马铃薯microRNA及其靶基因的预测与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNAs (miRNAs)是一类约21-23 nt的非编码单链小RNA分子。已有研究表明,miRNA所调节的靶mRNA在很多植物的生物合成过程中起到重要作用,参与了根、茎、叶、花的形态发生、信号转导及不同环境的胁迫等。近年来,通过克隆手段和生物信息学方法,在植物上已鉴定出上百种miRNA和它的靶序列,但是主要集中在拟南芥、玉米等一些模式植物中,而且很多miRNA的功能尚不清楚。
     马铃薯(Solanum tuberosum L.)是世界上主要粮食和蔬菜兼用作物之一。目前通过计算机预测法已获得了80多条马铃薯的miRNAs及其可能调控的靶基因。但与其他生物相比,目前已鉴定的马铃薯miRNA基因还远未达到饱和,而且对它们的生物功能尚不清楚。本研究将利用计算机预测法获得马铃薯新的miRNA,并明确其作用的靶基因,以期有目的地利用miRNA进行马铃薯的遗传改良,从而为进一步培育优质、高效、抗逆的马铃薯新种质奠定理论基础。取得的主要研究结果如下:
     1.本文根据miRNA序列在植物中的高度保守性,通过拟南芥、水稻、玉米等植物中已知的miRNA序列,与马铃薯的表达序列标签(EST)、基因组测序序列(GSS)以及核酸数据库(nr)中的序列进行比对,最后通过在线比对软件blastx去掉编码序列,共发现32条新的miRNAs,这32条miRNAs前体通过RNAfold分析均可折叠形成miRNA家族的标准二级结构。
     2.利用新发现的马铃薯miRNAs通过在线软件miRU和miRU2与编码蛋白的数据库比对,通过靶基因预测,共预测到了100个靶基因,这些靶基因分别编码与植物生长发育、新陈代谢、信号转导、转录调节、胁迫反应等相关的蛋白。
     3.通过对miRNA 167b和miRNA482b两条miRNAs进行RT-PCR实验,发现马铃薯miR167b在芽、茎和根组织中有稳定的表达,而在叶组织中却没有表达。miR482b在马铃薯的芽、叶、茎和根中均有表达,在芽、茎和根中表达丰度比较高,但是在叶组织中表达量非常少,反映了miRNA的组织特异性表达。
MicroRNAs (miRNAs) are a class of non-coding small RNAs with 21-23 nucleotide length. Increasing evidence has shown that miRNAs play multiple roles in biological processes, involved in the morphogenesis of root, stem, leaf and flower, signal transduction and environmental stress and so on. In recent years, hundreds of miRNA and its target sequence have been identified in plants by cloning method and bioinformatics method, but mainly in Arabidopsis thaliana, maize and some other model plants, and many of the functions of miRNA is not clear.
     Potato (Solarium tuberosum L.) is one of the world's food crops and vegetables, in which more than 80 potato miRNAs and their target genes have been obtained through the computational prediction. However, in comparison with other organisms, the miRNA genes identified for potato are still far from reaching saturation, and their biological functions are unknown. In this study, new potato miRNA were obtained by computational prediction, and target genes were identified in order to conduct purposeful use of miRNA genetic improvement of potato, so as to lay the theoretical foundation for the new of further developing high-quality, efficient and stress resistance of potato germplasm. The results are as follows:
     1. In the present paper, according to the conservative property of miRNAs in plant, a total of 32 novel miRNAs were identified from potato following a range of filtering criteria by using previously deposited miRNA sequences from Arabidopsis thaliana, Oryza sativa and other plant species to blast potato expressed sequence tags (EST), genomic survey sequence (GSS) and nucleotide databases, and removing the protein coding genes by on line software blastx. All the potential miRNA precursors can be folded into the typical secondary structure of miRNA family.
     2. Using the miRNAs sequences,100 target genes were identified by blasting the databases of coding protein using on line software miRU and miRU2. The genes encode protein involved in growth and development, metabolism, signal transduction, transcriptional regulation and stress responses.
     3. By RT-PCR experiments, the results showed that potato miR167b was found with stable expression in the bud, stem and root tissues, but did not express in the leaf tissue. MiR482b in potato bud, leaf, stem and root were expressed, which expressed in relatively high abundance in bud, stem and root, but in leaf tissue in very small amounts, which reflected the specificity expression of miRNAs in the tissue.
引文
[1]Lau N C, Lim L P, Weinstein E G, Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294:858-862
    [2]Bartel D P. MicroRNAs genomics, biogenesis, mechanism and function [J]. Cell,2004,116: 281-297
    [3]Lee R C, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans [M]. Science,2001,294:862-864
    [4]Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs [J]. Science,2001,294:853-858
    [5]Lau N C, Lim L P, Weinstein E G, Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294:858-862
    [6]Llave C, Kasschau K D, Rector M A, Carrington J C. Endogenous and silencing-associated small RNAs in plants [J]. Plant Cell,2002,14:1605-1619
    [7]Mette M F, Winden J, Matzke M, Matzke A J. Short RNAs can identify new candidate transposable element families in Arabidopsis [J]. Plant Physiol,2002,130:6-9
    [8]Park W, Li J, Song R, Messing J, Chen X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana [J]. Current Biology,2002,12:1484-1495
    [9]Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P. MicroRNAs in Plants [J]. Genes & Development,2002,16:1616-1626
    [10]Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P. The microRNAs of Caenorhabditis elegans [J]. Genes & Development,2003, 17:991-1008
    [11]Bonnet E, Wuyts J, Rouze P. Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes [J]. Proceedings of the National Academy of Science of the United States of America,2004,101:11511-11516
    [12]Lee Y, Jeon K, Lee J T, Kim S, Kim V N. MicroRNA maturation:stepwise processing and subcellular localization [J]. EMBO Journal,2002,21:4663-4670
    [13]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 [J]. Cell,1993,75:843-854
    [14]Nikovics K, Blein T, Peaucelle A, Ishida T, Morin H, Aida M, Laufs P. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis [J]. Plant Cell, 2006,18:2929-2945
    [15]Hatfield S D, Shcherbata H R, Fischer K A, Nakahara K, Carthew R W, Ruohola-Baker H. Stem cell division is regulated by the microRNA Pathway [J]. Nature,2005,435:974-978
    [16]Thompson B J, Cohen S M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila [J]. Cell,2006,126:767-774
    [17]Sunkar R, Girke T, Jain P K, Zhu J K. Cloning characterization of microRNAs from rice [J]. Plant Cell,2005,17:1397-1411
    [18]Sunkar R, Kapoor A, Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance [J]. Plant Cell,2006,18:24-15
    [19]Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A Polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation [J]. Cancer Research, 2005,65:9628-9632
    [20]Lu J, Getz G, Miska E A, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebet B L, Mak R H, Ferrando A A, Downing J R, Jacks T, Horvitz H R, Golub T R. MicroRNA expression profiles classify human cancers [J]. Nature,2005,435:834-838
    [21]Chen X. MicroRNA biogenesis and function in plants [J]. FEBS Letters,2005,579: 5923-5931.
    [22]Kim V N, Nam J W. Genomics of microRNA [J]. Trends Genet,2006,22:165-173
    [23]Guddeti S, Zhang D C, Li A L, Leseberg C H, Kang H, Li X G, Zhai W X, Johns M A, Mao L. Molecular evolution of the rice miR395 gene family [J]. Cell Research,2005,15: 631-638
    [24]Jones-rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA [J]. Molecular Cell,2004,14:787-799
    [25]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim V N. The nuclear RNase III Drosha initiates microRNA processing [J]. Nature,2003,425: 415-419
    [26]Lund E, Guttinger S, Calado A, Dahlberg J E, Kutay U. Nuclear export of microRNA precursors [J]. Science,2004,303:95-98
    [27]Bernstein E, Caudy A A, Hammond S. Role for a bidentate ribonuclease in the initiation step of RNA interference [J]. Nature,2001,409:363-366.
    [28]Hutvagner G, McLachlan J, Pasquinelli A E, Balint E, Tuschl T, Zamore P D. A cellular function for the RNA interference enzyme Dicer in the maturation of the let-7 small temporal RNA [J]. Science,2001,293:834-838
    [29]Grishok A, Pasquinelli A, Conte D, Li N, Parrish S, Ha I, Baillie D L, Fire A, Ruvkun G, Mello C C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing [J]. Cell,2001,106: 23-24
    [30]Ketting R F, Sylvia E J, Bernstein F E. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans [J]. Genes & Development, 2001,15:2654-2659
    [31]Schwarz D S, Hutvagner G, Du T, Xu Z, Aronin N, Zamore P D. Asymmetry in the assembly of the RNAi enzyme complex [J]. Cell,2003,115:199-208
    [32]Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias [J]. Cell,2003,115:209-216
    [33]Errampalli D, Patton D, Castle L, Mickelson L, Hansen K, Schnall J. Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis [J]. The Plant Cell,1991,3:149-157
    [34]Papp I, Mette M F, Aufsatz W, Daxinger L, Schauer S E, Ray A, Winden J, Matzke M, Matzke A J. Evidence for Nuclear Processing of Plant MicroRNA and Short Interfering RNA Precursors [J]. Plant Physiol,2003,132:1382-1390
    [35]Bollman K M, Aukerman M J, Park M Y. HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis [J]. Development,2003,130: 1493-1504
    [36]Park M Y, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig R S. Nuclear processing and export of microRNA in Arabidopsis [J]. Proceedings of the National Academy of Science, 2005,102:3691-3696
    [37]Baskerville S, Bartel D P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes [J]. RNA,2005,11:241-247
    [38]Bonnet E, Wuyts J, Rouze P, Van de Peer Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J]. Bioinformatics,2004,20:2911-2917
    [39]Lau N C, Lim L P, Weinstein E G, Bartel D P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans [J]. Science,2001,294:858-862
    [40]Jover-Gil S, Candela H, Ponce M R. Plant microRNAs and development [J]. International Journal of development biology,2005,49:733-744
    [41]Guo H S, Xie Q, Fei J F, Chua N H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell,2005, 17:1376-1386
    [42]Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development [J]. Science,2004,303:2022-2025
    [43]Bao N, Barton M K. MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome [J]. Developmental Cell,2004,7: 653-662
    [44]Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvits H R, Ruvkun G. The21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans [J]. Nature,2000,403:901-906
    [45]Thompson B J, Cohen S M. The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila [J]. Cell,2006,126:767-774
    [46]Xu P, Vernooy S Y, Guo M, Hay B A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism [J]. Current Biology,2003,13:790-795
    [47]Ambros V. MicroRNA pathways in flies and worms:growth, death, fat, stress, and timing [J]. Cell,2003,113:673-676
    [48]Chiou TZYY-JEN. The role of microRNAs in sensing nutrient stress [J]. Plant Cell and Envirolllllent,2007,30:323-332
    [49]Zhao Y, Ransom J F, Li A, Vedantham V, Drehle M, Muth A N, Tsuchihashi T, Mcmanus M T, Schwartz R J, Srivastava D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2 [J]. Cell,2007,28:538-541
    [50]Hwang H W, Mendell J T. MicroRNAs in cell proliferation, cell death, and tumorigenesis [J]. British Journal of Cancer,2007,96:776-780
    [51]Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett R W, Steward R, Chen X. Methylation as a crucial step in plant microRNA biogenesis [J]. Seience,2005,307:932-935
    [52]O'Connell R M, Taganov K D, Boldin M P, Cheng Q, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response [J]. Proceedings of the National Academy of Science,2007,104:1604-1609
    [53]Palatnik J F. Control of leaf morphogenesis by microRNAs [J]. Nature,2003,425:257-263
    [54]Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis:An analysis of the cup-shaped cotyledon mutant [J]. Plant Cell,1997,9: 841-857
    [55]Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. Prediction of plant microRNA targets [J]. Cell,2002,110:513-520
    [56]Schwab R, Palatnik J F, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of MicroRNAs on the plant transcriptome [J]. Developmental Cell,2005,8:517-527
    [57]Aukerman M J, Sakai H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes [J]. Plant Cell,2003,15:2730-2741
    [58]Chuck G, Cigan A M, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 resultsfrom overexpression of a tandem microRNA [J]. Nature Genetics,2007,39:544-549
    [59]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis [J]. Plant Cell,2004,16:2001-2019
    [60]Fujii H, Chiou T J, Lin S I, Aung K, Zhu J K. A miRNA involved in phosphate-starvation response in Arabidopsis [J]. Current Biology,2005,15:2038-2043
    [61]Lu S, Sun Y H, Shi R, Clark C, Li L, Chiang V L. Novel and mechanical Stress-Responsive microRNAs in Populus trichocarpa That Are Absent from Arabidopsis [J]. The Plant Cell, 2005,17:2186-2203
    [62]Chapman E J, Prokhnevsky A I, Gopinath K. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step [J]. Genes & Development,2004,18: 1179-1186
    [63]Kasschau K D, Xie Z, Allen E, Llave C, Chapman E J, Krizan K A, Carrington J C. P1/HC-Pro, a viral suppressor of RNA silencing,interferes with Arabidopsis development and miRNA function [J]. Developmental Cell,2003,4:205-217
    [64]Hagen Q, Guilfoyle T. Auxin-responsive gene expression:genes, promoters and regulatory factors [J]. Plant Molecular Biology,2002,49:373-385
    [65]Allen E, Xie Z, Gustafson A M, Carrington J C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants [J]. Cell,2005,121:207-221
    [66]Guo H S, Xie Q, Fei J F, et al. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development [J]. Plant Cell,2005,17:1376-1386
    [67]Wang X J, Reyes J L, Chua N H, Chua N H. Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets [J]. Genome Biology,2004,5:R65
    [68]Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor [J]. Nature,2005,435:441-445
    [69]Zhang Y J. MIRU:An automated plant miRNA target prediction server [J]. Nucleic Acids Research,2005,33:W701-W704
    [70]Mallory A C, Vaucheret H. Functions of microRNAs and related small RNAs in plants [J]. Nature Genetic,2006,38:850-855
    [71]Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAs and their regulatory roles in plants [J]. Annual Reviews Plant Biology,2006,57:19-53
    [72]Baker C C, Sieber P, Wellmer F, Meyerowitz E M. The early extra petalsl mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis [J]. Current Biology, 2005,15:303-315
    [73]Grad Y, Aach J, Hayes G D, Reinhart B J, Church G M, Ruvkun G,Kim J. Computational and experimental identification of C. elegans microRNAs [J]. Molecular Cell,2003,11: 1253-1263
    [74]Wang X, Zang J, Li F, Gu J, He T, Zhang X, Li Y. MicroRNA identification based on sequence and structure alignment [J]. Bioinformatics,2005,21:3610-3614
    [75]Legendre M, Lambert A, Gautheret D. Profile-based detection of microRNA precursors in animal genomes [J]. Bioinformatics,2005,21:841-845
    [76]Nam J W, Shin K R, Han J, Lee Y, Kim V N, Zhang B T. Human microRNA predietion through a probabilistic co-learning model of sequence and structure [J]. Nucleic Acids Research,2005,33:3570-3581
    [77]Nam J W, Kim J, Kim S K. ProMiR II:a web server for the probabilistic predietion of clustered, nonclustered, conserved and nonconserved microRNAs [J]. Nucleic Acids Research,2006,34:W455-458
    [78]Dezulian T, Remmert M, Palatnik J F, et al. Identification of plant microRNA homologs [J]. Bioinformatics,2006,22:359-360
    [79]Zuker M. Mfold web server for nucleic acid folding and hybridization prediction [J]. Nucleic Acids Research,2003,31:3406-3415
    [80]Lim L P, Glasner M E, Yekta S, Burge C B, Bartel D P. Vertebrate microRNA genes [J]. Science,2003,299:1540-1546
    [81]Lai E C. MicroRNAs:runts of the genome assert themselves [J]. Current Biology,2003,13: R925-R936
    [82]Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein M J. Clustering and conservation patterns of human microRNAs [J]. Nucleic Acids Research, 2005,33:2697-2706
    [83]Xie X, Lu J, Kulbokas E J, Golub T R, Mootha V. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals [J]. Nature,2005,434: 338-345
    [84]Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V. Computational prediction of miRNAs in Arabidopsis thaliana [J]. Genome Research,2005, 15:78-91
    [85]Lewis B P, Burge C B, Bartel D P:Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets [J]. Cell,2005,120:15-20
    [86]Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S. MicroRNA targets in Drosophila [J]. Genome Biology,2003,5:87-92
    [87]Kiriakidou M. A combined computational-experimental approaeh predicts human microRNA targets [J]. Genes & Development,2004,18:1165-1178
    [88]Krek A. Combinatorial microRNA target predictions [J]. Nature Genetics,2005,37: 495-500
    [89]郭强,项安玲,杨清,邱承祥,杨志敏.利用EST及生物信息学方法挖掘马铃薯中miRNA及其靶基因[J].科学通报,2007,52(14):1656-1664
    [90]Zhang W W, Luo Y P, Gong X, Zeng W H, Li S G. Computational identification of 48 potato microRNAs and their targets [J]. Computational Biology and Chemistry,2009,33: 84-93
    [91]Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation [J]. RNA,2003,9:277-279
    [92]Bonnet E, Wuyts J, Rouze P, Peer Y V. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences [J]. Bioinformatics,2004,20:2911-2917
    [93]Zhang B H, Pan X P, Cox S B, Cobb G P, Anderson T A. Evidence that miRNAs are different from other RNAs [J]. Cell Molecular Life Science,2006,63:246-254
    [94]Zhang B H, Pan X P, Anderson T A. Identification of 188 conserved maize microRNAs and their targets [J]. FEBS Letters,2006,580:3753-3762
    [95]Troy J, Annika B, Paul F, Roger W, Eugen K, Ulf R R, David A. Phospholipase D overcomes cell cycle arrest induced by high-intensity Raf signaling [J]. Oncogene,2002,21: 3651-1658
    [96]Megli F M, Selvaggi M, Delisi A, Quagliariello E. An EPR method for studying annexin-biomembrane interaction [J]. Analytical Biochemistry,1993,214:557-565
    [97]Bartel B, Bartel D P. MicroRNAs:at the root of plant development [J]. Plant Physiol,2003, 132:709-717
    [98]Vaueheret H, Mallory A C, and Bartel D P. AGOI homeostasis entails coexpression of MIR168 and AGOI and preferential stabilization of miR168 by AG01 [J]. Molecular Cell, 2006,22:129-136
    [99]Chendrimada T P, Gregory R I. Kumaraswamy E. TRBP recruits the dicer complex to Ago2 for microRNA proeessing and gene silencing [J]. Nature,2005,436:740-744
    [100]郭媖,郭旺珍,张天真.一个新的棉纤维表达蛋白cDNA的克隆、表达及功能初步分析[J].棉花学报,2006,18(2):533-542
    [101]Bluhm B H, Woloshuk C P. Cyclin-dependent kinase, interacts with Fccl to regulate development and secondary metabolism in Fusarium verticillioides [J]. Fungal Genetics and Biology,2006,43:105-109
    [102]Belinda M, Kevin E M, Catherine M H. Regulation of metallocarboxypeptidase inhibitor gene expression in tomato [J]. Molecular and General Genetics,1991,7:74-83
    [103]Toshiyuki N, Junying Y. Cross-Talk between two cysteine protease families:activation of caspase-12 by calpain in apoptosis [J]. Cell Biology,2000,150:887-894
    [104]Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M. AGO1 defines a novel locus of Arabidopsis controlling leaf development [J]. The EMBO Journal,1998,17:325-334
    [105]Avak K, Yuri V S, Rami S, Nahum S. Mammalian poly (A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms [J]. Genes & Development, 2005,19:104-113
    [106]Sue C Y, Wang Y C. The spatial and temporal expression of potato ci21A promoter in tomato and Arabidopsis [J]. Biology Formosa,2009,44:23-30
    [107]Pabo C O, Sauer R T. Sauer. Protein-DNA recognition [M]. Annual Review of Biochemistry, 1984,53:293-321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700