采用基因芯片筛选棉花产量性状相关基因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花作为一种重要的经济作物,在我国国民经济和社会发展中占有重要地位。由于我国人多地少,粮棉争地的矛盾十分突出,因此,培育高产优质棉花品种一直是棉花育种家长期追求的目标。
     陆地棉以其产量高、适应性广的特点被广泛种植,海岛棉则以得天独厚的优良纤维品质著称于世,如何将陆地棉的高产与海岛棉的优质特点结合起来,从而培育出高产、优质的棉花新品种一直是育种家追求的目标,同时,也希望能够通过海陆杂交群体来研究得到高产优质的基因。本实验希望通过从海陆杂交群体中选择品质优良的基因型,利用其1ODPA (day past anthesis)的纤维cDNA与Affymetrix公司的棉花基因组芯片进行杂交,得到不同基因型的基因芯片数据。通过对基因芯片数据进行分析和实验验证,得到与棉花产量性状相关的基因。主要研究结果如下:
     1、本实验室以陆地棉SG747为母本,海岛棉Giza75为父本,培育选择19个材料(含两个亲本),利用其开花后10天的纤维cDNA与Affymetrix公司的棉花基因组芯片进行杂交。根据2006、2007、2008三年17个回交自交系的产量相关性状(皮棉重量、铃重和衣分等)数据,用SAS软件进行ANOVO显著性分析,从17个系中选择皮棉、铃重、衣分等产量性状分别具有显著差异的几个材料。
     2、将各性状中高低两组材料所对应的基因芯片数据进行比对,根据ratio>2.0或ratio<0.5的标准,得到关于皮棉性状的差异表达基因1508个,铃重性状的差异表达基因296个,衣分差异表达基因351个。其中仅在皮棉与铃重两个性状中共有的基因有185个,仅在皮棉与衣分两个性状中共有的基因有96个,仅在铃重与衣分两个性状中共有的基因有7个,三个性状共有的基因有51个。
     3、用Blast2GO软件对三个性状的差异表达基因进行生物信息学分析,得到基因在生物学过程(biological process),细胞组分(cellular component),分子功能(molecular function)这三个方面的聚类结果。聚类结果显示,与细胞质膜发育相关的细胞组分、与过氧化物酶活性相关的分子功能、与抗逆相关和营养物质运输相关的生物学过程中所含的基因最多。
     4、从皮棉、铃重、衣分三个性状差异表达基因中选择差异表达倍数大的基因各50个,共150个,选择的过程中避免了同一基因在不同性状间的重复选择。先进行RT-PCR分析,然后选择基因进行qRT-PCR分析。
     5、通过RT-PCR分析,筛选到皮棉性状中在高产和低产材料中表达有差异的基因共8个。对这8个基因进行进一步的qRT-PCR分析,最终筛选到GhMKRP2和GhPOD两个基因,根据他们在不同时期不同材料中的表达情况,推测这两个基因对皮棉产量的形成有一定的影响。
Cotton is a major economic crop and an important variety for the Chinese textile industry. Since grain and cotton production compete for the same land resource, there is a conflict in China with increasing population and decreasing arable land, so how to breed varieties with high yield and good quality is always the breeder's target.
     Land cotton is widely cultivated because of its high yield, and the sea island cotton is famous of its good fiber quality, so how to mix the high yield of land cotton and the good quality of sea island together to breed new varieties with high yield and good quality, and then do more research of the genes related to high yield and good quality by the cross of land cotton and sea island cotton, they are goals for breeders. In this research, the genes related to cotton yield were researched, the gene chip of Affymetrix and the backcross inbred lines of land cotton and sea island cotton are used. The main results are as follows:
     1. The backcross inbred lines of BC2F5 were cultivated by the land cotton SG747 as the female parent and the sea island cotton Giza75 as the male parent. Totally 19 different genotypes were selected, and their fiber cDNAs of 10 days past anthesis were hybridized with the cotton gene chip of Affymetrix. Based on the above works, this research use the field data of the traits related to yield(lint yield、boll weight and lint percentage), and three years'data on 2006、2007、2008 were used. Then, do the ANOVO analysis with the SAS software, and select 3 genotypes separately of high lint yield and low lint yield、high boll size and low boll size and high lint percentage and low lint percentage, and every genotype in the high group is significant different with the low group of the single trait.
     2. For the gene chip data comparasion,1508 differentially expressed (DE) genes were identified based on a two fold difference between the high lint yield and the low lint yield group,296 differentially expressed genes between the high boll size and the low boll size group,351 differentially expressed genes between the high lint percentage and low lint percentage group.185 differential expressed gene were common in lint yield and boll size,96 differential expressed genes were common in lint yield and lint percentage, 7 differential expressed genes in boll size and lint percentage, and 51 differential expressed genes in all three traits.
     3. Bioinformatic analysis of these three traits were done by the Blast2GO software, and the results of clustering at biological process、cellular component and molecular function were grained. The results shows that, there are more genes related to the cellular component of plasma membrane, related to the molecular function of Oxidation reduction, related to the biological processes of response to the stress and transport.
     4. Select 50 differential expressed genes of the three traits separately, totally 150 genes, and no duplicate in these 150 genes. First, do the RT-PCR analysis on these 150 differential expressed genes, then select some gene according to the RT-PCR results to do the qRT-PCR analysis.
     5. According to the RT-PCR results, eight genes were preferentially expressed in the high yielding group or vice versa, in order to validate the results, the eight genes from the lint yield were selected to do the qRT-PCR, the results indicated that the two genes GhMKRP2 and GhPOD may be involved in the development of cotton fibers which in turn affect the cotton yield.
引文
1、卞海云,周治国,陈兵林,等.棉纤维加厚发育期间纤维素生物合成研究进展[J].棉花学报,2004,16(6):374-378
    2、杜雄明,潘家驹.影响棉纤维分化和发育的因素[J]。生命科学,2000,12(4):177-180
    3、郭媖.五个与棉纤维发育相关基因的克隆与鉴定(D).硕士学位论文,南京农业大学,2006
    4、贺亚军,郭旺珍,张天真.陆地棉GhLipase基因的克隆、特征分析及定位[J].农业生物技术学报,2009,17(1):84-86
    5、侯立华,黄新,朱水芳.枣疯病植原体实时荧光定量PCR检测方法的研究.生物技术通讯,2010,21(1):70-85
    6、胡宏标,张文静,王友华,等.棉纤维加厚发育相关物质对纤维比强度的影响[J].西北植物学报.2007,27(4):0726-0733
    7、蒋建雄,朱玉琴,虢利钢等.棉纤维细胞初生发育过程中的基因表达[J].湖南农业大学学报(自然科学版),2005,31(4):451-458
    8、蒋建雄,张天真Extraction of Total RNA in Cotton Tissues with CTAB-acidic Phenolic Method棉花学报,2003,15(3):166-167(in Chinese with English abstract)
    9、李登弟,黄耿青,谭新,等.棉花GhAQP1基因克隆及其在胚珠发育中的特异表达[J].植物生理与分子生物学报,2006,32:543-550
    10、李龙云,于霁雯,翟红红,等Comparative Analysis of Cotton Fiber Development Related Gene Expression Profiling分子植物育种,2010,8(3):488-496
    11、刘迪秋.陆地棉纤维特异表达基因的克隆与表达研究(D).博士学位论文,华中农业大学,2007
    12、罗明GhDET2和GhKTNl在棉花纤维细胞发育中的功能(D).博士学位论文.西南大学,2007
    13、马莉.基于SNP分型的荧光定量PCR检测系列特异嵌合体方法的建立。山西医科大学,2009,硕士学位论文;
    14、秦超,倪志勇,闫洪颖,等.棉花GhCCR4基因的瞬时表达研究[J].棉花学报.2010,22(1):10-16
    15、单志新,谭虹虹,余细勇,等.基于荧光定量PCR扩增反应的SNP测定法.中国生物化学与分子生物学报.2005,21(6):827-830
    16、王磊,朱一超,蔡彩萍,等.两个棉纤维发育相关基因的克隆与特征分析[J].作物学报,2010,36(1):85-91
    17、王志伟,王清连,张永山Difference of Genetic Effects due to QTL between Reciprocal Crosses in Transgenic Cotton棉花学报,2007,19(3)194-19843.
    18、徐孟亮,陈荣军,ROCHA Pedro,等.一个新的水稻逆境响应基因OsMsrl的表达与克隆.作物学报,2008,34(10):1712-1718
    19、张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12(6):321-326
    20、张燕洁,朱一超,郭旺珍,等.棉纤维发育相关基因GhCHS, GhCPI的克隆与鉴定[J].棉花学报,2009,21(1):10-16
    21、周建林,伍严安.人博卡病毒实时荧光定量PCR检测方法的建立.临床儿科杂志,2010,28(1):47-50
    22、朱一超,孙磊,宋焕,等.棉花GhDIS2基因的克隆与酵母表达[J].棉花学报,2010,22(2):99-103
    23、朱一超,张天真,贺亚军,等Gene Expression Analysis during the Fiber Elongation Period in Cotton(Gossypium hirsutum L.)作物学报,2006,32(11):1656-1662
    24、Arpat A B, Waugh M, Sullivan J P, Gonzales M, Frisch D, Main Do, Wood T, Leslie A, Wing R A, Wilkins T A.2004. Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol.54,911-929
    25、BUBB M R, Yarmola E G, Gibson B G, et al. Depolymerization of actin filaments by profiling. Effects of profilin on capping protein function[J]. J Biol Chem, 2003,278(27):24629-24635
    26、Chaudhary B, Hovav R, Rapp R, Verma N, Udall J A, Wendel J F. Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evolution & Development,2008,10(5):567-582
    27、Chuanfu A, Johnie N J, Wu J X, Guo Y F,Jack C M.Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica, (2010) 172:21-34
    28、Cristobal U, Assaf D, Tzion F, Ann B, Jorge D. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science,2006,314:1298-1301
    29、Delmer D P, Haigier C H. The regulation of metabolic flux to cellulose:a major sink for carbon in plants. Metab Eng,2001,4:22-28
    30、Dere S and Yildirim M B. Inheritance of grain yield per plant, flag leaf width and length in an 8 x 8 diallel cross population of bread wheat (T. aestivum L.). Turk J. Agric, 2006,30:339-345
    31、Doug J H, William R M, Kathleen M Y, Hee J K, Andrew W W, Jeffrey Z C and Barbara A T. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling. Theor Appl Genet.2010,120(7):1347-66
    32、Gorjanovic B, Balalic M K. Inheritance of plant height and spike length in wheat. Genetika,2005,37:25-31
    33、Gallavotti A, Long J A, Stanfield S, Yang X, Jackson D, Vollbrecht E, Schmidt R. J. The control of axillary meristem fate in the maize ramosa pathway. Development, 2010,137(17):2849-2856
    34、Hassan,S E, Khaliq I and Khan A S,2008. Genetic mechanism of some physiological traits in spring wheat at two plant population regimes. J. Agric. Res.,46:395-401
    35、HARMER S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton) [J]. Mol Genet Genomics,2002,268(1):1-9.
    36、Hovav R, Udall J A, Chaudhary B, Hovav E, Flagel L, Hu G, and Wendel G F. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet,2008,4:1-9
    37、Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. Regulation of OsSPLl4 by OsmiR156 defines ideal plant architecture in rice. Nature genetics,2010,42(6):541-545
    38、Ji S J,Lu Y C, Feng J X, Wei G, Li J,Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PDR and cDNA array. Nucleic Acids Research, 2003,31(10):2534-2543
    39、KAWA1 M, Aotsuka S,Uchimiya H. Isolation of a cotton CAP gene:a homologue of adenylyl cyclase-associated protein highly expressed during fiber elongation[J]. Plant cell Physiol,1998,39(12):1380-1383
    40、KIM H J, Triplett B A. Cotton fiber germin-like protein.1. Molecular cloning and gene expression[J].Planta.2004,218(4):516-524
    41、Li H B, Qin Y M, Pang Y, Song W Q, Mei W Q, and Zhu Y X. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fiber cell development. New Phytol,2007,175:462-471
    42、LI Xue Bao, Cai Lin,Cheng Ning Hui, et al. Moledular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber[J]. Plant Physiology. 2002,130:666-674
    43、LI Xue Bao, Fan Xiao Ping, Wang Xiu Lan, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation[J]. The plant cell, 2005,17:859-875
    44、MALIYAKAL E. John, and Laura J. Crow. Gene expression in cotton (Gossypium hirsutum L.) fiber:Cloning of the mRNAs[J]. Plant Biology,1992,89:5769-5773
    45、MEI W Q, Qin Y M, Song W G, et al. Cotton GhPOXl encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation[J]. Journal of Genetics and Genomics. 2009,36(3):141-150
    46、Paula M S.Branching Out:The ramose pathway and the evolution of grass inflorescence morphology. (Current Perspective essay). The plant cell,2006,18:518-522
    47、PEAR J R, Kawagoe Y, Schreckengost W E, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase[J]. Proc Natl Acad Sci USA.,1996,93:12637-12642
    48、Qin Y S, Liu R Z, Mei H X, Zhang T Z, Guo W Z. QTL mapping for yield traits in Upland cotton (Gossypium hirsutum L.). Acta Agronomica Sinica,2009,35(10): 1812-1821
    49、Schubert A M, Benedict C R, Berlin J D and Kohel R H. Cotton fiber development, kinetics of cell elongation and secondary wall thickening. Crop.Sci.,1973,13:704-709
    50、RUAN Yong-ling, Danny J. Llewllyn, Robert T.Furbank, et al. Chourey. The delayed initiation and slow elongation of fuzz-like short fiber cell in relation to altered patterns of sucrose syntheses expression and plasmodesmata gating in a lintless mutant of cotton[J]. Journal of Experimental Botany,2005,56:977-984
    51、RUAN Yong-ling, Llewellyn Danny J., Furbank Robert T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development[J].The Plant Cell,2003,15:952-964
    52、Shen X L, Guo W Z, Lu Q X, Zhu X F, Yuan Y L, Zhang T Z. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica,2007,155:371-380
    53、Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X.Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell,2006, 18(3):651-664
    54、SMART L B, Vojdani F, Maeshina M, et al. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated[J]. Plant Physiology,1998,116:1539-1549
    55、SONG Ping, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display[J]. Biochim Biophys Acta,1997,1351(3):305-312
    56、SUO J F, Liang X E, and Xue Y B. Expressional profiling of genes related to cotton fiber initiation and isolation of ChIAA26 homologus to Arabidopsis IAA16(Abstract). The Third ICGI Workshop,2002,pp.39
    57、SUO J, Liang X, Pu L, et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton(Gossypium hirsutum L.). Biochim Biophys Acta,2003,1630:25-34
    58、SUN Y, Veerabomma S, Abdel-mageed H A, et al. Brassinosteroid regulates fiber development on cultured cotton ovules[J]. Plant Cell Physiol,2005,46:1384-1391
    59、Ullah, S, Khan A S, Raza A and Sadique S. Gene Action analysis of yield and yield related traits in spring wheat (Triticum aestivum). Int. J. Agric. Biol.,2010,12:125-128
    60、Uri K, Zachary B L, Dani Z. The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nature genetics,2010,42(5):459-465
    61、Wang B H, Gao W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. Journal of Genetics and Genomics,2007,34(1):35-45
    62、WANG H Y, Yu Y, Chen Z L, et al. Functional characterization of Gossypium hirsutum profilinl Geae(GhPFN1) in tobacco suspension cells[J]. Planta,2005, 222(4):594-603
    63、WANG Xue-de., Jiang Shu-li., Li Yue-you, et al. A suppressed gene in integument cells of a fiberless seed mutant in upland cotton[J]. Journal of Zhejiang University Science.2002,3(5):594-599
    64、Weiya Xue, Yongzhong Xing, Xiaoyu Weng, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature genetics, 2008.6(40):761-767
    65、Welinder K G, Justesen A F, Kjaersgard I V H, Jensen R B, Rasmussen S K, Jepersen H M, and Duroux L. Structural diversity and transcription of Class Ⅲ peroxidases from Arabidopsis Thaliana. Eur.J.Biochem,2002,269:6063-6081
    66、Wenqian Mei, Yongmei Qin, Wenqiang Song, Jun Li, Yuxian Zhu. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. Journal of Genetics and Genomics,2009(36):141-150
    67、WILKINS T A, Arpat A B. The cotton fiber transcriptome[J]. Physiologia Plantarum, 2005,124(3):295-300
    68、WU A M, Ling C, Liu J Y. Isolation of a cotton reversibly glycosylated polypeptide(GhRGP1) promoter and its expression activity in transgenic tobacco[J]. J Plant physiol,2006,163(4):426-435
    69、Wu X T, Andrea S and Paula M S. Suppressor of sessile spikeletsl Functions in the ramose Pathway Controlling meristem Determinacy in Maize. Plant Physiology,2009, 149:205-219
    70、Xianzhong Huang,Qian Qian, Zhengbin Liu, Hongying Sun, Shuyuan He, Da Luo, Guanmin Xia, Chengcai Chu, Jiayang Li, and Xiangdong Fu. Natural variation at the DEP1 locus enhances grain yield in rice. Nature genetics,2009.4(41):494-497
    71、ZHANG D, Hrmova M, Wan C H, et al. Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls[J]. Plant Mol Biol, 2004,54(3):353-372
    72、ZHAO Guang-rong, Liu Jin-yuan. Isolation of a cotton RGP gene:a homolog of reversibly glycosylated polypeptide highly expressed during fiber development. Biochimica et biophysica acta,2002,1574 (3):370-374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700