楷,莫江明,董少峰.氮沉降对森林生物多样性的影响[J].生态学报,2008,28(11):5532-5548.
    57.鲁显楷,莫江明,李德军,等.鼎湖山主要林下层植物光合生理特性对模拟氮沉降的响应[J].北京林业大学学报,2007,29(6):1-9.
    58.鲁洋.柳杉人工林皆伐后土壤呼吸和土壤有机碳对模拟氮沉降的响应[D].雅安:四川农业大学,2009.
    59.雒守华,胡庭兴,张健,等.华西雨屏区光皮桦林土壤呼吸对模拟氮沉降的响应[J].农业环境科学学报,2010,29(9):1834-1839.
    60.马雪华.杉木林和马尾松林中雨水的养分淋溶作用[J].生态学报,1989,9(1):15-20.
    61.莫江明,方运霆,徐国良,等.鼎湖山苗圃和主要森林十壤CO2排放和CH4吸收对模拟N沉降的短期响应[J].生态学报,2005,25(4):682-690.
    62.莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物及其对N沉降的响应[J].生态学报,2004,24(7):1413-1420.
    63.邵伟,张颖,宋玲,等.西藏林芝大气有机氮沉降[J].生态学报,2009,29(10):5586-5591.
    64.沈芳芳.模拟氮沉降对杉木人工林土壤有机碳库的影响[D].南昌:江西农业大学,2011.
    65.沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报,2012,32(2):517-527.
    66.沈健林,刘学军,张福锁.北京近郊农田大气NH3与NO2干沉降研究[J].土壤学报,2008,45(1):165-169.
    67.史广松.山西太岳山针阔叶混交林土壤呼吸速率研究[D].北京:北京林业大学,2009.
    68.宋学贵,胡庭兴,鲜骏仁,等.川南天然常绿阔叶林土壤酶活性特征及其对模拟N沉降的响应[J].生态学报,2009,29(3):1234-1240.
    69.宋学贵,胡庭兴,鲜骏仁,等.川西南天然常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应[J].应用生态学报,2007a,18(10):2167-2172.
    70.宋学贵,胡庭兴,鲜骏仁,等.川西南天然常绿阔叶林土壤呼吸及其对氮沉降的响应[J].水土保持学报,2007b,21(4):168-172.
    71.宋学贵.川西南常绿阔叶林凋落物分解和土壤呼吸特征及其对模拟氮沉降的响应[D].雅安:四川农业大学,2007.
    72.涂利华,戴洪忠,胡庭兴,等.模拟氮沉降对华西雨屏区撑绿杂交竹凋落物分解的影响[J].生态学报,2011a,31(5):1277-1284.
    73.涂利华,胡庭兴,黄立华,等.华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应[J].植物生态学报,2009a,33(4):728-738.
    74.涂利华,胡庭兴,张健,等.华西雨屏区苦竹林土壤酶活性对模拟氮沉降的响应[J].应用生态学报,2009b,20(12):2943-2948.
    75.涂利华,胡庭兴,张健,等.模拟氮沉降对华西雨屏区慈竹林土壤活性有机碳库和根生物量的影响.生态学报,2010a,31(5):1277-1284.
    76.涂利华,胡庭兴,张健,等.模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J].植物生态学报,2011b,35(2):125-136.
    77.涂利华,胡庭兴,张健,等.模拟氮沉降对两种竹林不同凋 落物组分分解过程养分释放的影响[J].生态学报,2011c,31(6):1547-1557.
    78.涂利华,胡红玲,胡庭兴,等.华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J].植物生态学报,2012,36(2):99-108.
    79.涂利华,胡庭兴,张健,等.模拟氮沉降对华西雨屏区苦竹林细根特性和土壤呼吸的影响[J].应用生态学报,2010b,21(10):2472-2478.
    80.涂利华.模拟氮沉降对华西雨屏区苦竹人工林生态系统碳循环过程和特征的影响[D].雅安:四川农业大学,2011.
    81.涂玉,尤业明,孙建新.油松-辽东栎混交林地表凋落物与氮添加对土壤微生物量碳、氮及其活性的影响[J].应用生态学报,2012,23(9):2325-2331.
    82.王德宣,赵普生,张玉霞,等.北京市区大气氮沉降研究[J].环境科学,2010,31(9)1987-1992.
    83.工光军,田大伦,闫文德,等.改变凋落物输入对杉木人工林土壤呼吸的短期影响[J].植物生态学报,2009,33(4):739-747.
    84.王国兵,阮宏华,唐燕飞,等.北亚热带次生栎林与火炬松人工林土壤微生物量碳的季节动态[J].应用生态学报,19(1):37-42.
    85.王晖,莫江明,鲁显楷,等.南亚热带森林土壤微生物量碳对氮沉降的响应[J].生态学报,2008,28(2):470-478.
    86.汪金松,范娟,赵秀海,等.太岳山油松人工林土壤呼吸组分及其影响因子[J].林业科学2013,49(2):1-7.
    87.汪金松,赵秀海,张春雨,等.改变C源输入对油松人工林土壤呼吸的影响[J].生态学报,2012,32(9):2768-2777.
    88.王茜,王雪梅,林文实,等.鼎湖山无机氮湿沉降来源研究[J].环境科学研究,2008,21.(6):156-160.
    89.王强.模拟大气氮沉降对闽北森林土壤理化性质及森林碳动态的影响[D].福州:福建农林大学,2006.
    90.王志勇.模拟氮沉降对亚热带人工林土壤微生物的影响[D].长沙:中南林业科技大学,2012.
    91.温都如娜,方华军,于贵瑞,等.模拟氮沉降增加对寒温带针叶林上壤CO2排放的初期影响[J].生态学报,2012,32(7):2185-2195.
    92.吴建国,艾丽.祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量[J].植物生态学报,2008,32(2):465-476.
    93.项文化,闫文德,田大伦,等.外加氮源及与林下植物叶混合对杉木林针叶分解和养分释放的影响[J].林业科学,2005,41(6):1-6.
    94.肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究[J].土壤学报,2002,39(5):763-768.
    95.徐国良,莫江明,Brown S,等.土壤动物对模拟N沉降的响应[J].生态学报,2004,24(10):2245-2251.
    96.徐国良,莫江明,周国逸,等.氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J].生态环境,2005a,14(6):901-907.
    97.徐国良,莫江明,周国逸.模拟氮沉降增加对南亚热带主要森林上壤动物的早期影响[J].应用生态学报,2005b,16(7):1235-1240.
    98.徐仁扣.我国降水中的NH4+及其在上壤酸化中的作用[J].农业环境保护,1996,15(3)139-142.
    99.薛璟花,莫江明,李炯,等.氮沉降对外生菌根真菌的影响[J].生态学报,2004,24(8)1785-1792.
    100.薛璟花,莫江明,李炯,等.氮沉降增加对上壤微生物的影响[J].生态环境,2005,14(5):777-782.
    101.严昶升.土壤肥力研究方法[M].北京:农业出版社,1998.
    102.严俊霞,秦作栋,张义辉,等.土壤温度和水分对油松林土壤呼吸的影响[J].生态学报,2009,29(12):6366-6376.
    103.杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40:152-159.
    104.杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木人工林凋落物分解及养分动态的比较[J]林业科学,2004,40(3):19-25.
    105.于占源,曾德慧,艾桂艳,等.添加氮素对沙质草地土壤氮素有效性的影响[J].生态学杂 志,2007,26(11):1894-1897.
    106.袁颖红,樊后保,李辉信,等.模拟氮沉降对杉木人工林土壤微生物的影响[J].林业科学,2012,48(9):8-14.
    107.袁颖红,樊后保,王强,等.模拟氮沉降对杉木人工林土壤有效养分的影响[J].浙江林学院学报,2007,24(4):437-444.
    108.张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地理科学进展,2005,20(7):778-785.
    109.张金波,宋长春,杨文艳,等.不同土地利用下土壤呼吸温度敏感性差异及影响因素分析[J].环境科学学报,2005,25(11):1537-1542.
    110.张伟东,王思龙,杨会侠,等.树种和凋落物对杉木林土壤微生物性质的影响[J].应用与环境生物学,2010,16(2):168-172.
    111.张炜,莫江明,方运霆,等.氮沉降对森林土壤主要温室气体通量的影响[J].生态学报,2008,28(5):2309-2319.
    112.张笑菁.太岳山麻池背油松天然林结构特征研究[D].北京:北京林业大学,2010.
    113.张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响[J].应用生态学报,2006,17(6):1099-1102.
    114.张徐源,闫文德,郑威,等.氮沉降对湿地松林土壤呼吸的影响[J].中国农学通报,2012,28(22):5-10.
    115.张颖,刘学军,张福锁,等.华北平原大气但是沉降的时空变异[J].生态学报,2006,26(6):1633-1639.
    116.赵玉涛,韩士杰,李雪峰,等.模拟氮沉降增加对上壤微生物量的影响[J].东北林业大学学报.2009,37(1):49-51.
    117.郑宇秀,牛莉平,王丹.山西煤炭资源利用与大气污染防治[J].山西能源与节能,2003,2:33-35.
    118.周国逸,闫俊华.鼎湖区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J].生态学报,2001,21(12):2002-2012.
    119.周薇,王兵,李钢铁.大气氮沉降对森林生态系统影响的研究进展[J].中央民族大学学报(自然科学版),2010,19(1):34-40.
    120.周晓兵,张元明,陶冶,等.古尔班通古特沙漠土壤酶活性和微生物量氮对模拟氮沉降的响应[J].生态学报,2011,31(12):3340-3349.
    121.朱凡,王光军,田大伦,等.杉木人工林去除根系土壤呼吸的季节变化及影响[J].生态学报,2010,30(9):2499-2506.
    122.朱建奎.山西太岳山地区森林土壤理化性状研究[D].北京:北京林业大学,2009.
    123. Aas W, Shao M, Jin L, et al. Air concentrations and wet deposition of major inorganic ions at five nonurban sites in China,2001-2003 [J]. Atmospheric Environment,2007, 41(8):1706-1716.
    124. Aber J D, Melillo J M, McClaugherty C A. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry intemperate' forest ecosystems [J]. Canadian Journal of Botany,1990,68:2201-2208.
    125. Aber J D, Melillo J M. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content [J]. Canadian Journal of Botany,1982,60 (11):2263-2269.
    126. Aber J D, Nadelhoffer K J, Steudler P, et al. Nitrogen saturation in northern forest ecosystem: hypothesis and implications [J]. Bioscience,1989,39(6):379-386.
    127. Aber J, McDowell W, Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems:Hypotheses revisited [J]. Bioscience,1998,48(11):921-934.
    128. Aerts R. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship [J]. Oikos,1997,79(3):439-449.
    129. Allen A S, Schlesinger W H. Nutrient limitations to soil microbial biomass and activity in loblolly pine forest [J]. Soil Biology & Biochemistry,2004,36(4):581-589.
    130. Allison S D, Czimczik C I, Treseder K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest [J]. Global Change Biology,2008, 14(5):1156-1168.
    131. Allison S D, LeBauer D S, Ofrecio M R, et al. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi [J]. Soil Biology & Biochemistry,2009,41(2):293-302.
    132. Alvarez S, Guerrero M C. Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds [J]. Soil Biology & Biochemistry,2000, 32(13):1941-1951.
    133. Andersen A J, Petersen S O. Effects of C and N availability and soil-water potential interactions on N2O evolution and PLFA composition [J]. Soil Biology & Biochemistry, 2009,41 (8):1726-1733.
    134. Andersson M, Kjoller A, Struwe S. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests [J]. Soil Biology & Biochemistry,2004, 36(10):1527-1537.
    135. Apsimon H, Kruse M, Bell J N B. Ammonia emissions and their role in acid deposition [J]. Atmospheric Environment,1987,21(9):1939-1946.
    136. Atkinson L J, Hellicar M A, Fitter A H, et al. Impact of temperature on the relationship between respiration and nitrogen concentration in roots:an analysis of scaling relationships, Q10 values and thermal acclimation ratios [J]. New Phytologist,2007,173(1):1101-120.
    137. Atlas R M. Diversity of microbial community [J]. Advanced Microbiology Ecology,7:1-47.
    138. Baath E, Wallander H. Soil and rhizosphere microorganisms have the same Q10 for respiration in a model system [J]. Global Change Biology,2003,9(12):1788-1791.
    139. Bai Y F, Wu J G, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from Inner Mongolia grasslands [J]. Global Change Biology,2010,16(1):358-372.
    140. Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environmental Reviews,1997,5(1):1-5.
    141. Berg B, McClaugherty. Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin [J]. Canadian Journal of Botany,1989,67(4):1148-1156.
    142. Berg B, Meentemeyer V. Litter quality in a north European transect versus carbon storage potential [J]. Plant and Soil,2002,242(1):83-92.
    143. Bergh J, Linder S, Lundmark T, et al. The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden [J]. Forest Ecology and Management,1999,119(1-3):51-62.
    144. Bethers S, Day M E, Wiersma G B, et al. Effects of chronically elevated nitrogen and sulfur deposition on sugar maple saplings:Nutrition, growth and physiology [J]. Forest Ecology and Management,2009,258(5):895-902.
    145. Boltenstern S Z, Michel K, Pfeffer M. Soil microbial community structure in European forests in relation to forest type and atmospheric nitrogen deposition [J]. Plant and Soil,2011, 343(1-2):37-50.
    146. Boone R D, Nadelhoffer K J, Canary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration [J]. Nature,1998,396(6711):570-572.
    147. Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soil at the Harvard Forest [J]. Forest Ecology and Management,2004,196(1):43-56.
    148. Brookes P C, Landman A, Pruden G, et al. Chloroform fumigation and the release of soil nitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biology & Biochemistry,1985,17 (6):837-842.
    149. Burger J A, Kelting D L. Using soil quality indicators to assess forest stand management [J]. Forest Ecology and Management,1999,122(1-2):155-166.
    150. Burton A J, Pregitzer K S, Crawford JN, et al. Simulated chronic NO3- deposition reduces soil respiration in northern hardwood forests [J]. Global Change Biology,2004, 10(7):1080-1091.
    151. Cao, J J, Zhang T, Chow, J C, et al. Characterization of atmospheric ammonia over Xi'an, China [J]. Aerosol and Air Quality Research,2009,9(2):277-289.
    152. Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition [J]. Ecology,2000,81 (9):2359-2365.
    153. Chalcraft D R, Cox S B, Clark C, et al. Scale-dependent responses of plant biodiversity to nitrogen enrichment [J]. Ecology,2008,89(8):2165-2171.
    154. Chen W W, Wolf B, Zheng X H, et al. Carbon dioxide emission from temperate semiarid steppe during the non-growing season [J]. Atmospheric Environment,2013,64:141-149.
    155.Chivenge P, Yanlauwe B, Gentile R., et al. Organic resource quality influence short-term aggregate dynamics and soil organic carbon and nitrogen accumulation [J]. Soil Biology & Biochemistry,2011,43(3):657-666.
    156. Christopher S. Terrestrial biomass and effect of deforestation on the global carbon cycle [J]. Bioscience,1999,49(10):769-778.
    157. Clark C M, Cleland E E, Collins S L, et al. Environmental and plant community determinants of species loss following nitrogen enrichment [J]. Ecology Letters,2007,10(7):596-607.
    158. Cleveland C C, Townsend A R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere [J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(27):10316-10321.
    159. Compton J E, Watrud L S, Porteous L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest [J]. Forest Ecology and Management,2004,196(12):143-158.
    160. Cornwell W K, Cornelissen J H C, Amatangelo K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide [J]. Ecology letters,2008,11 (10):1065-1071.
    161. Criquet S, Farnet A M, Tagger S, et al. Annual variations of phenoloxidase activities in an evergreen oak litter:influence of certain biotic and abiotic factors [J]. Soil Biology & Biochemistry,2000,32(11-12):1505-1513.
    162. Crow S E, Lajtha K, Bowden R D, et al. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest [J]. Forest Ecology and Management, 2009,258(10):2224-2232.
    163. Cusack D F, Silver W L, Torn M S, et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests [J]. Ecology,2011,92 (3):621-632.
    164. De Vries W, Solberg S, Dobbertin M, et al. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands [J]. Forest Ecology and Management,2009, 258(8):1814-1823.
    165. Deforest J L, Zak D R, Pregitzerc K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest [J]. Soil Biology & Biochemistry,2004,36(6):965-971.
    166. Deng Q, Zhou G, Liu J, et al. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China [J]. Biogeosciences,2010, 7:315-328.
    167. Dezi S, Medlyn B E, Tonon G, et al. The effect of nitrogen deposition on forest carbon sequestration:a model-based analysis [J]. Global Change Biology,2010,16(5):1470-1486.
    168. Diepen L, Lilleskov EA, Pregitzer KS, et al. Simulated nitrogen deposition causes a decline of intra-and extraradical abundance of arbuscular mycorrhizal fungi and changes in microbial community structure in Northern Hardwood forests [J]. Ecosystems,2010, 13(5):863-695.
    169. Dixon R K, Turner D P. The global carbon cycle and climate change:responses and feedbacks from belowground systems [J]. Environmental Pollution,1991,73(3-4):245-262.
    170. Elvir J A, Wiersma G B, Day M E, et al. Effects of enhanced nitrogen deposition on foliar chemistry and physiological processes of forest trees at the Bear Brook Watershed in Maine [J]. Forest Ecology and Management,2006,207-214.
    171. Elvir J A, Wiersma G B, White A S, et al. Effects of chronic ammonium sulfate treatment on basal area increment in red spruce and sugar maple at the Bear Brook Watershed in Maine [J]. Canadian Journal of Forest Research,2003,33(5):862-869.
    172. Emmett B A, Box man D, Bredemeier M, et al. Predicting the effect of atmospheric nitrogen deposition in conifer stands:evidence from the NITREX ecosystem-scale experiments [J]. Ecosystems,1998, 1(4):352-360.
    173. Fang H, Mo J, Peng S, et al. Cumulative effects of nitrogen addition on litter decomposition in three tropical forests in southern China [J]. Plant and Soil,2007,297(1):233-242.
    174. Fang Y T, Gundersen P, Mo J M, et al. Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. Forest Ecology and Management [J], 2009,257(20):332-342.
    175.Fenn M A, Poth M A, Aber J D, et al. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies [J]. Ecological Applications,1998,8(3):706-733.
    176. Fog K. The effect of added nitrogen on the rate of decomposition of organic matter [J]. Biological Reviews,1988,63(3):433-62.
    177.Frey S D, Elliott E T, Paustian K. Fungal translocation as a mechanism of exogenous nitrogen inputs to decomposing surface residues in a no-tillage agroecosystem [J]. Soil Biology & Biochemistry,2000,32(5):689-698.
    178. Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests [J]. Forest Ecology and Management,2004,196(1):159-171.
    179. Gallardo A, Schlesinger W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperature forest [J]. Soil Biology & Biochemistry,1994, 26(10):1409-1415.
    180. Gallo M, Amonette R, Lauber C, et al. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils [J]. Microbial Ecology,2004, 8(2):218-229.
    181. Galloway J N. The global nitrogen cycle:changes and consequences. Environmental Pollution,1998,102(1):15-24.
    182. Galloway J N, Aber J D, Erisman J W, et al. The nitrogen cascade [J]. Bioscience,2003, 53(4):341-356.
    183. Galloway J N, Cowling E B. Reactive nitrogen and the world:200 years of change [J]. Ambio,2002,31(2):64-71.
    184. Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:past, present, and future [J]. Biogeochemistry,2004,70(2):153-226.
    185. Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends,questions, and potential solutions [J]. Science,2008,320 (5878):889-892.
    186. Gavrichkova O, Kuzyakov Y. Ammonium versus nitrate nutrition of Zea mays and Lupinus albus:effect on root-derived CO2 efflux [J]. Soil Biology & Biochemistry,2008, 40(11):2835-2842.
    187. Goodale C L, Heath L S, Houghton R A, et al. Forest carbon sinks in the Northern Hemisphere [J]. Ecological Applications,2002,12(3):891-899.
    188. Gough L, Osenberg C W, Gross K L, et al. Fertilization effects on species density and primary productivity in herbaceous plant communities [J]. Oikos,2000,89:428-439.
    189. Gu F, Zhang Y, Tao B, et al. Modeling the effects of nitrogen deposition on carbon budget in two temperate forests [J]. Ecological Complexity,2010,7(2):139-148.
    190. Gundersen P, Emmett B A, Kjonaas O J, et al. Impact of nitrogen deposition on nitrogen cycling in forest:a synthesis of NITREX data [J]. Forest Ecology and Management,1998, 101(1-3):37-55.
    191. Guo P, Wang C Y, Jia Y, et al. Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China [J]. Plant and Soil,2011,338(1-2):355-366.
    192. Hansson K, Kleja D B, Kalbitz K, et al. Amounts of carbon mineralised and leached as DOC during decomposition of Norway spruce needles and fine roots [J]. Soil Biology & Biochemistry,2010,42(2):178-185.
    193. He C, Liu X, Fangmeier A, et al. Quantifying the total airborne nitrogen input into agroecosystems in the North China Plain [J]. Agriculture, Ecosystems and Environment, 2007,121(4):395-400.
    194. Heinze S, Raupp J, Joergensen R G. Effects of fertilizer and spatial heterogeneity in soil Ph on microbial biomass indices in a long-term field trail of organic agriculture [J]. Plant and Soil,2010,328(1-2):203-215.
    195. Hery H A L, Juarez J D, Field C B. Interactive effects of elevated CO2, N deposition and climate change on extracellular enzyme activity and soil density fractionation in a California annual grassland [J]. Global Change Biology,2005,11(10):1808-1815.
    196. Hobbie S E, Gough L. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories [J]. Oecologia,2004,140(1):113-124.
    197. Hobbie S E. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition [J]. Ecosystems,2005,8(6):644-656.
    198. Hobbie S E. Interactions between litter lignin and soil N availability during leaf litter decomposition in a Hawaiian montane forest [J]. Ecosystems,2000,3(5):484-494.
    199. Hobbie S E. Nitrogen effects on decomposition:a five-year experiment in eight temperate sites [J]. Ecology,2008,89(9):2633-2644.
    200. Hogberg P, Fan H, Quist M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology,2006, 12(3):489-499.
    201. Hogberg P. Nitrogen impacts on forest carbon [J]. Nature,2007,447(14):781-82.
    202. Hogberg P. What is the quantitative relation between nitrogen deposition and forest carbon sequestration? [J]. Global Change Biology,2012,18(1):1-2.
    203. Hogherg P, Nordgren A, Buchmaxm N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration [J]. Nature,2001,411(6839):789-792.
    204. Hooker T D, Stark J M. Soil C and N cycling in three semiarid vegetation types:response to an in situ pulse of plant detritus [J]. Soil Biology & Biochemistry,2008,40(10):2678-2685.
    205. Huang Y H, Li Y L, Xiao Y. Controls of litter quality on the carbon sink in soils through partitioning the products of decomposing litter in a forest succession series in South China [J]. Forest Ecology and Management,2011,261 (7):1170-1177.
    206. Huberty L E, Gross K L, Miller C J. Effects of nitrogen addition on successional dynamic and species diversity in Michigan old-fields [J]. Journal of Ecology,1998,86(5):794-803.
    207. Hyvonen R, Persson T, Andersson S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe [J]. Biogeochemistry,2008,89(1):121-137.
    208. Janssens I A, Dieleman W, Luyssaert S, et al. Reduction of forest soil respiration in response to nitrogen deposition [J]. Nature Geoscience,2010,3:315-322.
    209. Janssens I A, Freibauer A, Ciais P, et al. Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions [J]. Science,2003,300(5625):1538-1542.
    210. Johnson D W, Cheng W, Ball J T. Effects of CO2 and N fertilization on decomposition and N immobilization in ponderosa pine litter [J]. Plant and Soil,2000,224(1):115-122.
    211. Johnson D W. Nitrogen retention in forest soils [J]. Journal of Environmental Quality,1992, 21(1):1-12.
    212. Johnson D, Leake J R, Read D J. Liming and nitrogen fertilization affects phosphatase activities, microbial biomass and mycorrhizal colonization in upland grassland [J]. Plant and Soil,2005,271(1-2):157-164.
    213. Kaiser J. The other global pollutant:nitrogen proves tough to curb [J]. Science,2001, 294(5545):1268-1269.
    214. Kaminura Y, Hayano K. Properties of protease extracted from tea-field soil [J]. Biology and Fertility of Soils,2000,30(4):351-355.
    215. Kane E S, Valentine D W, Schuur E A G, et al. Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska [J]. Canadian Journal of Forest Research,2005,35(9):2118-2129.
    216. Kaspari M, Garcia M N, Harms K E, et al. Multiple nutrients limit litterfall and decomposition in a tropical forest [J]. Ecology Letters,2008,11(1):35-43.
    217. Keeler B L, Hobbie S E, Kellogg L E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites:implications for litter and soil organic matter decomposition [J]. Ecosystems,2009,12(1):1-15.
    218. Knops J H, Naeem S, Reich P M. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition [J]. Global Change Biology,2007, 13(9):1960-1971.
    219. Knorr M, Frey S D, Curtis P S. Nitrogen additions and litter decomposition:a meta-analysis [J]. Ecology,2005,86(12):3252-3257.
    220. Koehler B, Corre M D, Veldkamp E, et al. Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale [J]. Biogeosciences,2009, 6:2973-2983.
    221. Kubartova A, Ranger J, Berthelin J. Diversity and decomposing ability of saprophytic fungi from temperate forest litter [J]. Microbial Ecology,2009,58(1):98-107.
    222. Lee K H, Jose S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient [J]. Forest Ecology and Management,2003,185(3):263-273.
    223. Lee M S, Nakane K, Nakatsubo T, et al. Effects of rainfall events on Soil CO2 flux in a cool temperature deciduous broad leaved forest [J]. Ecological Research,2002,17(3):401-409.
    224. Li Y Q, Xu M, Sun O J, Cui W C. Effects of root and litter exclusion on soil CO2 efflux and microbial biomass in wet tropical forests [J]. Soil Biology & Biochemistry,2004, 36(12):2111-2114.
    225. Liu J X, Zhaou G Y, Zhang D Q, et al. Carbon dynamics in subtropical forest soil:effects of atmospheric carbon dioxide enrichment and nitrogen addition [J]. Journal of Soils and Sediments,2010,10(4):730-738.
    226. Liu X J, Duan L, Mo J M, et al. Nitrogen deposition and its ecological impact in China:An overview [J]. Environmental Pollution,2011,159(10):2251-2264.
    227. Lovett G M, Lindberg S E. Atmospheric deposition and canopy interactions of nitrogen in forests [J]. Canadian Journal of Forest Research,1993,23(8):1603-1616.
    228. Lu C Q, Tian H Q. Spatial and temporal patterns of nitrogen deposition in China:synthesis of observational data [J]. Journal of Geophysical Research,2007,112(D22):27.
    229. Lu M, Zhou X H, Luo Y Q, et al. Minor stimulation of soil carbon storage by nitrogen addition:A meta-analysis [J]. Agriculture, Ecosystems and Environment,2011, 140(1-2):234-244.
    230. Lu X, Gilliam F S, Yu G, et al., Long-term nitrogen addition decreases carbon leaching in nitrogen-rich forest ecosystems [J]. Biogeoscience Discuss,2013,10:1451-1481.
    231. Lu X K, Mo J M, Gundersen P, et al. Effect of simulated N deposition on soil exchangeable cations in three forest types of subtropical China [J]. Pedosphere,2009,19(2):189-198.
    232. Ludovici KH, Kress LW. Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes [J]. Canadian Journal of Forest Research,2006,36(1):105-111.
    233. Magill A H, Aber J D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems [J]. Plant and Soil,1998,203(2):301-1l.
    234. Magill A H, Aber J D. Berntson G M. Long-term nitrogen addition and nitrogen saturation in two temperature forests [J]. Ecosystems,2000,3(3):238-253.
    235. Magill A H, Aber J D, Currie W S, et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA [J]. Forest Ecology and Management,2004,196(1):7-28.
    236. Magnani F, Mencuccini M, Borghetti M, et al. The human footprint in the carbon cycle of temperate and boreal forests [J]. Nature,2007,447(7146):848-850.
    237. Malchair S, Carnol M. Microbial biomass and C and N transformation in forest floors under European beech, sessile oak, Norway spruce and Douglas-fir at four temperate forest sites. Soil Biology & Biochemistry [J],2009,41 (4):831-839.
    238. Manning P, Saunders M, Bardgett R D, et al. Direct and indirect effects of nitrogen deposition on litter decomposition [J]. Soil Biology & Biochemistry,2008,40(3):688-98.
    239. Maskell LC, Smart SM, Bullock JM, et al. Nitrogen deposition causes widespread loss of species richness in British habitats [J]. Global Change Biology,2010,16(2):671-679.
    240. Matson P, Lohse K, Jall S J. The globalization of nitrogen:consequence for terrestrial ecosystem [J]. Ambio,2002,31(2):113-119.
    241. Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology,1982,63(3):621-626.
    242. Mendes C, Bandick A K, Dick R P, et al. Microbial biomass and activities in soil aggregates by winter cover crops [J]. Soil Science Society of America Journal,1999,63(4):873-881.
    243. Meng Z Y, Xu X B, Wang T, et al. Ambient sulfur dioxide, nitrogen dioxide, and ammonia at ten background and rural sites in China during 2007-2008 [J]. Atmospheric Environment, 2010,44(21-22):2625-2631.
    244. Michalzik B, Tipping E, Mulder J, et al. Modelling the production and transport of dissolved organic carbon in forest soils [J]. Biogeochemistry,2003,66(3):241-264.
    245. Micks P, Aber J D, Boone R D, et al. Short term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen enriched temperate forests [J]. Forest Ecology and management,2004,196(1):57-70.
    246. Mo J M, Brown S, Xue J H, et al. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests of subtropical China [J]. Plant and Soil,2006, 282(1-2):135-151.
    247. Mo J M, Brown S, Xue J, et al. Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China [J]. Ecological Research,2007a,22(4):649-658.
    248. Mo J M, Li D J, Gundersen P. Seedling growth response of two tropical tree species to nitrogen deposition in southern China [J]. European Journal of Forest Research,2008a, 127(4):275-283.
    249. Mo J M, Zhang W, Zhu W X, et al. Nitrogen addition reduces soil respiration in a tropical forest in southern China [J]. Global Change Biology,2008b,14(2):403-412.
    250. Mo J M, Zhang W, Zhu W X, et al. Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China [J]. Plant and Soil,2007b, 296(1-2):125-135.
    251. Moore T R, Trofymow J A, Prescott C E, et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests [J]. Ecosystems,2006,9(1):46-62.
    252. Nadelhoffer K. J, Emmett B A, Gundersen P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests [J]. Nature,1999,398:145-148.
    253. Neff J C, Townsend A R, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon [J]. Nature,2002,419:915-917.
    254. Nihlgard B. The ammonium hypothesis-an additional explanation to the forest die back in Europe [J]. Ambio,1985,14(1):2-8.
    255. Niu S L, Yang H J, Zhang Z, et al. Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe [J]. Ecosystems,2009,12(6):915-926.
    256. Niu S, Wu M, Han Y, et al. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe [J]. Global Change Biology,2010,16(1):144-155.
    257. O'Connell A M. Decomposition and nutrient conten of litter in a fertilized eucalypt forest [J]. Biology and Fertility of Soils,1994,17(2):159-166.
    258. Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability [J]. Biogeochemistry,2000,49(2):175-190.
    259. Olsson J S. Energy storage and the balance of producers and decomposers in ecological systems [J]. Ecology,1963,44(2):322-331.
    260. Olsson P, Linder S, Giesler R, et al. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration [J]. Global Change Biology,2005,11(10):1745-1753.
    261. Ostertag R, Verville JH. Fertilization with nitrogen and phosphorus increases abundance of non-native species in Hawaiian montane forests [J]. Plant Ecology,2002,162 (1):77-90.
    262. Parton W, Silver W L, Burke I C, et al. Global-scale similarities in nitrogen release patterns during long-term decomposition [J]. Science,2007,315(5810):361-364.
    263. Phoenix G K, Emmett B A, Britton A J, et al. Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments [J]. Global Change Biology,2012,18(4):1197-1215.
    264. Piao S, Fang J, Ciais P, et al. The carbon balance of terrestrial ecosystems in China [J]. Nature,458:1009-1013.
    265. Pregitzer K S, Burton A J, Zak D R, et al. Stimulated chronic nitrogen deposition increase carbon storage in Northern Temperate forests [J]. Global Change Biology,2008,14 (1):142-153.
    266. Prescott C E. Litter decomposition:what controls it and how can we alter it to sequester more carbon in forest soils? [J] Biogeochemistry,2010,101 (1-3):133-149.
    267. Prescott C E. Does N availability control rates of litter decomposition in forests? [J]. Plant and Soil,1995,62(1):83-88.
    268. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J]. Tellus B,1992,44(2):81-99.
    269. Rainey S M, Nadelhoffer K J, Silver W L, et al. Effects of chronic nitrogen additions on understory species in a red pine plantation [J]. Ecological Applications,1999,9(3):949-957.
    270. Rey A, Pegoraro E, Tedeschi V, et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy [J]. Global Change Biology,2002,8(9):851-866.
    271. Richard D, Bowdena E D, Kathleen S, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forests soils at the Harvard Forest [J]. Forest Ecology and Management,2004,196(1):43-56.
    272. Rodeghiero M, Cescatti A. Indirect partitioning of soil respiration in a series of evergreen forest ecosystems [J]. Plant and Soil,2006,284(1-2):7-22.
    273. Ruehr N K, Buchmann N. Soil respiration fluxes in a temperate mixed forest:seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration [J]. Tree Physiology,2010,30(2):165-176.
    274. Rustad L E, Fernandez I J, Fuller R D, et al. Soil solution response to acidic deposition in a northern hardwood forest [J]. Agriculture, Ecosystems and Environment,1993,47(2): 117-134.
    275. Ryan M G, Lavigne M B, Gower S T. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate [J]. Journal of Geophysical Research, 1997,102(24):871-883.
    276. Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biology & Biochemistry,2002,34(9):1309-1315.
    277. Samuelson L, Mathew R, Stokes T, et al. Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization [J]. Forest Ecology and Management,2009,258(11):2431-2438.
    278. Sarathchandra S U, Ghani A, Yeates G W, et al. Effect of nitrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils [J]. Soil Biology & Biochemistry,2001, 33(7-8):953-964.
    279. Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry,2000,48(1):7-20.
    280. Sedjo R A. The carbon cycle and global forest ecosystem [J]. Water, Air and Soil Pollution, 1993,70(1-4):295-307.
    281. Shen J L, Tang, A H, Liu X J, et al. High concentrations and dry deposition of reactive nitrogen species at two sites in the North China Plain [J]. Environment Pollution,2009, 157(11):3106-3113.
    282. Sinsabaugh R L, Antibus R K, Linkins A E, et al. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity [J]. Ecology,1993, 74(5):1586-1593.
    283. Sinsabaugh R L, Carreiro M M, Repert D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss [J]. Biogeochemistry,2002, 60(1):1-24.
    284. Sinsabaugh R L. Phenol oxidase, peroxidase and organic matter dynamics of soil [J]. Soil Biology & Biochemistry,2010,42(3):391-404.
    285. Sjoberg G, Nilsson SI, Persson T, et al. Degradation of hemicelluloses, cellulose and lignin in decomposing spruce needle litter in relation to N [J]. Soil Biology & Biochemistry,2004, 36(11):1761-1768.
    286. Snajdr J, Cajthaml T, Valaskova V, et al. Transformation of Quercus petraea litter: successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition [J]. FEMS Microbiology Ecology,2011, 75(2):291-303.
    287. Steudler P A, Melillo J M, Bowden R D, et al. The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in Puerto Rican wet forest [J]. Biotropica, 1991,23(4):356-363.
    288. Subke J A, Tenhunen J D. Direct measurements of CO2 flux below a spruce forest canopy [J]. Agriculture and Forest Meteorology,2004,126(1-2):157-168.
    289. Suding K N, Collins S L, Gough L, et al. Functional- and abundance-based mechanisms explain diversity loss due to N fertilization [J]. Proceeding of the National Academy of Science,2005,102(12):4387-4392.
    290. Sulzman E W, Brant J B, Bowden R D, et al. Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest [J]. Biogeochemistry,2005,73(1):231-256.
    291. Sundquist E T. The global carbon dioxide budget [J]. Science,1993,259(5097):934-94.
    292. Sutton M A, Simpson D, Levy P E, et al. Uncertainties in the relationship between atmospheric nitrogen deposition and forest carbon sequestration [J]. Global Change Biology, 2008,14(9):2057-2063.
    293. Taylor B R, Parkins on D, Parsons W F J. Nitrogen and lignin content as predictor of litter decay rates:a microcosm test [J]. Ecology,1989,70(1):97-104.
    294. Thirukkumaran C M, Parkinson D. Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodge pole pine forest floor amended with nitrogen and phosphorous fertilizers [J]. Soil Biology & Biochemistry,2000,32(1):59-66.
    295. Thomas R Q, Canham C D, Weathers K C, et al. Increased tree carbon storage in response to nitrogen deposition in the US [J]. Nature Geoscience,2010,3(1):13-17.
    296. Tian H, Melillo J, Lu C, et al. China's terrestrial carbon balance:Contributions from multiple global change factors [J]. Global Biogeochemical Cycles,2011,25(1):1-16.
    297. Townsend A R, Braswell B H, Holland E A, et al. Spatial and temporal patterns in terrestrial carbons storage due to deposition of fossil fuel nitrogen [J]. Ecological Applications,1996,6 (3):806-814.
    298. Treseder K K. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies [J]. Ecology letters,2008,11(10):1111-1120.
    299. Tu L H, Hu H L, Hu T X, et al. Decomposition of different litter fractions in a subtropical bamboo ecosystem as affected by experimental nitrogen deposition [J]. Pedosphere,2011a, 21(6):685-695.
    300. Tu L H, Hu T X, Zhang J, et al. Short-term simulated nitrogen deposition increases carbon sequestration in a Pieioblastus amarus plantation [J]. Plant and Soil,2011b,340(1-2): 383-396.
    301. Vance E D, Brookes P C, Jenkinson D S. An extraction method for measure microbial biomass C [J]. Soil Biology & Biochemistry,1987,19 (6):703-707
    302. Vitousek P M, Aber J D, Howarth R W, et al. Human alteration of the global nitrogen cycle: sources and consequences [J]. Ecological Applications,2002,7(3):737-750.
    303. Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity [J]. Ecological Applications,2004a, 14(4):1172-1177.
    304. Waldrop M P, Zak D R, Sinsabaugh R L. Microbial community response to nitrogen deposition in northern forest ecosystems [J]. Soil Biology & Biochemistry,2004b, 36(9):1443-1451.
    305. Waldrop M P, Zak D R. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon [J]. Ecosystems,2006,9(6):921-933.
    306. Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments [J]. Forest Ecology and Management,2006,222(1-3):459-468.
    307. Wallenstein M D. Effects of nitrogen fertilization on soil microbial communities, geophysical research abstracts [J]. European Geophysical Society,2003,5:13-17.
    308. Wang L X, Wang J, Huang J H. Comparison of major nutrient release patterns of Onercus liaotungensis litter decomposition in different climate zones [J]. Acta Botanica Sinica,2003, 45 (4):399-407.
    309. Wang Q K, Wang S L, Liu Y X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation:Microbial properties, enzyme activities and dissolved organic matter [J]. Applied Soil Ecology,2008,40(3):484-490.
    310. Wang S K, Zhao X Y, Qu H, Zuo X A, Lian J, Tang X, Raeann P. Effects of shrub litter addition on dune soil microbial community in Horqin sandy land, northern China [J]. Arid and Research and Management,2011,25(3):203-216.
    311. Wardle D A, Bardgett R D, Walker L R, et al. Among-and within-species variation in plant litter decomposition in contrasting long-term chronosequences [J]. Functional Ecology,2009, 23(2):442-453.
    312. Wei X H, Blanco J A, Jiang H, et al. Effects of nitrogen deposition on carbon sequestration in Chinese fir forest ecosystems [J]. Science of the Total Environment,2012,416(1):351-361.
    313. Wieser G. Seasonal variation of soil respiration in a Pinus cembra forest at the upper timberline in the Central Austrian Alps [J]. Tree Physiology,2004,24(4):475-480.
    314. Winjum J K, Dixon R K, Schroeder P E. Forest management and carbon storage:an analysis of 12 key forest nations [J]. Water, Air and Soil Pollution,1993,70:239-257.
    315. Wood T E, Lawrence D, Clark D A, et al. Rain forest nutrient cycling and productivity in response to large-scale litter manipulation [J]. Ecology,2009,90(1):100-121.
    316. Wright R F, Rasmussen L. Introduction to the NITREX and EXMAN projects [J]. Forest Ecology and Management,1998,101 (1-3):1-7.
    317. Wright R F, Roelofs J G M, Bredemeier M, et al. NITREX:responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen [J]. Forest Ecology and Management,1995,71 (1-2):163-169.
    318. Xia J Y, Niu S L, Wan S Q. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe [J]. Global Change Biology,2009,15(6):1544-1556.
    319. Zak D R, Holmes W E, Tomlinson M J, et al. Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO3- deposition [J]. Ecosystems,2006,9 (2):242-253.
    320. Zhang D Q, Hui D F, Luo Y Q, et al. Rates of litter decomposition in terrestrial ecosystems: global pattern and controlling factors [J]. Journal of Plant Ecology,2008a,1:85-93.
    321. Zhang K R., Cheng X L., Dang H S., et al. Linking litter production, quality and decomposition to vegetation succession following agricultural abandonment [J]. Soil Biology & Biochemistry,2013,57:803-813.
    322. Zhang N L, Wan S Q, Li L H, et al. Impacts of urea N addition on soil microbial community in a semi-arid temperate steppe in northern China [J]. Plant and Soil,2008b,311 (1-2):19-28
    323. Zhang W, Mo J M, Yu G, et al. Emissions of nitrous oxide from three tropical forests in southern China in response to simulated nitrogen deposition [J]. Plant and Soil,2008c, 306(1-2):221-236.
    324. Zhao Y, Duan L, Xing J, et al. Soil acidification in China:is controlling SO2 emissions enough? [J]. Environmental Science & Technology,2009,43(21):8021-8026.
    325. Zheng X H, Fu C B, Xu X K, et al. The Asian nitrogen case study [J]. Ambio,2002, 31(2):79-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700