光发酵厌氧流化床制氢反应器载体优化与运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对连续流光发酵制氢过程中底物利用效率、生物持有量和光能转化率低的技术难点,本文首次采用活性炭纤维(activated carbon fiber, ACF)固定化光发酵细菌,并应用于产氢研究。阐明了ACF的处理方法、浓度﹑长度、比表面积等同光发酵产氢之间的内在规律和联系,确定了最佳产氢条件。并探索将改性ACF作为载体应用于光发酵厌氧流化床制氢反应器进行连续流试验研究,建立有效的光发酵产氢调控策略,以期为生物制氢的规模化生产提供理论和技术指导。
     活性炭纤维有着良好的生物相容性和固定化产氢性能,比产氢率随着活性炭纤维比表面积的增加而增加,过大的长度和浓度都会对产氢有抑制作用。其产氢最佳参数为:比表面积1500 m~2/g,长度1 mm,浓度0.8 g/L。间歇试验最大比产氢率为3.05 molH_2/mol乙酸,比传统载体(陶粒和活性炭)高12.4~47.3 %,结果证实了活性炭纤维是一种有效的光发酵细菌固定化载体。
     HNO3改性活性炭纤维的固定化产氢性能要明显优于KOH或H_2O_2改性活性炭纤维,HNO3改性的最佳处理浓度浓度为6 mol/L,处理时间为1 h,间歇试验最大产氢速率达35.94 ml/L/h,最大比产氢率高达3.30 molH_2/mol乙酸,比产氢率同对照试验相比提高了约36 %。
     活性炭纤维表面含氧官能团含量对产氢有重要影响。HNO3改性可显著的改变活性炭纤维表面C、N、O三种元素比例,使含氧官能团含量明显上升。研究表明,改性后活性炭纤维表面主要有C-OH、C=O和C-OOH三种官能团,其中C=O含量对细菌固定化起着决定性作用。
     在光发酵厌氧流化床制氢反应器的连续流运行中,HRT、初始pH、碳源、氮源和光照强度对产氢影响显著,过高的HRT、碳源、氮源和光照强度对产氢均有抑制作用。其中,初始pH对反应器产氢的影响最为显著,在初始pH=6.0时产氢延迟期延长至3天,且比产氢率和产氢速率大幅降低。光发酵厌氧流化床制氢反应器的最佳运行条件为:HRT 48 h,碳源浓度50 mmol/L,氮源浓度10 mmol/L,初始pH 7.0,光照强度4000 lux。其最高比产氢率为2.26 molH_2/mol乙酸,最高产氢速率为25.8 mlH_2/L/h。
The low biomass, utilization rate of substrate and light conversion efficiency were the main barriers in continuous photo-hydrogen production. Hence, in this paper, a novel bio-carrier, activated carbon fiber, was firstly applied to immobilize the photo-fermentation bacteria for photo-hydrogen production and to overcome the above problems. The optimum amount, length, specific surface area and modified method of ACF were ascertained, and then the modified ACF was used in the photo-hydrogen producing anaerobic fluidized bed reactor. The optimal operation and control strategy of the reactor were established, which could provide the theory and the technical guidance for the development of bio-hydrogen production.
     The results showed that ACF was an excellent immobilized carrier for photo-fermentation bacteria with good biocompatibility and high immobilization ability. The hydrogen production increased with increasing the specific surface area, but the hydrogen production was inhibited when the amount and length of ACF were too high. When the specific surface area, length and amount of ACF was 1500 m~2/g, 1 mm and 0.8 g/L in the batch tests, the maximum hydrogen yield of 3.05 molH_2/mol acetate was obtained, which was about 12.4~47.3 % higher than that of the traditional carriers(clay and activated carbon). These demonstrated that ACF was an ideal carrier for the bacterial immobilization.
     The hydrogen production of HNO3 modified ACF was much better than those KOH and H_2O_2 modified ACF. The optimal concentration of HNO3 modification was 6 mol/L when the reaction time was 1 h. The maximum hydrogen production rate was 35.94 ml/L/h and the maximum hydrogen yield was 3.30 molH_2/mol acetate, which was 36 % higher than the control.
     The content of surface oxygenic functional groups had strong influence on the photo-hydrogen production. After HNO3 modification, the content of carbon, oxygen and nitrogen were changed visibly and meanwhile surface oxygenic functional groups increased. The main oxygenic functional groups on the ACF surface were C-OH, C=O and C-OOH, and C=O played a decisive role in the bacterial immobilization and hydrogen production.
     The hydrogen production of anaerobic fluidized bed reactor was restrained when HRT, acetate concentration, glutamate concentration and light intensity were in high level. The initial pH was the most important factor in influencing hydrogen production. When initial pH was 6.0, the hydrogen yield and hydrogen production rate were both decreased greatly and the hydrogen production was observed until 72 h. The optimum conditions of the reactor with the best hydrogen production performance as follows: HRT 48 h, acetate concentration 50 mmol/L, glutamate concentration 10 mmol/L, initial pH 7.0 and light intensity 4000 lux. The maximum hydrogen yield and hydrogen production rate of the reactor were 2.26 molH_2/mol acetate and 25.8 ml/L/h, respectively.
引文
[1]阚苏立,丁永山,陶志强,等.低碳经济与工业生物技术[J].化工学报, 2010(7):1645-1652.
    [2]陈柳钦.新世纪低碳经济发展的国际动向[J].决策咨询通讯, 2010(3):1-15.
    [3]钟东.推行低碳经济提倡低碳生活[J].防灾博览, 2010(1):50-53.
    [4]陈冠益,邓娜,吕学斌,等.中国低碳能源与环境污染控制研究现状[J].中国能源, 2010(4):9-14.
    [5]方新湘,白云,陈爱华,等.绿色可再生能源之生物质能源[J].现代化工, 2008:21-25.
    [6] McKinlay J B, Harwood C S. Photobiological production of hydrogen gas as a biofuel[J]. Current Opinion in Biotechnology, 2010,21(3):244-251.
    [7] Brentner L B, Peccia J, Zimmerman J B. Challenges in Developing Biohydrogen as a Sustainable Energy Source: Implications for a Research Agenda[J]. Environmental Science & Technology, 2010,44(7):2243-2254.
    [8] Das D, Veziroglu T N. Hydrogen production by biological processes: a survey of literature[J]. International Journal of Hydrogen Energy, 2001,26(1):13-28.
    [9]任南琪,郭婉茜,刘冰峰.生物制氢技术的发展及应用前景[J].哈尔滨工业大学学报, 2010(6):855-863.
    [10] Das D, Veziroglu T N. Advances in biological hydrogen production processes[J]. International Journal of Hydrogen Energy, 2008,33(21):6046-6057.
    [11] Dasgupta C N, Gilbert J J, Lindblad P, et al. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production[J]. International Journal of Hydrogen Energy, 2010,35(19Sp. Iss. SI):10218-10238.
    [12]廖强,张川,朱恂,等.光合细菌生物制氢反应器研究进展[J].应用与环境生物学报, 2008(6):871-876.
    [13]张全国,荆艳艳,周雪花,等.吸附法固定光合细菌技术产氢能力的研究[J].农业工程学报, 2008(9):199-202.
    [14] Liu B, Xie G, Guo W, et al. Optimization of Photo-Hydrogen Production by Immobilized Rhodopseudomonas faecalis RLD-53 [J]. Natural Resources, 2011,2:1-7.
    [15]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社, 2002.
    [16]蔡剑伟,方柏山.固定化细胞生物制氢研究进展[J].华侨大学学报(自然科学版), 2010(2):121-125.
    [17] Vincenzini M, Balloni W, Mannelli D, et al. A bioreactor for continuous treatment of waste waters with immobilized cells of photosynthetic bacteria[J]. Cellular and Molecular Life Sciences, 1981,37(7):710-712.
    [18] Planchard A, Mignot L, Jouenne T, et al. Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microporous membrane structures[J]. Applied Microbiology and Biotechnology, 1989,31(1):49-54.
    [19]徐向阳,俞秀娥,郑平,等.固定化光合细菌利用有机物产氢的研究[J].生物工程学报, 1994(4):362-368.
    [20] Fissler J, Kohring G W, Giffhorn F. Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris[J]. Applied Microbiology and Biotechnology, 1995,44(1-2):43-46.
    [21]徐向阳,俞秀娥,郑平,等.固定化光合细菌产氢过程的基质利用动力学[J].生物工程学报, 1995(1):51-57.
    [22]刘双江,杨惠芳,周培瑾,等.固定化光合细菌处理豆制品废水产氢研究[J].环境科学, 1995(1):42-44.
    [23]陈明,周俊虎,张立宏,等.固定化光合细菌利用低分子有机酸的产氢特性[J].太阳能学报, 2008(6):738-744.
    [24] Bagai R, Madamwar D. Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol[J]. International Journal of Hydrogen Energy, 1999,24(4):311-317.
    [25]李捷,杨大庆,朱章玉.胶质红假单胞菌J2菌株光合产氢的研究[J].上海交通大学学报, 1994(2):76-82.
    [26] Tian X, Liao Q, Liu W, et al. Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells[J]. International Journal of Hydrogen Energy, 2009,34(11Sp. Iss. SI):4708-4717.
    [27] Pandey A, Pandey A. Reverse micelles as suitable microreactor for increased biohydrogen production[J]. International Journal of Hydrogen Energy, 2008,33(1):273-278.
    [28] Chen C Y, Chang J S. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination[J]. Process Biochemistry, 2006,41(9):2041-2049.
    [29] Yamada A, Takano H, Burgees J, et al. Enhanced hydrogen production by a marine photosynthetic bacterium, Rhodobacter marinus, immobilized onto light-diffusing optical fibers [J]. Journal of Marine Biotechnology, 1996,4(1):23-27.
    [30]张川,廖强,朱恂,等.传质特性对光纤生物制氢反应器性能的影响[J].工程热物理学报, 2009(11):1933-1935.
    [31] Fedorov A S, Tsygankov A A, Rao K K, et al. Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam[J]. Biotechnology Letters, 1998,20(11):1007-1009.
    [32] Tian X, Liao Q, Zhu X, et al. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production[J]. Bioresource Technology, 2010,101(3):977-983.
    [33]丛俏,丛孚奇,曲蛟,等.固定化生物活性炭纤维处理餐饮废水的研究[J].环境科学与技术, 2008(6):125-126.
    [34]尹艳娥,李秋瑜,胡中华.炭纤维生物小球的优化及其对苯酚去除的研究[J].工业水处理, 2006(7):17-18.
    [35]尹艳娥,胡中华,沈新强,等.生物活性炭纤维载体的筛选及总磷和锌的去除[J].环境科学与技术, 2009(1):40-44.
    [36]韩菲,完颜华,迟毅超,等.活性炭纤维载体生物膜法处理洗车废水研究[J].环境工程学报, 2010(4):751-755.
    [37] Sasaki K, Konno H, Endo M, et al. Removal of Mn(II) ions from aqueous neutral media by manganese-oxidizing fungus in the presence of carbon fiber[J]. Biotechnology and Bioengineering, 2004,85(5):489-496.
    [38]张翼,高雪,韩大匡,等.改性活性炭纤维对生物转盘挂膜的影响[J].化学工程, 2010(4):69-72.
    [39]黄臣勇,王鹏,徐伟,等.活性碳纤维表面硝酸-铁(Ⅲ)改性对乳酸菌固定化的影响[J].中国科技论文在线, 2009(05):341-347.
    [40]刘杰,何振坤,王绍堂.炭纤维生物膜的形成机制Ⅰ.炭纤维表面特性对微生物固着化的影响[J].新型炭材料, 2002(03):20-24.
    [41]李善评,李冲,连军锋,等.活性炭纤维的改性及其表面特性对挂膜启动的影响[J].水处理技术, 2009(8):80-83.
    [42]李善评,李冲,肖乃东,等.以活性炭纤维为软填料处理酱油废水的探索研究[J].山东大学学报(理学版), 2009(11):1-5.
    [43] Gebicki J, Modigell M, Schumacher M, et al. Development of photobioreactors for anoxygenic production of hydrogen by purple bacteria[J]. Chemical Engineering Transactions, 2009,18:363-366.
    [44] Pirt S J, Lee Y K, Walach M R, et al. A tubular bioreactor for photosynthetic production of biomass from carbon dioxide: Design and performance[J]. Journal of Chemical Technology and Biotechnology, 1983,33(1):35-58.
    [45] Torzillo G, Carlozzi P, Pushparaj B, et al. A two-plane tubular photobioreactor for outdoor culture of Spirulina[J]. Biotechnology and Bioengineering, 1993,42(7):891-898.
    [46] Lee Y, Ding S, Low C, et al. Design and performance of anα-type tubular photobioreactor for mass cultivation of microalgae[J]. Journal of Applied Phycology, 1995,7(1):47-51.
    [47] Miyamoto K, Wable O, Benemann J R. Vertical Tubular Reactor for Microalgae Cultivation[J]. Biotechnology Letters, 1988,10(10):703-708.
    [48] Gebicki J, Modigell M, Schumacher M, et al. Comparison of two reactor concepts for anoxygenic H2 production by Rhodobacter capsulatus[J]. Journal of Cleaner Production, 2010,18(Supplement 1):S36-S42.
    [49] Kitajima Y, El-Shishtawy R, Ueno Y, et al. Analysis of compensation point of light using plane-type photosynthetic bioreactor[J]. Biohydrogen, 1998:359-367.
    [50] Eroglu I, Tabanoglu A, Gunduz U, et al. Hydrogen production by Rhodobacter sphaeroides O.U.001 in a flat plate solar bioreactor[J]. International Journal of Hydrogen Energy, 2008,33(2):531-541.
    [51] Liao Q, Wang Y J, Wang Y Z, et al. Formation and hydrogen production of photosynthetic bacterial biofilm under various illumination conditions[J]. Bioresource Technology, 2010,101(14):5315-5324.
    [52] Fritsch M, Hartmeier W, Chang J S. Enhancing hydrogen production of Clostridium butyricum using a column reactor with square-structured ceramic fittings[J]. International Journal of Hydrogen Energy, 2008,33(22):6549-6557.
    [53] Eroglu I, Aslan K, Gunduz U, et al. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor[J]. Journalof Biotechnology, 1999,70(1-3):103-113.
    [54] Shi X Y, Yu H Q. Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata[J]. International Journal of Hydrogen Energy, 2006,31(12):1641-1647.
    [55]张军合,张全国,尤希凤,等.环流型光生物反应器光合产氢运行条件的研究[J].农业环境科学学报, 2005(6):1217-1220.
    [56] Boran E, Ozgur E, J G, et al. Investigation of influencing factors for biological hydrogen production by R.Capsulatus in tubular photo-bioreactors[J]. Chemical Engineering Transactions, 2009,18:1974-1979.
    [57]方治华,柯益华,杨平,等.厌氧流化床反应器微生物固定化载体筛选的研究[J].环境科学学报, 1995(4):399-406.
    [58] Zhang Z P, Tay J H, Show K Y, et al. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2007,32(2):185-191.
    [59]温军杰,胡勤海,陈欢林.厌氧流化床生物膜形成及脱落研究进展[J].中国沼气, 2004(2):12-17.
    [60] Barros A R, Cavalcante De Amorim E L, Reis C M, et al. Biohydrogen production in anaerobic fluidized bed reactors: Effect of support material and hydraulic retention time[J]. International Journal of Hydrogen Energy, 2010,35(8):3379-3388.
    [61] Lin C N, Wu S Y, Chang J S. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge[J]. International Journal of Hydrogen Energy, 2006,31(15):2200-2210.
    [62] Wu K J, Chang C F, Chang J S. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge[J]. Process Biochemistry, 2007,42(7):1165-1171.
    [63] Ren N, Liu B, Ding J, et al. Hydrogen production with R. faecalis RLD-53 isolated from freshwater pond sludge[J]. Bioresource Technology, 2009,100(1):484-487.
    [64]何振坤,刘杰,王绍堂.炭纤维生物膜的形成机制Ⅱ.炭纤维表面特性对微生物活性与增殖的影响[J].新型炭材料, 2003(01):43-47.
    [65]刘媚媚,金腊华,李文松,等.一株石油降解菌的活性炭纤维固定化研究[J].环境污染与防治, 2009(10):48-51.
    [66]马兆昆,刘杰.改性碳纤维及表面含氧官能团对反硝化菌固着化的影响[J].功能材料, 2003(5):592-594.
    [67]傅敏.活性炭纤维改性及对焦化废水中有机物吸附作用的研究[D].重庆大学, 2004.
    [68]刘杰,马兆昆.碳纤维表面特性对反硝化菌固着化的影响[J].北京化工大学学报(自然科学版), 2003(2):40-44.
    [69]李刚.太阳能光合细菌连续制氢试验系统研究[D].河南农业大学, 2008.
    [70] Yeh K, Chen C, Lo Y, et al. Continuous Photo-hydrogen Production from Acetate Using Rhodopseudomonas Palustris WP3-5: 18th World Hydrogen Energy Conference, Essen, 2010[C].
    [71] Zhang C A, Zhu X, Liao Q A, et al. Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria[J]. International Journal of Hydrogen Energy, 2010,35(11Sp. Iss. SI):5284-5292.
    [72] Chen C Y, Lee C M, Chang J S. Feasibility study on bioreactor strategies for enhanced photohydrogen production from Rhodopseudomonas palustris WP3-5 using optical-fiber-assisted illumination systems[J]. International Journal of Hydrogen Energy, 2006,31(15):2345-2355.
    [73] Tao Y Z, He Y L, Wu Y Q, et al. Characteristics of a new photosynthetic bacterial strain for hydrogen production and its application in wastewater treatment[J]. International Journal of Hydrogen Energy, 2008,33(3):963-973.
    [74]谢国俊.暗发酵细菌B49与光合细菌RLD-53联合产氢影响因素研究[D].哈尔滨工业大学, 2009.
    [75] Margaritis A, Vogrinetz J. The effect of glucose concentration and pH on hydrogen production by Rhodopseudomonas sphaeroides VM 81[J]. International Journal of Hydrogen Energy, 1983,8(4):281-284.
    [76] Sasikala C H, Ramana C H V, Rao P R. Regulation of simultaneous hydrogen photoproduction during growth by pH and glutamate in Rhodobacter sphaeroides O.U. 001[J]. International Journal of Hydrogen Energy, 1995,20(2):123-126.
    [77] Kim M, Baek J, Lee J K. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant[J]. International Journal of Hydrogen Energy, 2006,31(1):121-127.
    [78] Tsygankov A A, Hirata Y, Miyake M, et al. Photobioreactor with photosyntheticbacteria immobilized on porous glass for hydrogen photoproduction[J]. Journal of Fermentation and Bioengineering, 1994,77(5):575-578.
    [79] Fang H H P, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater[J]. International Journal of Hydrogen Energy, 2005,30(7):785-793.
    [80]刘冰峰.光发酵细菌的选育及其与暗发酵细菌耦合产氢研究[D].哈尔滨工业大学, 2010.
    [81] Fang H, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture[J]. Bioresource Technology, 2002,82(1):87-93.
    [82] Yang S P, Wang Z W, Zhao C G, et al. Generation of Hydrogen from Photolysis of Organic Acids by Photosynthetic Bacteria[J]. Chinese Chemical Letters, 2002(11):1111-1114.
    [83] Miyake J, Wakayama T, Schnackenberg J, et al. Simulation of the daily sunlight illumination pattern for bacterial photo-hydrogen production[J]. Journal of Bioscience and Bioengineering, 1999,88(6):659-663.
    [84] Barbosa M J, Rocha J, Tramper J, et al. Acetate as a carbon source for hydrogen production by photosynthetic bacteria[J]. Journal of Biotechnology, 2001,85(1):25-33.
    [85] Shi X Y, Yu H Q. Response surface analysis on the effect of cell concentration and light intensity on hydrogen production by Rhodopseudomonas capsulata[J]. Process Biochemistry, 2005,40(7):2475-2481.
    [86] Lee J Z, Klaus D M, Maness P C, et al. The effect of butyrate concentration on hydrogen production via photofermentation for use in a Martian habitat resource recovery process[J]. International Journal of Hydrogen Energy, 2007,32(15Sp. Iss. SI):3301-3307.
    [87] Chen C Y, Saratale G D, Lee C M, et al. Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers[J]. International Journal of Hydrogen Energy, 2008,33(23):6886-6895.
    [88] Oh Y K, Seol E H, Kim M S, et al. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4[J]. International Journal of Hydrogen Energy, 2004,29(11):1115-1121.
    [89] Kars G, Gunduz U, Rakhely G, et al. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001[J].International Journal of Hydrogen Energy, 2008,33(12):3056-3060.
    [90] Fascetti E, Todini O. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat[J]. Applied Microbiology and Biotechnology, 1995,44(3-4):300-305.
    [91] Wang Y Z, Liao Q, Zhu X, et al. Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor[J]. Bioresource Technology, 2010,101(11):4034-4041.
    [92] Vonfelten P, Zurrer H, Bachofen R. Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum[J]. Applied Microbiology and Biotechnology, 1985,23(1):15-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700