TACE联合抗血管生成治疗肝癌的实验及临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分TACE联合抗血管生成治疗兔VXⅡ瘤实验研究
     研究目的:
     1.对比分析兔VXⅡ瘤TACE、TACE联合抗血管生成药物治疗后CT灌注成像各参数的动态变化,与组织病理及免疫组化相对照,进一步探讨TACE、TACE联合抗血管生成药物治疗兔VXⅡ瘤的可能机制。
     2.观察不同治疗方案的疗效,为TACE联合抗血管生成药物治疗肝癌提供研究基础。
     资料与方法:
     1.选择60只新西兰大白兔,建立兔VXⅡ瘤改良模型。
     2.肝脏CT灌注成像:使用GE16层螺旋CT机对60只兔VXⅡ瘤于接种后2周进行肝脏CT灌注成像,测量肿瘤周边血流量(BF)、血容量(BV)、毛细血管表面通透面积(PS),同时观察肿瘤生长情况,计算治疗前肿瘤大小(以肿瘤最大横径表示)。
     3.治疗过程:所有60只VVXⅡ瘤肝癌模型兔均采用开腹插管动脉灌注的方法进行治疗。将60只VXⅡ瘤兔随机分成A、B、C三组,每组20只,分别灌注不同药物:A组(联合治疗组),表阿霉素5mg+超液态碘化油混合液2ml+Endostar/YH-16(恩度)注射液1mg;B组(TACE组),表阿霉素5mg+超液态碘化油混合液2ml;C组(对照组),2ml生理盐水。
     4.治疗后处理:介入术后7d,三组实验兔均分别行肝脏CT灌注成像,测量BF、BV、PS以及治疗后肿瘤体积。根据治疗前后各组肿瘤大小,分别计算联合治疗组和TACE组的肿瘤生长率、肿瘤生长抑制率。①肿瘤生长率=(治疗后的体积-治疗前的体积)/治疗前的体积×100%;②肿瘤生长抑制率=(治疗后对照组的平均体积-治疗后各组的平均体积)/治疗后对照组的平均体积×100%。
     三组动物均于MSCT灌注扫描完成后立即处死,切取癌灶周边非坏死区及其周围肝组织,由病理科专职技术员作MVD、VEGF免疫组化染色。
     5.统计学分析:先进行重复方差分析,检验时间、分组是否存在交互效应、主效应,然后进行方差分析,先比较多组间整体上是否差异存在统计学意义,然后采用LSD-t检验比较每两组之间是否差异存在统计学意义。如果方差不齐,则行welch检验,两两比较用Tamhane检验。治疗前后比较应用t检验,所有数据采用SPSS 11.5软件包进行分析,取p<0.05为有统计学意义。
     结果:
     1.影像学表现
     60只兔VXⅡ瘤肝癌模型均成功建立。治疗前MSCT平扫发现多数肿瘤接种部位呈单发、膨胀性生长,圆形或卵圆形,26只模型兔瘤灶区域呈等密度改变,其余34只均呈稍低密度改变,与邻近组织分界欠清。增强动脉期主要表现为瘤灶边缘环状强化,瘤体中心呈低密度灶;门静脉期中心为更低密度,与周围组织分界清。兔VXⅡ肿瘤在DSA均表现为血供丰富的实体瘤,DSA检查动脉期可见肿瘤外周有股动脉分出的滋养血管抵达肿瘤并绕行,呈“抱球状”改变。滋养血管迂曲不规则,其分支深入肿瘤内部。实质期肿瘤组织内网状、团片状染色勾画出肿瘤轮廓。
     介入治疗后,CT平扫对照组肿瘤均呈异常稍低密度改变,增强后明显强化。联合治疗组、TACE组肿瘤全部或部分被碘油充填,呈明显不均匀高密度改变碘油沉积以肿瘤周边密度增高,中心部位见片状低密度坏死。介入治疗后造影联合治疗组、TACE组肿瘤染色大部或全部消失。
     2.治疗前后肿瘤体积变化
     治疗前,三组的肿瘤平均体积(0.488±0.097、0.493±0.105、0.456±0.088 cm)之间差异均不存在统计学意义(F=0.862,p=0.428)。治疗后,三组之间存在统计学差异(F=211.606,p=0.000),C组(1.929±0.165cm)较A组(0.930±0.074cm)、B组(1.192±0.208cm)均增大,差异存在统计学意义(p=0.000);B组较A组增大,差异存在统计学意义(p=0.000)。治疗后,三组的肿瘤平均体积均较治疗前增大,差异存在统计学意义(t=17.043、14.107、34.900,P=0.000)。
     联合治疗组的肿瘤生长率约为90.57%,肿瘤生长抑制率约为51.788%;而TACE组的肿瘤生长率约为141.78%,肿瘤生长抑制率约为38.206%。
     3.治疗前后CT灌注参数
     治疗前,三组的CT灌注数据BF(47.010±9.704、48.025±9.824、44.095±8.749 ml/100g.min)之间差异均不存在统计学意义(F=0.935,p=0.399)。治疗后,三组之间BF存在统计学差异(F=45.051,p=0.000),且A组(75.161±5.306ml/100g.min)较B组(50.650±10.584ml/100g.min)、C组(50.037±9.708ml/100g.min)增大,差异存在统计学意义(p=0.000),C组和B组不存在统计学差异(P=0.287)。治疗后,A组、C组的BF较治疗前增大,差异存在统计学意义(t=13.053、4.368,P=0.000);B组较治疗前增大,差异不存在统计学意义(t=1.585,P=0.129)。
     治疗前,三组的CT灌注数据BV(4.424±0.613、4.300±0.869、4.377±0.672ml/100g)之间差异均不存在统计学意义(F=0.149,p=0.862)。治疗后,三组之间BV存在统计学差异(F=13.018,p=0.000),A组(5.743±1.601ml/100g)较B组(4.863±1.173 ml/100g)、C组(5.228±1.097ml/100g)增大,差异存在统计学意义(p=0.000、0.004),C组较B组增大,差异存在统计学意义(p=0.048)。治疗后,三组的BV较治疗前增大,差异存在统计学意义(t=9.392、3.793、10.217,P=0.000、0.001、0.000)。
     治疗前,三组的CT灌注数据PS(14.160±1.765、14.045±2.114、14.745±1.255ml/100g.min)之间差异均不存在统计学意义(F=0.923,p=0.403)。治疗后,三组之间PS存在统计学差异(F=28.403,p=0.000),A组(23.147±9.413ml/100g.min)较B组(20.320±6.708 ml/100g.min)、C组(21.481±6.997ml/100g.min)增大,差异存在统计学意义(p=0.000),C组较B组增大,差异存在统计学意义(p=0.036)。治疗后,三组的PS较治疗前增大,差异存在统计学意义(t=24.751、16.599、24.763,P=0.000)。
     4.治疗后三组的VEGF(血管内皮生长因子)、MVD(微血管密度)
     治疗后,三组的VEGF、MVD均差异存在统计学意义(F=482.531、620.175,P=0.000)。A组的VEGF、MVD (56.000±1.892、19.150±0.988个/视野)较B组(134.400±16.561、40.100±1.373个/视野)、C组(101.250±8.252、32.050±2.819个/视野)减低,差异存在统计学意义(P=0.000);B组较C组增高,差异存在统计学意义(P=0.000)。
     第二部分TACE联合抗血管生成治疗肝癌的临床应用研究
     研究目的:
     研究CT灌注成像在评价TACE及TACE联合抗血管生成药物治疗原发性肝细胞肝癌疗效的应用价值,探讨TACE联合抗血管生成药物治疗肝细胞肝癌的可行性。
     资料与方法:
     1.病人资料同意接受治疗研究的HCC患者40例(男34例,女6例,年龄39-75岁),按就诊时序单双数均分为A组与B组。A组患者接受常规TACE治疗,B组患者接受TACE联合抗血管生成药物(恩度)治疗。
     2.肝脏灌注CT扫描所有病例都在介入治疗前一周内、介入治疗后2-4周内分别行肝脏CT灌注扫描,测量灌注参数值、肿瘤周边血流量(BF)、血容量(BV)、毛细血管表面通透面积(PS)。
     3.介入治疗前一周内经皮肝肿瘤穿刺活检标本由病理科进行VEGF、MVD免疫组织化学检测。
     4.介入治疗A组常规TACE治疗,药物选择用氟脲嘧啶脱氧核苷(FUDR)0.5-1.0mg、羟基喜树碱5-10mg、奥沙利铂300-600mg、超液化碘化油10-20ml。B组联合治疗,在常规TACE治疗的基础上加用恩度(Endostar/YH-16) 30mg。
     5.治疗后处理所有病例均在介入治疗后14-28天内再次CT灌注检查,测量灌注参数BF, BV, PS,然后行肝肿瘤切除手术,部分未手术者动员再次肝穿,取得肿瘤组织行病理免疫组化VEGF、MVD检查。
     6.统计学分析先进行重复方差分析,检验时间与分组是否存在交互效应和主效应,然后进行两组间独立样本t检验和配对样本t检验,比较两组之间以及介入治疗前后差异是否存在统计学意义,所有数据采用SPSS 11.5软件包进行分析,取P<0.05为差异存在统计学意义。
     结果:
     1.分组情况A组男性16例、女性4例,年龄41-75(57.2±10.3)岁,Ⅲ期12例、Ⅳ期8例,肿瘤45个,瘤最大径10.4cm。B组男性18例、女性2例,年龄39-74(56.8±11.4)岁,Ⅲ期11例、Ⅳ期9例,肿瘤41个,瘤最大径12.3cm。两组的基本资料间差异无统计学意义。40例肝细胞癌活检病理分级,Ⅰ级7例(A组3例,B组4例),Ⅱ级13例(A组8例,B组5例),Ⅲ级12例(A组6例,B组6例),Ⅳ级8例(A组4例,B组4例)。
     2.治疗前后免疫组化改变
     治疗前,A、B两组的VEGF (131.700±15.051、128.800±18.432个/视野)及MVD(69.900±17.809、67.650±17.361个/视野)之间差异均不存在统计学意义(t=0.545,p=0.589和t=0.405,p=0.688)。治疗后,A组和B组的VEGF(227.900±43.515,103.800±19.215个/视野)及MVD(108.750±21.141,59.800±17.805个/视野)之间差异均存在统计学意义(t=11.667,p=0.000);A组的VEGF和MVD均较治疗前升高,差异存在统计学意义(t=10.057,P=0.000及t=5.012,P=0.000),B组的VEGF较治疗前降低,差异存在统计学意义(t=5.053,P=0.000)。B组的MVD较治疗前降低,但差异不存在统计学意义(t=1.386,P=0.166)。
     3.CT灌注图像分析
     40例肿瘤组织在治疗前CT灌注图像上均表现为肝动脉高灌注,其中13例(A组6例,B组7例)呈均匀高灌注,27例(A组14例,B组13例)呈不均匀高灌注,中心低密度坏死区无明显血流灌注。治疗后,14例(A组6例,B组8例)碘油致密充填,26例(A组14例,B组12例)碘油不均匀充填,碘油浓聚区无血流灌注,而碘油缺损或碘油稀疏区呈相对高灌注。
     治疗前,A、B两组CT灌注参数BF(244.765±32.518、247.260±25.795ml/100g.min)、BV (23.645±3.809、24.420±4.000 ml/100g)及PS(28.640±4.700、30.490±4.649 ml/100g/min)之间均差异不存在统计学意义(t=0.269-1.252,p值均>0.05)。治疗后,A、B两组CT灌注参数BF(162.765±38.338、225.255±31.364ml/100g/min)、BV (14.225±3.485,21.905±4.370 ml/100g)和PS (23.730±3.902,29.040±3.642 ml/100g/min)均差异存在统计学意义(t=5.732-9.988,p值均<0.05)。A组和B组的BF均较治疗前降低,差异存在统计学意义(t=10.272,P=0.000和t=3.882,P=0.020)。A组的BV和PS较治疗前降低,差异存在统计学意义(t=9.988,P=0.000和t=7.683,P=0.001);B组的BV和PS较治疗前降低,但差异不存在统计学意义(P值均>0.05)。
     研究结论:
     1、TACE术后肿瘤灶的血流灌注明显减少,说明TACE有效阻断肝癌病灶现有血供。TACE术后肿瘤灶的VEGF、MVD明显增高,反映TACE术后新生血管形成活跃,说明TACE术后激活了肿瘤的自我救赎机制,促进潜在血供的形成,所以TACE术后发生复发和转移的几率较高。
     2、TACE联合恩度治疗肝癌后,肿瘤灶的VEGF、MVD较单纯TACE组明显降低,说明恩度有效抑制了TACE术后的潜在新生血管形成,将有效降低TACE术后发生复发和转移的几率。
     3、TACE联合恩度治疗肝癌后,肿瘤灶的血流灌注较治疗前未见明显降低,较单纯TACE组升高,说明恩度主要直接作用于血管内皮细胞,抑制潜在新生血管的形成;TACE联合恩度治疗后,残存肿瘤灶因潜在血供无法建立,故肿瘤细胞无法进行大量增殖,肿瘤间质压力因而明显降低,所以反而使肿瘤灶的残存有功能的微血管呈现相对高度灌注状态。
     4、TACE联合恩度治疗肝癌后的VEGF、MVD、CT灌注参数变化,在兔VX2肝癌模型及临床肝癌患者方面的表现基本一致。
     5、TACE联合恩度治疗肝癌在临床上具有可行性。TACE联合抗血管生成药物有可能提高TACE的疗效,有望成为治疗肝癌的一种新的有效方法。
Part one:Effects of Transcatheter Arterial Chemoembolization Combinated with Anti-angiogenesis in Rabbit VXⅡHepatic Tumor:An Experimental Study
     Objective:
     1. To compare the dynamic parameters of computed tomography perfusion imaging (CTPI) of rabbit VXⅡhepatic tumor after transcatheter arterial chemoembolization (TACE) only and TACE combinated with antiangiogenesis, and to explore the underling therapeutic mechanism of these two therapeutic regimens by correlating CTPI with histopathological findings.
     2. To provide therapeutic baisis by comparing the therapeutic effect of TACE on hepatocellular carcinoma (HCC) with that of TACE combinated with antiangiogenesis.
     Materials and Methods:
     1. Establishment of rabbit VXⅡhepatic tumor model
     Sixty rabbit VXⅡhepatic tumor models were established.
     2. CTPI of rabbits VXⅡhepatic tumor
     CTPI for each rabbit was performed with a 16-section multidetector row CT scanner (LightSpeed; GE Medical Systems, Milwaukee, Wis) after two weeks of tumor embedding. Perfusion parameters of blood flow (BF), blood volume (BV) and permeability surface (PS) in tumor area were measured. The tumor sizes of pre-therapy were also measured.
     3. Grouping and treatment
     Sixty rabbit VXⅡhepatic tumor models were randomly divided into three groups: group A (n=20), TACE combined therapy group (pharmorubicin 5mg+ liquid iodized oil 2ml+Endostar lmg); group B (n=20) TACE group (pharmorubicin 5mg+liquid iodized oil 2ml); group C (n=20) as control group (0.9% sodium chloride 2 ml). Intra-arterial infusion was performed in all of the 60 rabbits.
     4. CTPI after intervention treatment
     CTPI for each rabbit was performed after seven days of interventional treatment. BF, BV, PS and the gross tumor volume after treatment were measured. The rate of tumor growth and inhibition rate of tumor growth were calculated according to the tumor size of pre-and post-therapy for each group.
     ①The rate of tumor growth= (the tumor volume of two weeks of post-therapy-the tumor volume of pre-therapy)/the tumor volume of pre-therapy×100%;
     ②Inhibition rate of tumor growth= (the mean tumor volume of post-therapy of the control group-the mean tumor volume of two weeks of post-therapy)/the mean tumor volume of post-therapy of control group×100%.
     All rabbits were sacrificed after MSCT perfusion scans. Then, the tumor and adjacent hepatic tissue were collected and performed with immunohistochemistry studies for microvessel density (MVD) and vascular endothelial growth factor (VEGF).
     5. Statistical analysis
     Data were compiled in a database by using a software package of SPSS 11.5. Repeated-measures variance analysis was firstly performed to test whether time, grouping existed interactive effect and principal effect or not. Then, one-way analysis of variance was used to compare the significant differences in CT perfusion parameters between tumor and background liver in different groups. In addition, LSD-t was used to compare the significant differences in pairwise comparison, and Tamhane was used to compare the significant differences in pairwise comparison for heterogeneity of variance. T-test was used to compare the significant differences in pre-and post-therapy. A P value of less than 0.05 was considered to indicate a significant difference.
     Results:
     1. Imaging findings
     Sixty rabbits VXⅡhepatic tumor model was established successfully. The tumors were round-or oval-shaped, solitary and expansive growth. Twenty-six VXⅡliver tumors demonstrated as isodensity and 34 demonstrated as low density on precontrast CT images. Low-density lesion with ring enhancement was found on arterial phase on postcontrast CT images, and lower density was found in the tumor center on venous phase CT images. All the VXⅡtumors in rabbits were hypervascular solid tumors on DSA images. Vasa vasorum were found to circumambulate the tumors and presented as "harboring globular sign" on arterial phase images. Reticulodromous and lamellar staining were found on parenchymal phase images. After interventional treatment, the tumors in control group demonstrated as low density on precontrast CT images and manifested as conspicuous enhancement on postcontrast CT images. Tumors in group A and group B were completely or partially filled with lipiodol and foliated necrosis could be detected in the tumorous centre area in some cases.
     2. The changes of tumor volume of pre- and post-therapy
     Before treatment, no significant statistical difference (F=0.862,p=0.428) was observed in the mean tumor volume among group A (0.488±0.097 cm), group B (0.493±0.105 cm) and group C (0.456±0.088 cm). After treatment, a significant difference was observed in the mean tumor volume among the three groups (F=211.606,p=0.000). The mean tumor volume in group C was significantly lager than group A and group B (both p=0.000), and the mean tumor volume in group B was significantly lager than that of group A (p=0.000). All the post-therapy tumor volume of the three groups were significantly lager than that of pre-therapy (all p=0.000).
     The rate of tumor growth and the inhibition rate of tumor growth of combined therapy group was 90.57% and 51.788%, respectively. The rate of tumor growth and the inhibition rate of tumor growth of combined therapy group was 141.78% and 38.206%, respectively.
     3. CT perfusion parameters of pre-and post-therapy
     Before treatment, there was no significant difference (all P>0.05) in CT perfusion parameters of mean BF, BV and PS among group A, B and C. After treatment, a significant difference (all P<0.01) was observed in mean BF, BV and PS among group A, B and C, and the Mean BF, BV and PS in group A was significantly higher than that of group B and C (all P<0.01). But no significant difference was observed in mean BF between group B and C. By comparing the parameters of post-therapy with that of pre-therapy, a significantly increased BF was observed in group A and C, but no difference in BF was seen in group B. Pairwise comparison after therapy, a significantly increased BV and PS was observed in group C compared with that of pretherapy, but no significant difference was observed in group B. A significantly increased PS in three groups post-therapy was observe as compared with that in pretherapy.
     4. The change of VEGF and MVD of pre- and post-therapy
     After treatment, a significant difference was observed in VEGF and MVD among three groups (F=482.531,620.175, both P=0.000). A significantly decreased VEGF and MVD was observed in group A (56.000±1.892/HP and 19.150±0.988/HP) as compared with that of group B (134.400±16.561/HP and 40.100±1.373/HP) and group C (101.250±8.252/HP and 32.050±2.819/HP) (both P=0.000), and they significantly increased in group B as compared with that of group C (P=0.000).
     Part two:A Clinical Application Study of Transcatheter Arterial Chemoembolization Combinated with Antiangiogenesis in Hepatic Cellular Carcinoma
     Objective:
     To investigate the clinical application of CTPI in evaluating the therapeutic effects of TACE and TACE combinated with antiangiogenesis on hepatocellular carcinoma (HCC), and to explore the feasibility of TACE combinated with antiangiogenesis for treatment of HCC.
     Materials and Methods:
     1. Study population
     The study cohort included 34 men and 6 women (age range,39-75 years) with a biopsy-confirmed diagnosis of HCC. The patients were divided into two groups according to the consulting order. The patients of group A was treated with routine TACE(n=20). The patients of group B was treated with TACE combinated with antiangiogenesis (Endostar) (n=20).
     2. CT perfusion imaging
     CT perfusion imaging (CTPI) was performed before one week of interventional therapy and after 2-4 weeks of interventional therapy for all patients. Perfusion parameters of blood flow (BF), blood volume (BV) and permeability surface (PS) in tumorous parenchyma were measured in all hepatic lesions.
     3. Immunohistochemistry study
     Percutaneous needle biopsy was performed for the quantitative immunohistochemistry of vascular endothelial growth factor (VEGF) and micro vessel density (MVD) before 1 week of interventional therapy.
     4. Interventional therapy
     All the patients were performed through intubation intra-arterial infusion. The patients in group A were treated with 0.5-1.Omg of FUDR + 5~10 mg of hydroxycamptothecin + 300~600mg of oxaliplatin + lipiodol ultra fluid. And the patients in group B were treated with the above drug combination + 30mg of Endostar/YH-16.
     5. CTPI after intervention
     CTPI was performed for each patient after 2-4 weeks of interventional therapy. Perfusion parameters of BF, BV and PS in tumorous parenchyma were measured. Then, the patients underwent tumour-reductive surgery and the excised tumors were studied with quantitative immunohistochemistry for VEGF and MVD expression.
     6. Statistical Analysis:
     Data were compiled in a database by using a commercial software package of SPSS 11.5. Repeated-measures variance analysis was firstly performed to test whether subgroups and time exist interactive effect and principal effect or not. Then, independent sample t-test and paired sample t-test were used to investigate the significant difference in subgroups and in pre-and post-therapy intervention. A P value of less than 0.05 was considered to indicate a significant difference.
     Results:
     1. Study Cohort
     We divided our cohort into two groups according to the consulting order. Group A (n=20) (16 men,4 women; mean age,57 years; age range,41-75 years):The staging of tumor of group A was as follows:stagingⅢ,12 cases; stagingⅣ,8 cases. Forty-five tumors could be detected in the liver, with the largest tumor size of 10.4 cm. Group B (n= 20) (18 men,2 women; mean age,57 years; age range,39-74 years):The staging of tumor of group B was as follows:stagingⅢ,11 cases; stagingⅣ9 cases. Forty-one tumors could be detected in the liver, with the largest tumor size of 12.3 cm. The pathological grading was as follows:gradeⅠ,7 cases (group A,3 cases; group B,4 cases); grade II,13 cases (group A,8 cases; group B,5 cases); gradeⅢ,12 cases (group A,6 cases; group B,6 cases); gradeⅣ, 8 cases (group A,4 cases; group B,4 cases). There was no significant statistical difference in general condition between group A and B.
     2. The change of VEGF and MVD of pre- and post-therapy
     Before therapy, no significant statistical difference (all p>0.05) was found in the expression of VEGF and MVD between group A and group B. After therapy, a significant statistical difference (p<0.001) was found in the expression of VEGF and MVD between group A and group B. A significantly increased VEGF and MVD was observed in group A (227.900±43.515/HP,108.750±21.141/HP) as compared with that of observed before therapy (131.700±15.051/HP,69.900±17.809/HP) (all p< 0.001). A significantly decreased VEGF expression was observed in group B (103.800±19.215/HP) compared with that of observed before therapy (128.800±8.432/HP) (t=5.053,p=0.000). No significant difference (p>0.05) was found in MVD expression between post-therapy and pre-therapy (t=1.386, P=0.166) for group B.
     3. Analysis of CTPI
     Before treatment, the HCC lesions were manifested on hepatic artery perfusion map as homogeneous hyper-perfusion in 13 cases (6 cases in group A, and 7 in group B) and inhomogeneous hyper-perfusion in 27 cases (14 cases in group A, and 13 in group B). Lack of blood perfusion was observed in the central area of the inhomogeneous hyper-perfusion lesions. After treatment, the tumor was completely filled with lipiodol in 14 cases (6 cases in group A, 8 in group B) and partially filled with lipiodol in 26 (14 cases in group A,12 in group B). Lack of blood perfusion was found in lipiodol-filling areas, but in sparsely or insufficiently lipiodol-filled areas blood perfusion could still be seen.
     Before treatment, no significant statistical deference was found in CT perfusion parameters of BF, BV and PS between group A and group B (t=0.269~1.252, all p>0.05). After treatment, a significant statistical difference was found in BF, BV and PS between group A and group B (t=5.732~9.988, all p<0.05). The BF of both group A and group B was significantly decreased compared with that of pre-therapy (t=10.272, P=0.000 and t=3.882, P=0.020). The BV and PS in group A was significantly lower than those measured before therapy (t=9.988, P=0.000 and t=7.683, P=0.001), while the BV and PS in group B determined between post-therapy and pre-therapy was of no statistical significance (P>0.05).
     Conclusions:
     1. The blood perfusion in rabbit VX2 hepatic tumor significantly decreased after TACE, which demonstrated that TACE could effectively block the tumor blood supply. The expression of VEGF and MVD of rabbit VX2 hepatic tumor significantly increased after TACE, which reflected the activity of neovascularization. This phenomenon might be explained as tumor-self redemption mechanism activated by TACE, and also might be explained the increase rate of relapse and metastasis after TACE for management of HCC.
     2. The expression of VEGF and MVD of rabbit VX2 hepatic tumor significantly decreased in combined therapy group, which demonstrated that Endostar might inhibit tumor angiogenesis and therefore improved the therapeutic effects of TACE.
     3. The blood perfusion of combined therapy group significantly increased as compared that of TACE group although there was not significant statistical difference between pre-therapy and post-therapy. This phenomenon indicated that Endostar may directely react to vascular endothelial cell and inhibit neovascularization. Consequently, it was almost impossible for the remnant tumor to establish its potential blood perfusion and to proliferate rapidly. The decrease of the pressure of tumor mesenchymal lead to the functional blood vessels being in the condition of high perfusion in combined therapy group.
     4. The expression of VEGF and MVD and CT perfusion parameters of hepatocellular carcinoma was similar to those of rabbit VX2 hepatic tumor.
     5. The management of TACE combined with endostar could improve the curative effect for HCC. Therefore, it was of feasibility and practicability to combine TACE with antiangiogenesis for treatment of advanced HCC.
引文
[1]Sahani DV, Holalkere NS, Mueller PR,, Zhu AX. Advanced Hepatocellular Carcinoma:CT Perfusion of Liver and Tumor Tissue-Initial Experience. Radiology,2007,243(3):736-743.
    [2]钦伦秀,孙惠川,汤钊猷.原发性肝癌研究进展-2006沪港国际肝病大会纪要.中华外科杂志,2006,44(15):1070-1074.
    [3]张成武,赵大建,胡智明.原发性肝癌经肝动脉栓塞化疗术后预后指标的多因素分析.肝胆胰外科杂志,2007,19(6):376-379.
    [4]郭吉刚,郭顺林,杜富会,王文辉,王莲初,常香惠.原发性肝癌TACE治疗前后血清VEGF含量的变化.中国临床医学影像杂志,2003,14(3):181-183.
    [5]Poon RT, Ng IO, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma:a prospective study. J Clin Oncol,2002,20(7):1775-1785.
    [6]Kim KW, Bae SK, Lee OH, etal. Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res,1998,58(2):348-351.
    [7]Poon RT, Ng IO, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma:a prospective study. J Clin Oncol,2002,20(7):1775-1785.
    [8]Borgstrom P, Hillan K, Sriramaro P. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody. Cancer Res,1996,56(17):4032-4039.
    [9]Huang J, He X, Lin X, et al. Effect of preoperative transcatheter arterial chemoembolization on tumor cell activity in hepatocellular carcinoma. Chin Med J,2000,113(5):446-448.
    [10]Chao Y, Li CP, Chau GY. Prognostic significance of vascular endothelial growth factor basic fibroblast growth factor and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol,2003,10(4):355-362.
    [11]廖晓锋,易继林,张伟杰,等.兔肝癌肝动脉栓塞后肿瘤血管生成的变化.中华实验外科杂志,2004,21(10):1173-1175.
    [12]Folkman J, Shing Y. Angiogensesis. J Biol Chem,1992,267(16):10931-10934.
    [13]Bandoh N, Hayashi T, Takahara M, et al. VEGF and bFGF expression and microvessel density of maxillary sinus squamous cell carcinoma in relation to p53 status, spontaneous apoptosis and prognosis. Cancer Lett,2004,208(2): 215-225.
    [14]Conti CJ. Vascular endothelial growth factor:regulation in the mouse skin carcinogenesis odel and use in antiangiogenesis cancer therapy. Oncologist, 2002,7 Suppl 3:4-11.
    [15]Ren B, Hoti N, Rabasseda X, et al. The antiangiogenic and therapeutic implications of endostatin. Methods Find Exp Clin Pharmacol,2003,25(3): 215-224.
    [16]Cao Y, Cao R, Veitonmaki N. Kringle structures and antiangiogenesis. Curr Med Chem Anticancer Agents,2002,2(6):667-681.
    [17]Kuwahara K, Sasaki T, Kuwada Y, et al. Expressions of angiogenic factors in pancreatic ductal carcinoma:a correlative study with clinicopathologic parameters and patient survival. Pancreas,2003,26(4):344-349.
    [18]Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature,2000, 407(6801):249-257.
    [19]Ferrara N, Davis S, Myth T. The biology of vascular endothelial growth factor. Endocr Rev,1997,18(1):42-45.
    [20]Brown LF, Berse B, Jackman RW. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol,1995,26(1):86-91.
    [21]Pak YN, Kin YB, Yang KM. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pattol Lab Med,2000,124(7):1061-1065.
    [22]Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA, 1998,95(26):15809-15814.
    [23]柏斗胜,钱海鑫,秦磊.管形成抑制剂TNPO470对小鼠肝癌术后复发和转移防治的研究.临床医药杂志,2004,8(1):45-46.
    [24]Drixler TA, Rinkes IH, Ritchie ED. Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res,2000,60(16):1761-1765.
    [25]Dixelius J, CrossM, Matsumoto T. Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res,2002,62 (7):1944-1947.
    [26]Hanai J, DhanabalM, Karumanchi SA. Endostatin causes G1 arrest of endothelial cells through inhibition of cyclin D1. J Biol Chem,2002,277(19):6464-6469.
    [27]姜慧杰,徐克,张慧博.螺旋CT灌注成像活体评价VX2移植瘤新生血管生成.中国医学影像技术,2007,23(7):967-970.
    [28]成武,赵大建,胡智明.原发性肝癌经肝动脉栓塞化疗术后预后指标的多因素分析.肝胆胰外科杂志,2007,19(6):376-379.
    [29]ChonMS, LiJQ, ZhangYQ, etal. Hilgh-dose iodized oil transcatheter aterial chemoembolization for patients with large hepatecellular carcinoma [J]. World J Gastroenterol,2002,8(1):74-78.
    [30]Carmeliet P, Jain RK. Angiogenesis in cancer and other disease [J]. Nature, 2000,407(6801):249-257.
    [31]Weidner N. Current pathologic methods for measuring intratumoral micmvessel density within breast carcinoma and other solid tumor (Refiew). Breast Cance rRes Treat,1995,36(2):169-180.
    [32]徐静.肝癌动物模型的建立[J].实用肝脏病杂志,2005,8(2):116-118.
    [33]Plat F, Centarti M, Sibilh A, et al. Extracorporea high-intensity focused ultrasound for VX2 liver tumors in the rabbit[J]. Hepatology,1995,21(3): 832-836.
    [34]Kigure T, Harada T, Yuri Y, et al. Ultrasound-guided microwave thermotherapy on a VX-2 carcinoma implanted in rabbit kidney [J]. Ultrasound Med Boil, 1995,21(5):649-655.
    [35]郭卫平,刘燕,王执民,等.兔肝VX2移植瘤改良模型的建立[J].中国医学影像技术,2002,18(5):397-399.
    [36]Lin WY, Chen J, Iin Y, et al. Implantation of VX2 carcinoma into the liver of rabbit:A comparition of three direct-injection methods[J]. J Vet Med Sci,2002, 64(7):649-652.
    [37]Hanaban D,Folkman J.Pattems and emerging mechanisms of the angiogenic switch during tumorigenesis[J].Cell,1996,86(3):353-364.
    [38]Folkman J. Role of angiogenesis in tumor growth and metastasis [J]. Semin Oncol,2002,29(6 Suppl 16):15-18.
    [39]Yamaguchi R, YanoH, Nakashima, et al. Expression And localization of vascular endiothelial growth factor receptors in human hepatocellular carcinoma and non-hepatocellular carcinoma tissues[J]. OncolRep,2000,7(4): 725-729.
    [40]刘志苏张中林.肝细胞癌的血管生成与抗血管生成治疗策略[J].医学新知杂志,2008,18(5):249-252.
    [41]Ishikawa H, Nakao K, Matsumoto K, et al. Antiangiogenic gene therapy for hepatocellular carcinoma using angiostatin gene [J]. Hepatology,2003,37(3): 696-704.
    [42]Graepler F, Verbeek B, Graeter T, et al. Combined endostatin/sFlt-1 antiangiogenic gene therapy is highly effective in a rat model of HCC [J]. Hepatology,2005,41(4):879-886.
    [43]Liu H,Peng CH, Liu YB, et al. Inhibitory effect of adeno-associated virus-mediated gene transfer of human endostatin on hepatocellular carcinoma[J]. worid J Gestroenterol,2005,11(22):3331-3334.
    [44]Ciafre SA, Niola F, Wannenes F, et al. An anti-VEGF Ribozyme enlbedded within the adenoviral VAI sequence inhibits glioblastonma cell angiogenic potential invitro [J]. J Vase Res,2004,41 (3):220-228.
    [45]赵登玲,邓钢,李光超,等.经肝动脉灌注重组人血管内皮抑制素联合TACE治疗兔VX 2肝癌及肿瘤血管生成的评估.肿瘤,2008,28(3):211-215.
    [46]蹇兆成,孙业全,王滨,等.TACE联合应用内皮抑素对兔VX2肝癌VEGF表达的影响.潍坊医学院学报,2008,30(1):8-11.
    [47]Sahani DV, Holalkere NS, Mueller PR,et al. Advanced Hepatocellular Carcinoma:CT Perfusion of Liver and Tumor Tissue—Initial Experience. Radiology,2007,243(3):736-743.
    [48]朱玉胜,吴林霖,颜志平.国内肝细胞癌介入治疗的现状和进展.当代医学,2009,15(23):505-507.
    [49]张成武,赵大建,胡智明,等.原发性肝癌经肝动脉栓塞化疗术后预后指标的多因素分析.肝胆胰外科杂志,2007,19(6):376-379.
    [50]Kim YB,Park YN,Park C. Increased proliferation activities of vascular endothelial cells and tumour cells in residual hepatocellular carcinoma following transcatheter arterial embolization. Histopathology,2001,38(2): 160-166.
    [51]郭吉刚,郭顺林,杜富会,等.原发性肝癌TACE治疗前后血清VEGF含量的变化.中国临床医学影像杂志,2003,14(3):181-183.
    [52]Huang J, He X, Lin X, et al. Effect of preoperative transcatheter arterial chemoembolization on tumor cell activity in hepatocellular carcinoma. Chin Med J,2000,113(5):446-448.
    [53]Poon RT, Ng 10, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma:a prospective study. J Clin Oncol,2002,20(7):1775-1785.
    [54]Borgstrom P, Hillan K, Sriramaro P, et al. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody. Cancer Res,1996,56(17):4032-4039.
    [55]柯昌能,盛青,刘维藩.原发性肝癌血管新生化和抗血管生成研究进展.肝胆胰外科杂志,2003,15(4):277-279.
    [56]Dhar DK, Ono T, Yamanol A, et al. Serum endostatin predicts tumor vascularity in hepatocellular carcinoma. Cancer,2002,95(10):2188-2195.
    [57]Schmitz V, Raskopf E, Gonzalez-Camlona MA, et al. Plasminogen fragment KI-5 improves survival in a murine hepatocellular carcinoma model. Gut, 2007,56(2):271-78.
    [58]杨林,王金万,孙燕,等.重组人血管内皮抑制素YH-16治疗晚期非小细胞肺癌的临床研究[J].中华肿瘤杂志,2006,28(2):138-141.
    [59]张敬.CT灌注成像技术的临床应用.临床放射学杂志,2001,20(10):803-806.
    [60]卞读军.多层螺旋CT肝脏灌注成像及其临床应用.实用放射学杂志,2007,23(2):258-262.
    [61]黄渊全,贾中芝,冯耀良,等.CT灌注成像在肝癌TACE术后疗效评价中的应用价值.介入放射学杂志,2009,18(6):437-441.
    [62]郑加贺,郭启勇,卢再呜,等.CT灌注成像评价肝细胞癌TACE前后血供的初步经验.中国医学影像学杂志,2007,15(1):5-8.
    [63]陈光斌,邹文远,张自力,等.原发性肝癌TACE前后血清VEGF与CT灌注参数间相关性的研究.临床放射学杂志,2008,27(7):908-910.
    [64]Chao Y,Li CP,Chau GY,et al. Prognostic significance of vascular endothelial growth factor,basic fibroblast growth factor,and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol,2003,10 (4):355-362.
    [65]Abdollahi A, Hlatky L b, Peter EH. Endostatin:The logic of antiangiogenic therapy. Drug Resistance Updates,2005,8(1-2):59-74.
    [66]Dixelius J, CrossM, Matsumoto T, et al. Endostatin regulates endothelial cell adhesion and cytoskeletal organization. Cancer Res,2002,62 (7):1944-1947.
    [67]李圣青.肿瘤抗血管生成治疗研究新进展.实用临床医药杂志,2008,12(6):9-14.
    [68]Zhu AX, Blaszkowsky LS, Ryan DP, el al. Phase 1I study of gemcitabine and oxaliplatin in com bination with bevacizumab in patients with advanced hepatocellular carcinoma[J]. J Clin Oncol,2006,24(12):1898-1903.
    [69]Siegel AB, Cohen El, Ocean A, et al. Phase 1I trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma[J]. J Clin Oncol,2008,26(18):2992-2998.
    [70]heng AI, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatoceIlular carcinoma:a phase Ⅲ randomised, double-blind, placebo-controlled trial [J]. Lancet Oncol,2009; 10(1):25-34.
    [71]Hsieh CH, Jeng KS, Lin CC, et al. Combination of sorafenib and intensity modulated radiotherapy for unresectable hepatocellular carcinoma[J]. Clin Drug Investig,2009,29(1):65-71.
    [72]Zhu AX, Sahani DV, di Tomaso E, et al. A Phase U study of sunitinib in patients with ad advanced hepatOceiIuiar carcinoma(poster)[c]. The 43rd Annual Meeting of the Ameri can Society of Clinical Oncology (ASCO). Chicago. June 1-5,2007.
    [73]Faivre SJ, Raymond E, Douillard J, et al. Phase 1I trial investigating the efficacy and and safety of sunitinib in patients with unresectable hepatocellular carcinoma (poster) [c]. The 14th European Cancer Conference (ECCo) Barcelona. Spain, September 23-27,2007.
    [1]朱玉胜,吴林霖,颜志平.国内肝细胞癌介入治疗的现状和进展.当代医学,2009,15(23):505-507.
    [2]Alvarez R, Banares R, Eehenagusia A, et al. Prognostic factors for survival following transarterial chemoembolization in advanced hepato-cellular carcinoma [J]. Gastroenterel Hepatol,2000,23(4):153-158.
    [3]Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma:chemoembolization improves survival [J]. Hepatology,2003,37(2):429-442.
    [4]林海澜,郝明志,沈友宏,等.肝动脉化疗栓塞术后补充经皮无水乙醇注射术治疗原发性肝细胞癌[J].中国介入影像与治疗学,2008,5(5):378-381.
    [5]冯献斌.高强度体外聚焦超声热疗结合肝动脉化疗栓塞治疗原发性肝癌伴门静癌栓效果观察[J].右江民族医学院学报,2008,1:44-46.
    [6]吴沛宏,张福君.原发性肝细胞癌介入治疗基本模式的转变[J].中华放射学杂志,2003,37(10):870-871.
    [7]张智坚,吴孟超陈汉等经皮肝穿刺射频热凝与肝动脉化疗栓塞联合治疗肝细胞癌[J]中华外科杂志.200240(11):826-830.
    [8]刘蒙,董卫国.原发性肝癌非手术治疗的研究进展.世界华人消化杂志,2009,17(12):1224-122.
    [9]Peng BG, Liang LJ, He Q, Kuang M, Lia JM, Lu MD, Huang JF. Tumor vaccine against recurrence Of hepatocellular carcinoma. World Gastroenterol, 2005,11(5):700-704.
    [10]罗仕华经介入途径基因治疗肝癌的回顾与展望[J]临床放射学杂志2008.27(2)282-285.
    [11]Folkman J. Isolation of a tumor factor responsible for angiogenesis. J Exp Med,1971,133(2):275-288.
    [12]Han ahan D, Christofori G, Naik P, et al. Transgenic monkey models of tumour angiogenesis:the angiogenic switch, its molecular controls, and prospects for preclinieal therapeutic models[J]. Ettr J Cancer,1996,32A(14):2386-2389.
    [13]李圣青.肿瘤抗血管生成治疗研究新进展。实用临床医药杂志,2008,12(6):9-14.
    [14]柯昌能,盛青,刘维藩.原发性肝癌血管新生化和抗血管生成研究进展.肝胆胰外科杂志,2003,15(4):277-279.
    [15]Grothey A, Ellis L Mm. Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies[J]. Cancer J,2008,14(3): 170-177.
    [16]Zhu AX, Blaszkowsky LS, Ryan DP, el al. Phase 1I study of gemcitabine and oxaliplatin in com bination with bevacizumab in patients with advanced hepatocellular carcinoma[J]. J Clin Oncol,2006,24(12):1898-1903.
    [17]Siegel AB, Cohen El, Ocean A, et al. Phase 1I trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma[J]. J Clin Oncol,2008; 26(18):2992-2998.
    [18]Cheng AI, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma:a phase Ⅲ randomised, double-blind, placebo-controlled trial [J]. Lancet Oncol, 2009; 10(1):25-34.
    [19]Hsieh CH, Jeng KS, Lin CC, et al. Combination of sorafenib and intensity modulated radiotherapy for unresectable hepatocellular carcinoma[J]. Clin Drug Investig,2009; 29(1):65-71.
    [20]Zhu AX, Sahani DV, di Tomaso E, et al. A Phase U study of sunitinib in patients with ad advanced hepatOceiIuiar carcinoma(poster)[c]. The 43rd Annual Meeting of the Ameri can Society of Clinical Oncology (ASCO). Chicago, June 1-5,2007.
    [21]Faivre SJ, Raymond E, Douillard J, et al. Phase 1I trial investigating the efficacy and and safety of sunitinib in patients with unresectable hepatocellular carcinoma (poster) [c]. The 14th European Cancer Conference (ECCo). Barcelona. Spain, September 23-27,2007.
    [22]Dhar DK, Ono T, Yamanol A. et al. Serum endostatin Dredicts tumor vascularity in hepatocellular carcinoma. Cancer,2002,95(10):2188.-2195.
    [23]Schmitz V, Raskopf E, Gonzalez-Camlona MA, et al. Plasminogen fragment KI-5 improves survival in a murine hepatocellular carcinoma model. Gut, 2007,56(2):271-278.
    [24]杨林,王金万,孙燕,等.重组人血管内皮抑制素YH-16治疗晚期非小细胞肺癌的临床研究[J].中华肿瘤杂志,2006,28(2):138-141.
    [25]赵登玲,邓钢,李光超,等.经肝动脉灌注重组人血管内皮抑制素联合TACE治疗兔VX 2肝癌及肿瘤血管生成的评估.肿瘤,2008,28(3):211-215.
    [26]叶义标,陈涛.肝癌血管生成与抗血管生成治疗的研究进展。中国普外基础与临床杂志,2009,16(10):861-865.
    [27]熊宇泉.抗血管生成药治疗肝细胞癌的研究进展.国际肿瘤学杂志,2007,34(12):933-935.
    [28]方建林,肝癌抗肿瘤血管生成研究进展临床放射学杂志,2005,24(9): 824-826.
    [29]Huang J, He X, Lin X, et al. Effect of preoperative transcatheter arterial chemoembolization on tumor cell activity in hepatocellular carcinoma. Chin Med J,2000,113 (5):446-448.
    [30]Mathonnet M, Descottes B, Valleix D, et al. Quantitative Analysis Using ELISA of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor in Human Colorectal Cancer, Liver Metastasis of Colorectal Cancer and Hepatocellular Carcinoma[J]. World J Gastroenteml,2006,12(23):3782-3783.
    [31]Poon RT, Ng IO,Lau C, et al.Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma:a prospective study.J Clin Oncol,2002,20:1775-1785.
    [32]符炜,穆毅,路逵阳,等.微血管密度和血管内皮生长因子在肝细胞癌中的表达及意义.东南国防医药,2005,7(1):23-25.
    [33][33]王滨,徐辉,曹贵文,等.肝动脉化疗栓塞对肝癌肿瘤新管生成及血管内皮细胞生长因子表达的影响[J].中华放射志,2005,39(2):204-206.
    [34]Hawighost H, Knap stein PG, MichaelWW, et al. Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis time-intensity curves for assessment of tumor angiogenesis and patient survival[J]. Cancer Res,1998, 58(16):3598-3602.
    [35]白旭明.抗肿瘤血管生成与肝癌介入治疗.实用放射学杂志,2007,23(4):545-549.
    [36]蹇兆成,孙业全,王滨,等.TACE联合应用内皮抑素对兔VX2肝癌VEGF表达的影响.潍坊医学院学报,2008,30(1):8-11.
    [37]韩国宏,白苇,梁洁,等.FACE联合索拉非尼治疗中晚期肝癌的初步观察.临床肿瘤学杂志,2009,14(5):401-404.
    [38]赵登玲,邓钢,李光超,等.经肝动脉灌注重组人血管内皮抑制素联合TACE 治疗兔VX 2肝癌及肿瘤血管生成的评估.肿瘤,2008,28(3):211-215.
    [39]Maataoui A, Qian J, Vossoughi D, et al. Transarterial Chemoembolization alone and in Combination with other Therapies:A Comparative Study in an Animal HCC Model[J]. Eur Radiol,2005,15(1):127-133.
    [40]Chung Y H, Song I H, Song B C, et al. Combined Therapy Consisting of Intraarterial Cisplatin Infusion and Systemic In-Terferon-alpha for Hepatocellular Carcinoma Patients with Major Portal Vein Thrombosis or Distant Metastasis[J]. Cancer,2000,88(12):1986-1999.
    [1]卞读军.多层螺旋CT肝脏灌注成像及其临床应用.实用放射学杂志,2007,23(2):258-262.
    [2]张敬.CT灌注成像技术的临床应用.临床放射学杂志,2001,20(10):803-806.
    [3]田吴梅.原发性肝癌的CT灌注成像研究进展.现代临床医学生物工程学杂志,2007,13(1):60-62.
    [4]杨林.CT灌注成像在肝脏疾病中的应用.华西医学,2006,21(2):412-413.
    [5]Miles KA, Hayball MP, Dixon AK. Measurement of human pancreatic perfusion using dynamic computed tomography with perfusion imaging[J]. Br J Radiol,1995,68(809):471-475.
    [6]Tsushima Y, Funabasama S, Aoki J, et al. Quantitative perfusion map of malignant liver tumors, created from dynamic computed tomography data [J]. Acad Radiol,2004,11 (2):215-223.
    [7]史丽静,田建明,王培军,等.多层螺旋计算机X线体层扫描肝脏灌注成像应用初步研究[J].中华肝脏病杂志,2003,11(9):522-525.
    [8]周作福,黄洪磊,徐彪,等.原发性肝癌的CT灌注成像.中国医学影像技术,2006,22(2):272-274.
    [9]范光明,郭启勇,沈金丹,等.肝细胞癌的CT灌注成像研究.中国医学影像技术,2006,22(11):1707-1709.
    [10]Miles KA, Legget t DA, Kelley BB, et al. In Vivo Assessment of Neovascularization of Liver Metastases Using Perfusion CT [J].Br J Radiol, 1998,71 (843):276-281.
    [11]罗伟.肝脏CT灌注成像研究进展.放射学实践,2007,22(6):637-640.
    [12]黄渊全,贾中芝,冯耀良,等.CT灌注成像在肝癌TACE术后疗效评价中的应用价值.介入放射学杂志,2009,18(6):437-441.
    [13]郑加贺,郭启勇,卢再呜,等.CT灌注成像评价肝细胞癌TACE前后血供的初步经验.中国医学影像学杂志,2007,15(1):5-8.
    [14]陈光斌,邹文远,张自力,等.原发性肝癌TACE前后血清VEGF与CT灌注参数间相关性的研究.临床放射学杂志,2008,27(7):908-910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700