利用棉纤维发育相关基因研究不同棉种分子进化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界性重要的经济作物。棉属植物的分类研究已有近百年的历史。最有权威的棉属分类结果是美国植物学家Fryxell在1992年提出的。他将棉属分为4个亚属,8个组,9个亚组,50个种。共包括45个二倍体种和5个异源四倍体种。异源四倍体种是由二倍体A染色体组棉种和二倍体D染色体组棉种种间杂交而成的。其中A染色体组棉种可产生可纺织的纤维,而D基因组棉种不能。本研究选择1个二倍体A基因组棉种(G.herbaceum),13个二倍体D基因组棉种和2个四倍体栽培代表种,共16个棉种,比较已克隆的棉纤维发育相关基因在这些棉种中的序列及结构异同,研究棉属D染色体组棉种之间的关系及异源四倍体D染色体亚组的可能供体种。
     选择15个NCBI上已登录的棉纤维发育相关基因及本实验室新克隆的一个蔗糖合酶基因(SusA1),在16个棉种中获得基因全长序列。通过基因的结构分析发现,16个基因中有13个基因的结构在各棉种之间比较保守,其余3个基因(ManA2.CelA3和CIPK1)的结构在不同棉种间变异比较大。基因的进化速率分析显示,同一基因在不同棉种中的进化速率比较恒定,而同一棉种不同基因间的进化速率差异比较大,暗示无论供试棉种的纤维有无,其大部分纤维发育相关基因结构变异不大。相对于A基因组棉种,D基因组祖先种分化时不同的纤维发育相关基因分化程度差异较大;在漫长的进化过程中,TM-1的进化速率大于海7124。对各基因在16个棉种中的18条序列进行聚类分析,发现11个基因的亚类聚类情况与Fryxell(1992)的亚类分类相同,而其余的5个基因(ACT1、CelA3、LTP3、Sus1和Pel)的亚类聚类结果稍有变化。同时,除Exp1和SusAl外,其余14个基因的A染色体亚组和D染色体亚组在聚类时明显分开。12个基因的聚类结果显示均为雷蒙德氏棉与异源四倍体的D染色体亚组聚在一起,而ACT1、Exp、POD2和Pel的系统进化树显示,异源四倍体的D染色体亚组分别与其它的二倍体D染色体组棉种聚在一起。进一步将所有基因的序列按染色体组拼接,获得了18条序列,对其进行聚类分析发现,在亚组水平上,13个D染色体组棉种与Fryxell(1992)的亚组分类相同;异源四倍体形成后,A、D亚组是独立进化的,且雷蒙德氏棉与陆地棉和海岛棉D染色体亚组的亲缘关系最近。
Cotton from the genus Gossypium is the world's most important fiber crop plant. For nearly 100 years, a wide variety of data, including morphologic, meiotic, karyotypic, genetic and molecular, were generated to address the relationships among members of the genus. Now, the most authoritative classification for Gossypium follows Fryxell (1992), who divided Gossypium into four subgenera, eight sections, nine subsections and approximately 50 species. Forty-five cotton species are diploid and five are tetraploid. The five tetraploid species are of allopolyploid origins, originated from interspecific hybridization between diploid A- and D-genome species, the best extant model of the A-subgenome donor is G. herbaceum, while the D-subgenome donor remained unclear. So, in this study, based on the sequence and the structures of 16 fiber development genes in 16 cotton species, we revealed the relationship of 13 diploid D-genome species and the D-genome donor of tetraploid species.
     16 fiber development genes, including 15 accessioned to NCBI and a new sucrose synthase gene(SusA1) cloned by our lab, were chose to study. First, we cloned these genes in the genome DNA of 16 cotton species, including one diploid A-genome species,13 diploid D-genome species and two tetraploid species. In the orthologues and homoelogous loci of 16 studied genes, the sequence and structure of 13 genes were conservative and 3 genes(ManA2, CelA3 and CIPK1) were diverse. The evolution rates between A and D-genome and between A (D)-genome and A (D)-subgenome revealed that the same gene may have same rates among different species and evolution rates were divergence among genes; D-subgenome of allotetraploid had higher evolution rate than A-subgenome, and Hai7124 may be more conserved than TM-1. Further, the phylogenetic trees of each gene were constructed. The results of 11 genes showed that 13 D-genome species were congruent with Fryxell's subsection taxonomy, while 5 genes, ACT1, CelA3, LTP3, Susl and Pel, were different. And except Expl and SusAl, the other 14 genes were independent evolution between A- and D-subgenome in the allopolyploid after polyploid formation. For 12 genes, the D-subgenomes of TM-1 and Hai7124 had closer relationship with G. raimondii, while D-subgenomes of ACT1, Exp, POD2 and Pel were in the same cluster with other diploid D-genome species. Further, the phylogenetic tree was constructed based on the combined sequence data. The results showed that 13 D-genome species were congruent with Fryxell's subsection taxonomy, the A- and D-subgenome in the allopolyploid were independent evolution after polyploid formation and G. raimondii has the closest gnetic relationship with the D-genome donor of G. hirsutum and G. barbadense.
引文
[1]Amor Y, Haigler C H, Johnson S, et al. A membrane-associated form of Sus and its potential role in synthesis of cellulose and callose in plants [J]. Proc Natl Acad Sci USA,1995,92:9353-9357
    [2]Beasley C A, Birnbaum E H, Dugger W M, et al. A quantitative procedure for estimating cotton fiber growth. Stain Technol,1974,49(2):85-92
    [3]Bundock P C, Christopher J T, Eggler P, et al. Single nucleotide polymorphisms in cytochrome P450 genes from barley [J]. Theor Appl Genet,2003,106:676-682
    [4]Chee P W, Draye X, Jiang C X, et al. Molecular dissection of interspeciffic variation between Gossypium hirsutum and G barbadense (cotton) by a backcross-self approach:Ⅰ. Fiber elongation [J]. Theor Appl Genet,2005,111:757-763
    [5]Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines [J]. BMC Genet,2002,3:19-32
    [6]Clark A G. Invasion and maintenance of a gene duplication [J]. Proc Natl Acad Sci USA,1994,91: 2950-2954
    [7]Cleveland D W, Sullivan K F. Molecular biology and genetics of tubulin. Annu Rev Biochem,1985, 54:331-365
    [8]Cui X, Shin H, Song C, et al. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta,2001,213(2):223-230
    [9]Delanghe E A L. Lint development [J]. In Mauney J R and Stewart J M, ed, Cotton Physiology, Cotton Foundation, Memphis, TN,1986:325-349.
    [10]Delanghe E A. Towards an international strategy for genetic improvement in the genus Musa [J]. In: Banana and Plantain Breeding Strategies. Persley, G S and De Langhe, E A. (Eds.), pp.19-21. Proceedings of an international workshop,13-17 October 1986, Cairns, Australia, ACIAR PRIC. No 21
    [11]Delmer D P, Pear J R, Andrawis A et al. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers [J]. Mol Gen Genet,1995, 248(1):43-51
    [12]Edwards G A, Mirza M A. Genomes of the Australian wild species of cotton. II The designation of a new G genome for Gossypium bickii. Can J Genet Cytol,1979,21:367-372
    [13]Fryxell P A, Craven L A, Stewart J M. A revision of Gossypium sect. Grandicalyx (Malvaceae), including the description of six new species [J]. Syst Bot,1992,17:91-114
    [14]Gerstel D U, PhilliPs L L. Segregation of synthetieamphiploids in Gossypium and Nicotiana [J]. Quantity Biology,1958,23:225-237
    [15]He Y, Guo W, Shen X, et al. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton [J]. Planta,2008,228:473-483
    [16]Hovav R, Udall J A, Chaudhary B, et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant [J]. Proc Natl Acad Sci USA,2008b, 105:6191-6195
    [17]Howell W M, Jobs J, Gyllensten U, et al. Dynamic allele specific hybridization:a new method for scoring single nueleotide polymorphisms [J]. Nature Biotechnology,1999,17:87-88
    [18]Hurst L D. The Ka/Ks ratio:diagnosing the form of sequence evolution [J]. TRENDS in Genetics, 2002,91:486-487
    [19]Ji S J, Lu Y C, Li J. A-beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochem Biophys Res Commun,2002,296: 1245-1250
    [20]John E M, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber:Cloning of the mRNAs [J]. Proc Natl Acad Sci USA,1992,89:5769-5773
    [21]John E M, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber:Cloning of the mRNAs [J]. Proc Natl Acad Sci USA,1992,89:5769-5773
    [22]Jones M A, Shen J J, Fu Y, et al. The Arabidopsis Rop-GTPase is a positive regulator of both root hair initiation and tip Growth [J]. Plant Cell,2002,14:763-776
    [23]Kanazin V, Talbert H, See D, et al. Discovery and assay of single-nucleotide polymorphisms in barley (Hordeum vulgare) [J]. Plant Mol Biol,2002,48:529-537
    [24]Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene:a homologue of adenylyl cyalase-associated protein highly expressed during fiber elongation [J]. Plant Cell Physiol,1998,39: 1380-1383
    [25]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro:models for plant cell elongation and cell wall biogenesis [J]. Plant Physiol,2001,127:1361-1365
    [26]King D G. Triple repeat DNA as a highly mutable regulatory system [J]. Science,1994,263: 595-596
    [27]Kondrashov F A, Kondrashov A S. Role of selection in fixation of gene duplications [J]. J Theor Biol,2006,239:141-151
    [28]Kota R, Varshney R K, Thiel T, et al. Generation and comparison of EST-derived SSRs and SNPs in barley(Hordeum uulgare L.) [J]. Hereditas,2001,135:145-151
    [29]Lacape J M, Nguyen T B, Courtois B, et al. QTL Analysis of Cotton Fiber Quality Using Multiple Gossypium hirsutum ×Gossypium barbadense Backcross Generations.2005, Crop Sci,45:123-140
    [30]Li H, Shen J J, Zheng Z L, et al. The Rop GTPase switch controls multiple developmental processes in Arabidopsis [J]. Plant Physiol,2001,126:670-684
    [31]Loguercio L L, Zhang J Q, Wllkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.) [J]. Mol Gen Genet,1999,261:660-671
    [32]Luan M, Guo X, Zhang Y, et al. QTL mapping for agronomic and fibre traits using two interspecific chromosome substitution lines of Upland cotton [J]. Plant Breeding,2009,128:671-679
    [33]Lynch M, Force A. The probability of duplicate-gene preservation by subfunctionalization [J]. Genetics,2000,154:459-473
    [34]Ma G J, Zhang T Z, Guo W Z. Cloning and characterization of cotton GhBG gene encoding B-glucosidase [J]. DNA Sequence,2006,17(5):355-362
    [35]Marth G T, Korf I, Mark D Y, et al. A general approach to single nueleotide polymorphism discovery [J]. Nature Geneties,1999,23:452-457
    [36]Menzel M Y. A cytological method for genome analysis in Gossypium [J]. Genetics,1954,40: 214-223
    [37]Mochida K, Yamazaki Y, Ogihara Y. Discrimination of homoeologous gene expression in hexaploid wheat by SNP analysis of contigs grouped from a large number of expressed sequence tags [J]. Mol Genet Genomics,2003,270:371-377
    [38]Nolte K D, Hendrix D L, Radin J W, et al. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules [J]. Plant Physiol,1995,109:1285-1293
    [39]Orford S J, Timmis J N. Specific expression of an expansin gene during elongation of cotton fibers [J]. Biochin Biophy Acta,1998,1398:342-346
    [40]Parks C R, Ezell W L, Williams D E, et al. The application of flavonoid distribution to taxonomic problems in the genus Gossypium [J]. Bull Torrey Bot Club,1975,102:350-361
    [41]Paterson A H, Brubaker C, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol Biol Rep,1993,11:122-127
    [42]Pear J R, Kawagoe Y, Schreckengost W E, et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase [J]. Proc Natl Acad Sci USA,1996, 93:12637-12642
    [43]Petrov D A, Chao Y C, Stephenson E C, et al. Pseudogene evolution in Drosophila suggest high rate of DNA loss [J]. Mol Biol Evol,1998,15:1562-1567
    [44]Potikha T S, Collins C C, Johnson D J, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers [J]. Plant Physiol,1999,119:849-858
    [45]Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon portioning in developing cotton seed [J]. Plant Physiol,1997, 115:375-385
    [46]Ruan Y L, Lewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmadesmata and coordinated expression of sucrose and K+ transporters and expansin [J]. Plant Cell,2001,13(1):47-63
    [47]Ruan Y L, Xu S M, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiology,2004,136:4104-4113
    [48]Sanger F, Nicklen S, Coulson A R. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci USA,1977,74:5463-5467
    [49]Schuber A M, Benedict C R, et al. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Sci,1973,13:704-709
    [50]Sela-Buurlage M B, Ponstein A S, Bres-Moemans S A. Only specific tobacco (Nicotiana tabacum) chitinases and β-1,3-glucanases exhibit antifungal activity. Plant Physiol,1993,101(3):857-863
    [51]Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica,2007,155:371-380
    [52]Shi H Y, Wang X L, Li D D, et al. Molecular Characterization of Cotton 14-3-3L Gene Preferentially Expressed During Fiber Elongation [J]. Journal of Genetics and Genomics,2007, 34(2):151-159
    [53]Silflow C D, Oppenheimer D G, Kopczak S D. Plant tubulin genes:structure and differential expression during development [J]. Dev Genet,1987,8:435-460
    [54]Skovested A. Cytological studies in cotton. II Two interspecific hybrids between Asiatic and new world cotton [J]. J Genet,1934,28:407-424
    [55]Small R L, Ryburn J A, Wendel J F. Low levels of nucleotide diversity at homoelogous Adh loci in allotetraploid cotton (Gossypium L.) [J]. Mol Biol Evol,1999,16:491-501
    [56]Somers D J, Kirkpatrick R, Moniwa M, et al. Mining single-nucleotide polymorphisms from hexaploid wheat ESTs [J]. Genome,2003,49:431-437
    [57]Song P, Allen R D. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display [J]. Biochim Biophy Acta,1997,1351(3):305-312
    [58]Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J]. Theor Appl Genet,2004,109:122-128
    [59]Wang K, Song X L, Han Z G, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006,113:73-80
    [60]Wang S, Zhao G H, Jia Y H, et al. Cloning and Characterization of a CAP Gene Expressed in Gossypium arboretum Fuzzless Mutant [J]. Crop Sci,2008,48:2314-2320
    [61]Wendel J F, Schnabel A, Seelanan T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression [J]. Mol Phylogenet Evol,1995a, 4:298-313
    [62]Wllkins T A. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum L.) ovules. Plant Physiol,1993,102,679-680
    [63]Wu Y, Meeley R B, Cosgrove D J. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize. Plant Physiol,2001,126:222-232.
    [64]Yang X, Hou L, Xiao Y H, et al. Sequence Analysis and Characterization of Four GL2 Homologous Genes in Cotton (Gossypium hirsutum L.) [J]. Acta agronomica sinica,2008,34(6):1086-109
    [65]郭旺珍,孙敬,张大真.棉花纤维品质基因的克隆和分子育种.科学通报,2003,48(5):410-417
    [66]郭媖.五个与棉纤维发育相关的基因的克隆与鉴定.南京农业大学,2006,硕十学位论文
    [67]黄留玉.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005,(1):131-139
    [68]蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苛酶cDNA的克隆及其特征.植物生理与分子生物学学报.2004,30(2):216-220
    [69]琚铭.棉纤维相关基因时空表达与纤维品质关联分析及β-1,4-葡糖苷酶基因的转基因功能验证.南京农业大学,2008,硕士学位论文
    [70]李继刚,郭三堆.棉花高质量RNA的提取及MADS2 box基因保守区段的克隆[J].棉花学报,2004,16(1):3-7
    [71]李先碧,肖岳华,罗明.两个棉花Rac蛋白基因的克隆与表达分析.遗传学报,2005,32(1):72-78
    [72]李燕娥,朱祯,陈志贤,等.豇豆胰蛋白酶抑制剂转基因棉花的获得[J].棉花学报,1998,10(5):237-243
    [73]刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程.植物学报,2000,42(10):991-995
    [74]马国佳.棉花β-1,4-葡糖苷酶基因和内-β-1,3-1,4-葡聚糖酶基因的克隆与鉴定.南京农业大学,2005,硕士学位论文
    [75]上官小霞,王凌健,李燕娥,等.棉花纤维发育的分子机理及品质改良研究进展.棉花学报,2008,20(1):62-69
    [76]沈法富,喻树迅,韩秀兰,等.棉花半胱氨酸蛋白酶基因的克隆和表达特性分析[J].科学通报,2004,49:2318-2323
    [77]孙杰,李艳军,等.棉花纤维特异表达基因GhFl的分离及鉴定[J].棉花学报,2005,17:259-263
    [78]孙敬,唐灿明,袁小玲,等.Selection Technique for Transgenic Bt Cotton Using Kanamycin as an Indirect Identification Marker. Acta Gossypii Sinica(棉花学报),2000,12(5):270-276
    [79]王伟,朱祯,高越峰,等.双价抗虫基因陆地棉转化植株的获得[J].植物学报,1999,41(4):384-388
    [80]张宝红,丰嵘.棉花生物技术研究现状[J].生物工程进展,1992,12(5):18-21
    [81]张恒木,刘进元.棉纤维中优势表达β-半乳糖苷酶基因的分子克隆及其特征[J].植物学报,2005,47(2):223-232
    [82]张辉,汤文开,谭新等.棉纤维发育及其相关基因表达调控研究进展,植物学通报,2007,24(2):127-133
    [83]张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6):321-326
    [84]周宝良,等.海岛棉与旱地棉、雷蒙德氏棉和拟似棉的F1杂种细胞学观察.江苏农业学报,1991,7(2):15-21
    [85]周宝良,等.海岛棉与瑟伯氏棉、辣根棉、裂片棉和松散棉的杂种F1细胞学研究.浙江农业大学学报,1993,19(1):24-29
    [86]周宝良,陈松,沈新莲,等.棉属种子SOD酶的凝胶电泳图谱与种间关系.江苏农业学报,1995,11(1):11-15
    [87]朱美霞,刘海清,张月永.应用RAPD-PCR分析棉花A基因组的起源与进化[J].安徽农业科学,2004,32(6):1109-1111
    [88]朱一超,张天真,贺亚军,等.棉花纤维伸长发育期的基因表达分析[J].作物学报,2006,11:1656-1662
    [89]朱一超.棉花纤维发育转录因子的表达分析和两个基因的克隆与初步功能分析.南京农业大学,2009,博士学位论文
    [90]祝水金,汪若海.棉属分类及其染色体组研究进展[J].棉花学报,1995,7(1):1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700