农杆菌介导的橡胶树遗传转化体系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然橡胶具有合成橡胶无法比拟的弹性、延展性及导热性,是重要的工业原料,主要来源于巴西橡胶树(Hevea brasiliensis Muell.Arg.)。巴西橡胶树为多年生异花授粉木本作物,通过常规杂交育种手段,培育一个新品种需要20-30年。转基因技术是缩短橡胶树育种周期、加快新品种培育十分有效的途径,也是橡胶树功能基因鉴定等研究的重要技术手段。尽管我国于2000年已开始橡胶树遗传转化研究,但依然没有建立起橡胶树遗传转化体系,这已成为制约橡胶树基因工程遗传改良的技术瓶颈。我国植胶区处于热带北缘,在大寒年份寒害给生产带来重大损失。因此,通过基因工程改良现有的优良无性系以提高其抗寒能力是一项非常重要的任务。CBF1转录因子能促进多个冷诱导基因表达,使得转基因植株的抗寒性比单一功能基因的转化强。
     为建立橡胶树遗传转化体系,本研究首先筛选了适宜农杆菌侵染的橡胶树受体材料,然后以适宜侵染的花药再生体系为对象,筛选高频体胚发生的橡胶树无性系,再通过对抗生素种类和浓度、农杆菌菌株、共培养温度和共培养时间等影响遗传转化效率因素研究,最终建立以花药愈伤组织为受体的农杆菌介导的橡胶树遗传转化体系。并在此基础上,研究了拟南芥冷诱导基因的转录因子CBF1转化橡胶树优良无性系热研7-33-97。主要研究结果如下:
     1.适宜农杆菌侵染的橡胶树外植体筛选
     以花药和内珠被愈伤组织为受体研究了适宜农杆菌侵染的橡胶树遗传转化受体,结果表明内珠被愈伤组织在农杆菌侵染后极易褐化,很难恢复生长,因此不适宜作为转化受体。而花药愈伤组织耐侵染,容易抑菌,很快就能恢复生长,因此,花药愈伤组织更适宜作为根癌农杆菌的转化受体。
     2.高频体胚发生的橡胶树无性系筛选
     对5个生长、产胶等性状良好的橡胶树无性系体胚发生能力进行了研究,结果显示,热研7-33-97、热研6-62具有高的愈伤组织诱导率和体细胞胚胎发生能力且综合性状优良。
     3.抑菌和筛选抗生素种类及浓度筛选
     500 mg·L-1特泯丁抑制胚性愈伤组织生长但促进体胚发生,而羧苄青霉素、头孢霉素和特泯丁三种抑制农杆菌抗生素均为促进愈伤组织生长但抑制体胚发生。潮霉素、卡那霉素和巴龙霉素三种筛选抗生素均抑制愈伤组织生长和体胚发生,三者抑制能力顺序为潮霉素>卡那霉素>巴龙霉素。故特泯丁可以作为农杆菌介导巴西橡胶树花药愈伤组织遗传转化的抑菌抗生素,500 mg·L-1使用浓度效果较好,卡那霉素作为筛选抗生素,50 mg·L-1使用浓度效果较好。
     4.影响遗传转化效率因素的研究
     农杆菌菌株、共培养温度和共培养时间等对遗传转化效率具有显著影响,EHA105菌株侵染力最强,共培养温度为22℃和共培养时间为6 d时,GUS瞬时表达率最高。共培养基中添加As无助于橡胶树花药愈伤组织转化效率的提高。
     5.转基因植株鉴定及转化体系的建立
     2.2万个花药愈伤组织在EHA 105侵染后,通过抗性筛选、GUS染色、PCR、测序、Southern检测及Northern检测,鉴定出11株转基因植株,并检测到目的基因表达,随后通过嫁接和次生体胚发生,获得来自8个转基因株系681株转基因植株,移栽成活253株。
     6.转基因植株移栽
     以未经增殖直接大田移栽、嫁接到室外砧木和通过次生体胚发生增殖后大田移栽三种方式进行移栽,结果3株未经增殖直接移栽到大田,均未成活;3株通过籽苗芽接进行1轮室外嫁接繁殖,获得5株转基因单株,全部移栽成活;其余5个在胚状体阶段进行3次次生体胚发生增殖后诱导植株再生,最终获得676株转基因单株,移栽成活248株。
     7.转基因体系验证
     利用上述遗传转化及增殖、移栽体系将拟南芥转录因子CBF1导入橡胶树,获得2株GUS染色、PCR检测、PCR产物测序阳性植株,并通过籽苗芽接和次生体胚发生增殖为44株,移栽成活34株。
Natural rubber performes better at elasticity, ductibility, and heat transfer properties than synthetic rubber. Rubber tree (Hevea brasiliensis Muell. Arg) is the most important source of natural rubber. Rubber tree is a perennial woody plant, developping a new Hevea variety by crossing method will take 20-30 years, but genetic transformation provides an effective alternative for shortening breeding cycle. The rubber tree planting area in China is located in the north edge of tropical area, cold damage brought great loss to the rubber production. Therefore,improving the cold resistant ability of elite clones by genetic engineering is very important. CBF1 transcriptional factor could induce the expression of several cold-resistant genes, which improved cold resistant ability of transgenic plant much more than only one functional gene transformation.
     Since the establishment of genetic transformation system of Hevea have been studied for 10 years in China, but failed. It limits genetic engineering breeding in Hevea. So, In order to establish Agrobacterium tumefaciens-mediated Hevea anther calli transformation system, we surveyed the factors influencing transformation frequency. Firstly, the optimal acceptors for Agrobacterium infection and clones with high somatic embryogenesis were screened, then the factors influencing transformation frequency, including strains of Agrobacterium, co-culture temperature, co-culture time and acetosyringone (AS), and the methods for transformed embryos regeneration, were surveyed, finally, the successful genetic transformation system of Hevea was established. And based on the system, Arabidopsis transcriptional factor CBF1 was transformed to Hevea elite clone CATAS7-33-97 and regenerated transgenic plantlets. The main results as follows:
     1.Selection of the acceptors for transformation
     Anther and inner integument calli were used as acceptors to study their reaction to Agrobacterium. The results showed that the inner integument calli browned easily after infection and was hard to resume their gowth; however, anther calli could endure infection, and was easy to eliminate bacteria, resume gowth fast. So, anther calli was more optimal for transformation.
     2. Selection of the clones with high embryogenesis efficiency
     Five elite clones with some important agronomic traits were selected for comparison of their regeneability. Three were good at yield and timber, one was elite in comprehensive tratits. The results showed that two genotypes, namely, CATAS6-62 and CATAS7-33-97 have predominant somatic embryogenesis ability. The identification of these two elite clons will afford good acceptor variety for genetic transformation in Hevea and accelerate the application of transgenic material in breeding.
     3. Selection of antibiotics for transformation
     The sensitivity of 30-days old anther calli of Hevea brasiliensis to antibiotics was measured. Two groups of antibiotics were tested:antibiotics commonly used to eliminate Agrobacterium from tissue culture (carbenicillin, cefotaxime and timentin), and antibiotics for the selection of transformed tissue (kanamycin, paromomycin and hygromycin).Results show that, except 500 mg·L-1 timentin inhibited callus growth but promoted embryogenesis, the first group significantly increased callus growth but inhibited embryogenesis; while the second group inhibited callus growth and embryogenesis, their inhibited ability ranked as follows:hygromycin> kanamycin> paromomycin; but hygromycin completely inhibited embryogenesis, while paromomycin had no obvious effect on embryogenesis.So in Agrobacterium-mediated transformation of Hevea brasiliensis anther callus, timentin could be used to eliminate Agrobacterium, optimal concentration was 500 mg·L-1; kanamycin to select transformant, optimal concentration was 50 mg·L-1.
     4. Factors influencing transformation frequency
     GUS transient expression frequency was significantly affected by Agrobacterium strains and co-culture temperature/time, which was 5.07 blue spots/callus for EHA105,higher than that for GV3101 and LBA4404. The highest GUS transient expression frequency was 8.43 and 19.10 blue spots/callus under 22℃co-cultured temperature and 6 days co-cultured time respectively. The AS was not helpful for improving the transformation efficiency.
     5. Establishment of Agrobacterium tumefaciens-mediated Hevea genetic transformation system
     Twenty two thousand anther embryogenic calli were transformed by EHA105 with pCAMBIA2301.In the results,11 transgenic plantlets were obtained through GUS staining, PCR, sequencing of PCR products and Southern detection. Subsequently,253 plants derived from 8 trangenic plantlets survived in the field.
     6. Acclimation of transgenic plants
     Three methods were used for acclimation of transgenic plants:directly acclimation without propagation, budding then acclimation, and acclimation after propagation by secondary embryogenesis of transgenic embryos. Three planted directly in the field died;three as scions were budded onto seedlings, producing five budded transgenic plants; five were multiplicated at embryo phase by secondary embryogenesis, producing 676 transgenic plantlets, among which 248 survived in the field.
     7. CBF1 gene transformation into Hevea
     Above genetic transformation system was used to transfer the Arabidopsis transcriptional factor CBF1 to Hevea. In the result, two transgenic plantlets were regenerated through GUS staining, PCR, sequencing of PCR products. These two plantlets were multiplicated by mini-seedling budding and transgenic embryo secondary embryogenesis, and 44 plantlets were obtained and acclimated,34 suvived in soil.
引文
1.岑明,陈正华,钱长发等.三叶橡胶花药培养过程中的染色体倍数研究.遗传学报,1981,8(2):169~174
    2.陈正华,陈发祖,钱长发等.三叶橡胶花粉植株的获得.遗传学报,1978,5(2):99~107
    3.陈正华,陈发祖,钱长发等.三叶橡胶花粉植株的获得.中国科学,1979,(6):617~627
    4.陈正华,许绪恩,张世杰等.巴西橡胶花粉植株的培育.热带作物科技,1981,(6):6~12
    5.陈正华主编.橡胶树属的花药培养及花粉植株的研究,见木本植物组织培养及其应用,北京,高等教育出版社,1986a:481~500
    6.程汉,安泽伟,黄华孙.巴西橡胶树CBF1基因的克隆和序列分析,热带作物学报,2005,26(3):50~55
    7.崔凯荣,陈克明,王晓哲等.植物体细胞胚发生研究的某些现状.植物学通报,1993,10(3):14~20
    8.窦美安郭森元.橡胶树抗寒高产选育种发展方向之探讨,热带农业科学,1999, (2):1~6
    9.郭高发,贾学军,陈伦兴.离体胚珠诱导巴西橡胶植株(简报).遗传,1982,4(1):27~28
    10.何道一,李雅志,王其会.不同基因型苹果的离体再生特性及其对NaN3的反应.核农学报,1997,11(2):84~88
    11.洪磊,王颖,张秀娟等.农杆菌介导法遗传转化巴西橡胶树转化条件的研究.现代农业科学,2009,16(5):38~40,63
    12.华玉伟,黄关青,龙青姨等.橡胶树次生体胚发生及其再生植株遗传稳定性的分子检测.热带作物学报,2009,30(5):644~650
    13.黄德贵,陈曼雅,吕美娜等.巴西橡胶花药培养的研究.福建热作科技,1982, (2):1~11
    14.黄华孙主编.中国橡胶树育种五十年,北京:中国农业出版社,2005,pp90~96
    15.黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织DNA的差异.植物生理学报,1999,25(4):332~338
    16.黄守锋.一种新的橡胶无性繁殖方法-籽苗芽接法.热带作物学报,1989,10(1):25-31
    17.黄永红,梅眉,曾继吾等.影响农杆菌介导甜瓜子叶遗传转化的因素.分子植物育种,2007,5(3):335-340
    18.蓝海燕,田颖川,王长海等.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病
    的研究.遗传学报,2000a,27(1):70~77
    19.蓝海燕,王长海,张丽华等.导入β-1,3-葡聚糖酶及几丁质酶基因的转基因可育油菜及其抗菌核病的研究.生物工程学报,2000b,16(2):142~146
    20.李惠波,周堂英,宁连云等.橡胶树新品种云研77-2和云研77-4的细胞学鉴定及育种过程,热带亚热带植物学报,2009,17(6):602~605
    21.李维国,高新生,张伟算等.橡胶树优良品种热研8-79的选育.热带作物学报,2009a,30(10):1389-1393
    22.李维国.橡胶树优良品种热研7-33-97推广应用前景.首届中国天然橡胶产业发展大会论文集,2009b
    23.李子东,赵翠珠,周玲君等.农杆菌介导的DREB1A基因转化多花黑麦草及其转化体系的优化.山东大学学报(理学版),2008,43(9):11~17
    24.梁国平,肖三元.橡胶树花药离体培养及完整植株的诱导.热带农业科技,2004,27(1):8-10,27
    25.刘桂珍,陈正华.巴西橡胶悬浮细胞培养胚胎发生与植株再生.热带作物学报,1999,20(4):1-5
    26.林位夫,林葆,蔡泽坪等.橡胶树种子不同组织与种子萌发及籽苗生长的关系.华南热带农业大学学报,2004,10(3):1-4
    27.刘强,赵南明,K. Yamaguch-Shinozaki, K. Shinozaki. DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45(1):1465~1474
    28.刘志昕,邓小东.反义Hevein基因载体构建及橡胶树遗传转化研究初报,热带作物学报,2000,12(21)增刊:102~107
    29.权瑞党,尚梅,张举仁.农杆菌介导的玉米自交系愈伤组织转化条件的优化.植物生理与分子生物学学报,2003,29(3):245-250
    30.孙爱花,李哲,黄天带.橡胶树花药的培养.植物生理学通讯,2006,4:785~789
    31.谭德冠,孙雪飘,张家明.巴西橡胶树的组织培养.植物生理学通讯,2005,41(5):674~678
    32.王傲雪,李景富.植物体细胞胚状体的诱导研究及应用.黑龙江农业科学,1999(2):39~41
    33.王翠亭,卫志明.根癌农杆菌介导小麦幼胚遗传转化的影响因素.植物生理与分子生物学学报,2003,29(6):521~529
    34.王丽,杨宏羽,张俊莲等.根癌农杆菌介导马铃薯试管薯转化体系的优化及AtNHX1基因的导入.西北植物学报,2008,28(6):1088~1094
    35.王关林,方宏筠主编.植物基因工程(第二版),北京,科学出版社,2002
    36.王亚丽.巴西橡胶树体外体细胞胚发育的细胞学和组织学研究.2004,华南热带农业大学硕士学位论文
    37.王泽云,曾宪松,陈传琴等.从离体花药诱导巴西橡胶植株.热带作物科技通讯,1978, (4):1~7,19
    38.王泽云,曾宪松,陈伟琴等.用离体花药诱导巴西橡胶植株的研究.热带作物学报,1980,1(1):16~25
    39.王泽云,吴胡蝶,曾宪松等.巴西橡胶花药胚的发生和花药植株起源的研究.热带作物学报,1984,5(1):9~13
    40.王泽云,吴胡蝶,陈雄庭等.活性炭在橡胶花药培养中的效应.热带作物研究,1988,(1):12~14
    41.王泽云,吴胡蝶,陈雄庭.橡胶树花药体细胞植株的优良性状.热带作物学报,1989,10(2):17~22
    42.王泽云,陈雄庭,吴胡蝶.橡胶树新型种植材料——体胚植株.热带农业科学,2001,(6):11~15
    43.王颖,陈雄庭,张秀娟,彭明.基因枪法将GAI基因导入巴西橡胶的研究,热带亚热带植物学报,2006,14(3):179~182
    44.魏开发.农杆菌介导的高效玉米遗传转化体系的建立,遗传,2009,31(11):1158~1170
    45.吴胡蝶,王泽云,陈雄庭.6-BA、ABA对橡胶花药体细胞胚形成及植株再生的影响.热带作物研究,1994,(3):1~3
    46.吴胡蝶,王泽云,陈雄庭等.影响橡胶体细胞胚萌发成植株的几个因素.热带作物研究,1997,(2):5~8
    47.奚亚军,高海战,吕晓依,路明,刘曙东.黄淮麦区推广品种小偃22农杆菌遗传转化体系的建立.核农学报,2009,23(2):185~192
    48.肖三元,陈正华.三叶橡胶树未授粉子房、胚珠培养再生植株研究初报.云南热作科技,1994,(3):18~20
    49.闫新甫.转基因植物.2003,北京,科学出版社:PP4~5.
    50.余桂荣,尹钧,郭天财等.小麦幼胚培养基因型的筛选.麦类作物学报2003,23(2):14~18
    51.赵常燕,王省芬,韩改英等。棉花农杆菌介导转化体系中影响抗性愈伤组织诱导率的因素.棉花学报,2009,21(4):271-274
    52.赵辉,赵润江,陈雄庭,彭明.橡胶树高效农杆菌转化体系的建立.热带作物学报,2008,29(6):678~683
    53.张宝红,李季兰,李凤莲等.基因型在棉花花药培养中的效应.棉花学报,1994,6(增刊):36-38
    54.张妙彬,梁擎中,肖浩等.农杆菌介导石斛兰遗传转化的研究.园艺学报,2008,35(4):565~570
    55.张明洲,崔海瑞,舒庆尧,等.抗生素对高粱愈伤组织诱导和生长的影响.浙江大学学报(农业与生命科学版),2004,30(2):221-225
    56.张淑娟.转盐芥CBF1基因提高玉米抗逆性的研究,2007,山东大学硕士学位论文
    57.张志忠,吴菁华,吕柳新,何承坤.双价抗真菌基因表达载体的构建及转基因西瓜的研究.热带亚热带植物学报,2005,13(5):369-374
    58.周权男,李哲,孙爱花等.一种橡胶树试管苗无菌根体细胞胚发生植株再生方法.申请号:200810226001.2,公开日:2009.04.22
    59.邹智,杨礼富,王真辉等.橡胶树中橡胶的生物合成与调控,植物生理学通讯,2009,45(12):1231~1238
    60.邹智,杨礼富,王真辉等.巴西橡胶树转基因研究现状与展望.中国生物工程杂志,2010,30(1):85-92
    61.云南科技管理.橡胶树品种云研77-4.2008,4
    62. Arjunan Thulaseedharan, Perumal Venkatachalam, Radha Jayashree, et al. Rubber tree. 2008, Compendium of transgenic crop plants,117~139
    63.Arokiaraj P. Agrobacterium mediated transformation of Hevea cells derived from in vitro and in vitro seeding cultures. JNat Rubber Res,1991,6(1):55~61
    64. Arokiaraj P, Jones H, Cheong K F, et al. Gene insertion into Hevea brasiliensis, Plant Cell Rep, 1994,13(8):425~431
    65.Arokiaraj P, Jaafar H, Hamzah S, et al. Enhancement of Hevea potential by genetic transformation: HMGR activity in transformed tissue, Proceedings of the International Rubber Research Development Board Symposium on Physillogical and Molecular Aspects of Breeding of Hevea brasiliensis,1995,November 6-7, Penang, Malaysia, pp.74-82
    66. Arokiaraj P, Jones H, Jaafar H, et al. Agrobacterium-meditated transformation of Hevea anther calli and their regeneration into plantlets. J Nat Rubber Res,1996,11 (2):77~87
    67. Arokiaraj P, Yeang HY, Cheong KF, et al. CaMV 35S promoter directs β~-glucuronidase expression in the laticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep,1998,17 (8):621-625
    68.Arokiaraj P, Ruker F, Obermayr E, et al. Expression of Human serum albumin in transgenic Hevea brasiliensis.J Ruubb Res,2002,5:157-166
    69. Arokiaraj P.Rubber, In:EC Pua and MR Davey (ed). Biotechnology in Agriculture and Forestry, V60, Transgenic Crops V,Springer-Velag Berlin Heidelberg,2007, pp371-386
    70.Arokiaraj P,Leelawathy R and Yeang HY. The supervirlence plasmid pToK47 from Agrobacterium tumefaciens A281 improves transformation efficiency of Hevea brasiliensis. Am JBioche & Biotech,2009,5(3):137~141
    71.Asokan M P, Kumari Jayasree P, Thomas V, et al. Influence of 2,4-D and sucrose on repetitive embryogenesis in rubber(Hevea brasiliensis Muell.Arg.cv GT1).J Tree Sci,2002, (21):18-26
    72. Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor 15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression, Plant Mol Biol 1994,24:701~713.
    73.Blanc G, Baptiste C, Oliver G, Martin F, et al. Efficient Agrobacterium tumefaciens-mediated transformation of embryogenic calli and regeneration of Hevea brasiliensis Mull Arg. plants.Plant Cell Rep.2006,24(12):724~733
    74. Bouyckon J C.La culture in vitro des tissues d'hevea. Arch Rubber Cult Spec(1953a) 2:50~53
    75.Bouckon J C. Culture des dissues d'hevea in bitro.Rev Gen Caoutch(1953b),26(9):630~635
    76. Carron MP, Enjalric F. Studies on vegetative micropagation of Hevea brasiliensis by somatic embryogenesis and in vitro microcutting. In:Fujiwara A(ed). Plant Tissue Culture. Proceedings of the 5th International Congress on Plant Tissue Cell Culture, Tokyo,1982.751~752
    77. Carron MP,Enjalric F, Lardet L, et al. Vegetatic in vitro propagation by microcutting of selected rubber trees:a widespread technique before 2000? 1st Int Rubber Tissue Culture Wotkshop, IRRDB, 17, Oct,1985, Kuala Lumpur, Malaysia
    78.Carron MP, Enjalric F, Lardet L, et al. Rubber (Hevea brasiliensis Mull. Arg.). Biotech Agr Forest, 1989,(5):228~245
    79. Carron MP, Etienne H, Michaux-Ferrire N, et al. Somatic embryogenesis in Rubber tree (Hevea brasiliensis Mull. Arg.).In:Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 30. Somatic embryogenesis and synthetic seed Ⅰ. Springer, Berlin eidelberg New York,1995, pp 353-369
    80. Carron MP, Lardet L, Dea BG. Hevea micropropagation by somatic embryogenesis. Plantations Research Development,1998,5(3):187~192
    81.Carron MP, Lardet L, Lecontel A, et al.Micropropagation in rubber tree (Hevea brasiliensis, Muell.-Arg.). Acta Hort, Proc. IIIrd IS on Acclim. and Establt. Of Micropropagated Plants,2009,812: 485~492
    82. Cazaux E, Auzac JD.Isolation and culture of Hevea brasiliensis protoplasts. Physiol Plant,1991, 82(1):1~14
    83.Cazaux E & d'Auzac J. Microcallus formation from Hevea brasiliensis protoplasts isolated from embryogenic callus. Plant Cell Rep,1994,13:272-276
    84. Christopher OL, Michael TF, James HF, et al. CBF1 or thologs in sour cherry and strawberry and the heterologous expression of CBF1 in strawberry. JAmer Soc Hort Sci.2002,127:489~494
    85.Chye ML, Tan CT and Chua NH. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis:hmgl and hmg3 are differentially expressed, Plant Mol Bio,1992, 19(3):473-4784
    86. Crowe JF, Carpenter AS, Rudolph CA, et al. Interactions of sugars with membranes, Biochim Biophys Acta,1988,947:367~384
    87. Dennis MS, Light DR. Rubber elongation factor from Hevea brasiliensis. J Biol Chem,1989,264 (31):18608~18617
    88. Eklund L, Eliasson L. Effects of calcium ion concentration on cell wall synthesis. J Exp Bot,1990, 41:863~867
    89. Etienne H, Lartaud M, Michaux-Ferriere N, et al. Improvement of somatic embryogenesis embryogenesis in Hevea brasiliensis (Mull. Arg.) using the temporary immersion technique. In Vitro Cell De. Biol,1997,33:81~87
    90. Fridborg G, Eriksson T. Effects of activated charcoal on growth and morphogenesis in cell cultures. Physiol Plant,1975,34:306~308
    91.Gilmour SJ, Sebolt AM, Salazar MP, et al.Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol.2000, 124:1854~1865
    92. HaakeV, Cook D, Riechmann JL, et al.Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant physiol,2002,130(2):639~648
    93.Hadrami EL, Carron MP and'Auzac JD. Influence of exogenous hormones on somatic embryogenesis in Hevea brasiliensis, Ann of Bot,1991,67:511~515
    94. Hadrami EL, J.D'Auzac. Effects of growth regulators on polyamine content and peroxidase activity in Hevea brasiliensis callus. Ann of Bot,1992,69:323~325
    95.Hadrami EL, Auzac J. Effects of polyamine biosynthetic inhibition on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. J of Plant Physiol,1992,140:446~452
    96. Hadrami EL, F Housti, N Michaux-Ferriere, et al. Effects of gelling agents and liquid medium on embryogenic potential, polyamines and enzymatic factors in browing in Hevea brasiliensis calli.J Plant Physiol,1993,141:230~233
    97. Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994,6:271~282
    98.Hiei Y, Komari T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc,2008,3:824~834
    99. Hoque ME, Mansfield JW, Bennett MH.Agrobacterium-mediated transformation of Indica rice genotypes:an assessment of factors affecting the transformation efficiency. Plant Cell Tiss Organ Cult,2005,82(1):45~55
    100. Hua YW, Huang TD, Huang HS. Micropropagation of self-rooting juvenile clones by secondary somatic embryogenesis in Hevea brasiliensis. Plant Breed,2009, (doi.10.1111/j.1439-0523.2009.01663.x)
    101.Huang TD, Li WG, Huang HS.Microprogation of shoot apex and shoot stem with axils of cotyledon of Hevea brasiliensis. In:Proceedings of the International Rubber Conference, Parallel Session 2, Kunming, China, Sept.2004
    102. Huang Tiandai, Li Weiguo, Huang Huasun, et al. Somatic embryogenesis and plant regeneration from cotyledon explants of Hevea brasiliensis.6-8 Nov 2005. IRRDB Conference, cochin, India.
    103.Jaglo KR, Kleff S, Amundsen KL, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species, Plant Physio.,2001,127:910~917
    104. Jaglo-Ottosen K R, Gilmour S J,Zarka DG, et al.Arabidopsis CBF1 over expression induces COR genes and enhances freezing tolerance. Sci,1998,280:104~106
    105.Jansen MAK, Booij H, Schel JHN, et al.Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Reports,1990,9,221~223
    106. Jayashree R, Rekha K, Venkatachalam P, et al. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg) transgenic plants a constitutive version of an anti~oxidative stress superoxide dismutase gene. Plant Cell Rep,2003,22:201~209
    107. Johansson L, Andersson B, Eriksson T. Improvement of anther culture technique:activated charcoal bound in agar medium in combination with liquid medium elevated CO2 concentration. Physiol Plant,1982,54:24~30
    108.Kala RG, Asokan MP, Sethuraj MR, et al. Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S promoter. Curr Sci,2003,85(12):1767~1773
    109. Kala RG, Kumarijayasree P, Sobha S, et al.Introduction of the gene coding for isopentenyl transfeerase in to Hevea brasiliensis:effect on plant regeneration.10th Congress of the Federation of Asian and Oceanic Biochemists and Molecular Biologists. Bangalore, India, P120,2003
    110. Kala RG, Anu KS, Manesh K, et al. Agrobacterium mediated genetic transformation in Hevea brasiliensis for recombinant protein production. J Plantation Crops,2006,34(3):582~586
    111.Kala RG,Kuruvila L, Kumari Jayasree P, Kumari Sushama A, Jayashree R, Rekha K,Sobha S and Thulaseedharan A. Secondary embryogenesis and plant regeneration from leaf derived somatic embryos of Hevea brasiliensis,J of Plantation Crops,2008,36(3):218-222
    112. Kasuga M, Liu Q, Miura S et al. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcripotion factor. Nat Biotech,1999,17:287~291
    113.KoJH, ChowKs, HanKH.Transcriptomeanalysis reveals novel features of the molecular events occurring in the laticifers of Hevea brasiliensis (Para rubber tree). Plant Mol Bio,2003,53:479~492
    114.K. Koster and D. Lynch, Solute accumulation and compartmentation during the cold acclimation of Puma Rye, Plant Physio,1992,98,108~113
    115.Kobayashi S, Uchimiya H. Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Jpn J Genet,1989,64:91~97
    116. Lardet L, Piombo G, Oriol M, et al. Relations between biochemical characteristics and conversion ability in Hevea brasiliensis zygotic and somatic embryos.Can J Bot,1999,77:1168~1177
    117.Lardet L, Florence Dessaill Y, Carron MP, Montoro P and Monteuuis O. Influences of aging and cloning methods on the capacity for somatic embryogenesis of a mature Hevea brasiliensis genotype, Tree Physiol,2009,29:291~298
    118. Lee HJ, Xiong LM, Gong, ZZ, et al.The Arabidopsis HOS1 gene negatively regulates cold signal transduction and encodes a RING finger protein that displays cold-regulated nucleo-cytoplasmic partitioning, Genes & Devel,2001,15(7):912-924
    119. Leclercq J, Martin F, Montoro P. Genetic transformation of Hevea brasiliensis by using a non-destructive visual marker (GFP). International Rubber Conference,Vietnam,2006
    120. Leclercq J, Martin F, Lardet L, Rio M, Montoro P. Genetic transformation and regeneration of plant over-expressing CuZnSOD gene to control oxidative stress in rubber tree. International Rubber Conference, Cambodia,2007
    121.Ling HQ, Kriseleit D, Ganal MW. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Celll Rep,1998,17:843~847
    122. Michaux-Ferritre N, Carron MP. Histology of early somatic embryogenesis in Hevea brasiliensis:the importance of the timing of subculturing. Plant cell,Tissue Organ Cult,1989,19(3):243-256
    123.Michaux-Ferritre N., Grout H and Carron MP.Origin and ontogenesis of somatic embryos in Hevea brasiliensis (Euphorbiacae). Am J Bot,1992,79(2):174~180
    124. Montoro P, Etienne H, Michaux-Ferriere N, et al. Callus friability and somatic embryogenesis in Hevea brasiliensis.Plant Cell Tissue Organ Cult 1993,33:331~338
    125.Montoro P, Etienne H,Carron MP. Maintainable somatic embryogenesis in Hevea brasiliensis. Revue de Cytologie et Biologie Vegetales, le Botanisete,1994,17:113~119
    126. Montoro P, Teinseree N, Rattana W, et al. Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli, Plant Cell Rep, 2000,19:851~855
    127. Montoro P, Rattana W, Pujade-Renaud V, et al. Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens:roles of calcium. Plant Cell Rep,2003,21: 1095~1102
    128.Nandeshwar SB, Moghe S, Chakrabarty PK, et al. Agrobacterium-mediated transformation of cry1Ac gene into shoot-tip meristem of diploid cotton Gossypium arboreum cv. RG8 and regeneration of transgenic plants. Plant Mol Bio Rep,2009,27(4):549~557
    129.Nanjo T, Kobayashi M, Yoshiba Y, et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett,1999,461:205~210
    130.Nomura K, Komamine A. Somatic embryogenesis in cultured carrot cells. Decel Growth and Differ,1986,28:511-517
    131.Palta, J.P. and L.S.Weiss.Ice formation and freezing injury:An overview on the survival mechanisms and molecular aspects of injury and clod acclimation in herbaceous plants.In Li PH,Christersson L eds,Advances in Plant Cold Hardiness.CRC Press Inc.Boca Raton,1992,143~176.
    132. Paranjothy K, Ghadimathi H. Morphogenesis in callus cultures of Hevea briasiliensis.Proceeding of the National Plant Tissue Culture Symposium,1975,19~25
    133.Paranjothy K, Ghadimathi H.Tissue and organ culture of Hevea.Pro Int Rubb Conf,1976, (2): 59~84
    134. Priya P, Venkatachalam P, Thulaseedharan A. Molecular cloning and characterization of the rubber elongation factor gene and its promoter sequence from rubber tree (Hevea brasiliensis), a gene involved in rubber biosynthesis. Plant Sci,2006,171:470~480
    135. Rohani O, Paranjothy K. Isolation of Hevea protoplasts. JRubb Res Inst Malaysia,1980,28:61~66
    136. Salas MG, Park SH, Srivatanakul M, Smith RH. Temperature influence on stable T-DNA integration in plant cells. Plant Cell Rep,2001,20:701~705
    137. Satchuthananthavale R, Irugalbandara ZE.Propagation of callus from Hevea anthers.Quart J Rubber Res Inst Ceylon,1972,49(3&4):65~68
    138. Satchuthananthavale R.Hevea tissue culture.Quart J Rubber Res Inst Ceylon(Sri lanka),1973, 50(1&2):91~97
    139. Sharma MK, Solanke AU, Jani D, et al. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato. JBiosci,2009,34(3):423~433
    140. Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr OpinPlantBiol,2000,3: 217~223
    141.Silva P, Ricardo CPP. Beta-Fructosidases and in vitro dedifferentiation-redifferentiation of carrot cells. Phvtochemistry,1992,31,1507~1511
    142. Sobha S, Sushamakumari S, Thanseem I, et al. Abiotic stress induced over-expression of superoxide dismutase enzyme in transgenic Hevea brasiliensis,Ind J of Nat Rubb Res,2003a,16(1&2):45~52
    143.Sobha S, Sushamakumari S, Thanseem I, et al. Genetic transformation of Hevea brasiliensis with the gene coding for superoxide dismutase with FMV 34S.Curr Sci,2003b,85(12):1767~1773
    144. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad Sci. USA,1997,94:1035~1040
    145.Suraninpong P, Te-chato S.Effect of cytokinins on cell suspension culture, isolation and culture of protoplast of rubber. Songklanakarin JSci Technol,1999,21(2):169~177
    146. Sushamakumari S, Sobha S, Rekha K, et al. Influence of growth regulators and sucrose on somatic embryogenesis and plant regeneration from Immature inflorescence of Hevea brasiliensis. Ind J Nat Rubb Res,2000a,13 (1&2):19~29
    147. Sushamakumari S, Asokan MP, Anthony P, et al. Plant regeneration from embryogenic cell suspension-derived protoplasts of rubber. Plant Cell Tiss Org Cult,2000b,61(1):81~85
    148.Thomashow MF. Role of cold-responsive genes in plant freezing tolerance. Plant physiol,1998, 118:1-7
    149. Timmers ACJ, Schel JHN. Localization of cytosolic Ca2+ during carrot somatic embryogenesis using confocal scanning laser microscopy. In:Karssen CM, van Loon LC, Vreugdenhil D, eds. Progress in plant growth regulation. Dordrecht:Kluwer Academic Publishers,1991,347~353
    150. Vardi A, Bleichman S, Aviv D. Genetic transformation of citrus protoplasts and regeneration of transgenic plants.Plant Sci,1990,69:199~206
    151.Varghese YA, Knaak C, Sethuraj MR, et al. Evaluation of random amplified polymorphic DNA (RAPD) markers in Hevea brasiliensis. Plant Breed,1997,116:47~52
    152. Vega JM, Yu W, Kennon AR, et al. Improvement of Agrobacterium-mediated transformation in Hi-II maize(Zea mays) using standard binary vectors. Transformation of seedling-derived maize callus. Plant Cell Rep,2008,27(2):287~305
    153.Veisseire P, Guerrier J, Coudret A. Cryopresevation of embryogenic cell suspension of Hevea brasiliensis. Cryo Lett,1993,14:295~302
    154. Veisseire P, Linossier L, Coudret A. Effect of abscisic acid and cytokinins on the development of somatic embryos in Hevea brasiliensis. Plant Cell Tiss Org Cult,1994,39(3):219~223
    155.Verdus MC, Dubois T, Dubois J, Vasseur J. Ultrastructural changes in leaves of Cichorium during somatic embryogenesis.Annals of Botany,1993,11,375~383
    156.Wang B, Liu LJ, Wang XX, et al.Transgenic ramie [Boehmeria nivea (L.) Gaud.]:factors affecting the efficiency of Agrobacterium tumefaciens-mediated transformation and regeneration. Plant Cell Rep,2009,28(9):1319~1327
    157. Wanner LA, Junttila O. Cold-induced freezing tolerance in Arabidopsis. Plant,1999,120:391~400
    158. Wilson HM, Street HE. The growth, anatomy and suspension culture of Hevea brasiliensis. Ann Bot,1975(39):671~682
    159. Wilson HM, Eisa MZ, Irwin SWB.The effects of agitated liquid medium on in vitro culture of Hevea brasiliensis.Physiol Plant,1976,36:399~402
    160. Wilson ZA and Power JB. Elimination of systemic contamination in explant and protoplast cultures of rubber(Hevea brasiliensis Muell. Arg.). Plant Cell Rep.1989,7:622~625
    161.Wititsuwannakul R. Diurnal variation of 3-hydroxy-3-methylglutaryl coemzyme A reductase activity in latex of H. brasiliensis and its relation to rubber cotent. Experientia,1986,42:44~45
    162. Yamaguchi-Shinozaki K and Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell,1994,6(2): 251~264.
    163.Yeang HY, Arokiaraj P, Hafsah J, et al. Expression of a functional recombinant antibody fragment in the latex of transgenic Hevea brasiliensis. J Rubber Res,2002,5:215~225
    164. Zhao ZY, Gu W, Cai T, et al. Molecular analysis of To plants transformed by Agrobacterium and comparison of Agrobacterium-mediated transformation with bombardment transformation in maize. Maize Genet Coop Newslett,1998,72(1):34~37
    165.Ziyun W, Huang TD, Huang HS, et al. Establishment and characterization of Hevea brasiliensis embryogenic cell suspension lines. J Rubb Res,2009,12(1):46~58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700