蒺藜皂苷对奶牛瘤胃发酵、甲烷产量、抗氧化功能及免疫功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瘤胃甲烷的产生不仅导致饲料能量的损失,而且还会促使全球气候变暖。随着全球对温室气体排放的重视,有关减缓反刍动物甲烷排放的瘤胃调控技术方面的研究受到越来越多的关注。本课题选用从蒺藜科植物蒺藜中提取的蒺藜皂苷(GSTT)作为试验材料,通过瘤胃体外发酵产气试验、双外流连续培养试验和奶牛饲养试验,系统研究GSTT对奶牛瘤胃发酵、甲烷产量、营养物质消化代谢及其抗氧化能力和免疫功能的影响,并利用荧光定量PCR技术分析检测瘤胃微生态主要菌群的变化,对GSTT减少甲烷产生的机理进行探讨。
     试验一本试验采用Mneke的Syrnige系统研究GSTT对体外发酵特性和甲烷产量的影响。试验设五个处理水平,GSTT添加量分别为0,0.15,0.30,0.60和0.90g/L,每个处理设四个重复,同时设一个空白对照组。在此培养系统中,瘤胃培养液用量为30mL,培养底物为200mg玉米粉和羊草粉等量混合物。结果表明,体外培养24h后,除0.15g/L GSTT处理组外,其余处理组体外甲烷浓度和产量较对照组均显著降低(P<0.05),0.30,0.60和0.90g/L GSTT处理组甲烷产量分别降低26.67%,28.89%,31.11%(P<0.05)。添加GSTT对pH和挥发性脂肪酸(VFA)浓度无显著影响(P>0.05),但随着GSTT添加水平的增加,氨态氮(NH3-N)的浓度降低(P<0.05),丙酸摩尔百分比升高(P<0.05),乙酸、丁酸摩尔百分比和乙酸/丙酸(A/P)值降低(P<0.05)。体外发酵24h后,GSTT降低了瘤胃体外培养液中原虫的数量(P<0.05),且随着GSTT添加水平的增加呈线性降低(P<0.01)。0.15,0.30,0.60和0.90g/L GSTT处理组原虫数量较对照组分别降低27.03%,37.84%,60.36%和72.07%。与对照组相比,较低剂量GSTT处理组体外干物质消失率(IVDDM)无显著变化(P>0.05),但高剂量GSTT处理组(0.60和0.90g/L)显著降低(P<0.05)。
     试验二本试验旨在探讨利用ANKOM RFS气体测量系统研究瘤胃体外发酵的可行性,并进一步研究GSTT对体外瘤胃发酵、甲烷产量和微生物区系的影响。试验设五个处理水平,GSTT添加量分别为0,0.15,0.30,0.60和0.90g/L,每个处理设四个重复,同时设一个空白对照组。在此培养系统中,瘤胃培养液用量为100mL,培养底物由340g/kg玉米、160g/kg豆粕和500g/kg羊草草粉组成。结果表明,在任一培养时间点,随着GSTT添加水平的升高,体外甲烷排放量呈线性降低(P<0.01)。体外培养24h时,添加0.15,0.30,0.60和0.90g/L GSTT处理组甲烷产量较对照组分别降低8.72%(P>0.05),15.44%(P<0.05),21.48%(P<0.05)和24.16%(P<0.05)。添加GSTT对pH和VFA的浓度没有显著影响(P>0.05)。发酵模式发生改变,随着GSTT添加水平的增加,丙酸摩尔百分比升高,乙酸摩尔百分比和A/P值降低,NH3-N浓度下降。GSTT降低了瘤胃体外培养液中原虫相对于总菌(16S rDNA)的数量(P<0.05),且随着GSTT添加水平的提高呈线性和二次曲线规律降低(P<0.01)。甲烷菌和真菌相对于总菌(16S rDNA)的数量随着GSTT添加水平的提高呈线性降低(P<0.01)。GSTT对产琥珀酸丝状杆菌和黄色瘤胃球菌相对于总菌(16S rDNA)的数量无显著影响(P>0.05)。总体而言,GSTT对体外产气量,甲烷产量以及发酵特性的影响在Mneke的Syrnige系统和ANKOM RFS气体测量系统中的趋势基本一致,说明ANKOM RFS系统可以模拟瘤胃用以研究体外发酵。
     试验三本试验旨在利用DFCOS-Ⅱ型双外流连续培养系统,进一步研究日粮中添加不同浓度的GSTT对奶牛瘤胃发酵特性的影响,进而筛选适宜剂量或范围,为后续体内试验研究提供参考依据。试验设四个处理水平,GSTT添加量分别为0,0.15,0.30和0.60g/L,每个处理设三个重复,试验周期为7d,前5d为适应稳定期,最后2d为采样期。结果显示,日粮添加不同水平GSTT对瘤胃pH、总VFA浓度无显著影响(P>0.05);随着GSTT添加水平的提高,人工瘤胃液NH3-N浓度、乙酸摩尔百分比和A/P值降低(P<0.05),丙酸摩尔百分比升高(P<0.05)。提示,GSTT可望作为一种反刍动物瘤胃发酵调控剂来改变瘤胃发酵模式,改善对饲料能量和蛋白质的利用效率。
     试验四本试验以健康瘘管奶牛为试验动物,进行4×4拉丁方试验,共4期,每期28d。研究GSTT对奶牛瘤胃微生物发酵、甲烷产量、营养物质消化代谢及其抗氧化能力和免疫功能的影响,以验证其实际应用效果。根据体外试验结果,确定4个处理组中GSTT的添加水平分别为每天0g(对照组),5g,10g,15g。研究结果表明:
     (1)日粮中添加不同水平的GSTT对奶牛DMI、瘤胃液pH和总VFA的浓度均无显著影响(P>0.05)。添加10g/d和15g/d GSTT处理组奶牛甲烷排放量较对照组显著降低(P<0.05),但两处理组之间差异不显著(P>0.05)。若以奶牛每千克干物质采食量所排出的甲烷产量来计,添加10g/d GSTT处理组最低(14.94g/kg DMI)。与对照组相比,10g/d和15g/d GSTT处理组奶牛瘤胃液NH3-N浓度降低(P<0.05),丙酸摩尔百分比升高(P<0.05),A/P值降低(P<0.05)。GSTT对奶牛瘤胃内原虫数量有显著影响,10g/d和15g/d GSTT处理组低于对照组(P<0.05)。奶牛瘤胃液中真菌和甲烷菌的数量随GSTT添加量的增加均呈线性降低趋势,但各处理组之间差异均不显著(P>0.05)。日粮中添加GSTT对奶牛瘤胃液中产琥珀酸丝状杆菌和黄色瘤胃球菌的数量没有显著影响(P>0.05)。
     (2)日粮中添加不同水平的GSTT对DM在奶牛瘤胃内的降解率及其有效降解率均无显著影响(P>0.05),但其有效降解率有降低趋势。GSTT对36h、48h时CP的瘤胃降解率及其有效降解率均有不同程度影响,以15g/d GSTT处理组最低,显著低于对照组(P<0.05)。GSTT对奶牛NDF和ADF瘤胃有效降解率均无显著影响(P>0.05)。GSTT对奶牛DM、OM、GE、CP、NDF和ADF的全消化道表观消化率亦无显著影响(P>0.05)。各处理组之间奶牛瘤胃滤纸纤维素酶、羧甲基纤维素酶和水杨苷酶的活性均无显著差异(P>0.05),但15g/d GSTT处理组奶牛瘤胃木聚糖酶活性较对照组显著降低(P<0.05)。
     (3)日粮中添加GSTT对奶牛血清中总蛋白(TP)、白蛋白(ALB)、球蛋白(GLB)的浓度和白球比(A/G)均无显著影响(P>0.05),但血清TP浓度随GSTT添加水平的增加有升高的趋势(P=0.09)。日粮中添加GSTT可显著降低奶牛血清尿素氮(SUN)(P<0.05)、甘油三酯(TG)(P<0.01)和总胆固醇(TC)(P<0.05)的浓度。奶牛血清中高密度胆固醇(HDL-C)的浓度随GSTT添加量的增加呈线性提高(P=0.03),但各处理组之间差异未达显著水平(P>0.05)。添加GSTT对奶牛血清中谷草转氨酶(GOT)、谷丙转氨酶(GPT)活性和碱性磷酸酶(ALP)的活性及其肌酐、葡萄糖、钙和磷的浓度均无显著影响(P>0.05)。
     (4)与对照组相比,10g/d和15g/d GSTT处理组奶牛血清总抗氧化能力(T-AOC)、谷胱甘肽过氧化物酶(GSH-Px)活性显著升高(P<0.05),血清丙二醛(MDA)水平显著降低(P<0.05),但两处理组之间差异不显著(P>0.05)。奶牛血清超氧化物歧化酶(SOD)活性随着GSTT添加剂量的提高有升高趋势(P=0.06)。由此可见,日粮中添加GSTT对奶牛的抗氧化能力有一定的改善作用。
     (5)日粮中添加GSTT对奶牛血清IgA、白介素-2(IL-2)和肿瘤坏死因子-(TNF-a)含量均无显著影响(P>0.05),但10g/d和15g/d GSTT处理组奶牛血清IgG、IgM的含量较对照组显著提高(P<0.05)。随着GSTT添加剂量的增加,奶牛血清中IgA含量和IL-2的水平亦呈线性升高趋势(P=0.05)。提示GSTT对奶牛的免疫功能有一定的改善作用。
     综上所述,添加适量GSTT对奶牛瘤胃发酵具有调控作用,可去除部分瘤胃原虫,适度降低瘤胃液NH3-N的浓度,抑制奶牛甲烷的生成,并对奶牛的抗氧化能力和免疫功能具有一定的改善作用。综合考虑,在本试验条件下,日粮中GSTT适宜添加量为10g/d。
Methane production in the rumen represents as a loss of energy for the host animal,and, in addition, methane emission by ruminants may contribute to a greenhouse effect orglobal warming. Scientists have been recently paying much attention to studymethnogen-inhibitors with the global concerning on greenhouse gas emission. The grosssaponin of Tribulus terrestris(GSTT)were selected to systematically study its effects onrumen fermentation, methane production, digestion and utilization of nutriment,antioxidant capacity and immune function of dairy cows by using artificial gas productiontrial, dual outflow continuous culture trial and feeding ruminally cannulated trial.Real-Time PCR technique to monitor ruminal microbial population to discuss themicrobiology mechanism for decreased methane production by GSTT.
     Exp.1The objective of this study was to determine preliminarily the effect of GSTTon ruminal fermentation and methane production in in vitro gas production test by usingMenke’s syringe system.The GSTT were added at levels of0,0.15,0.30,0.60and0.90g/Lin30mL culture medium. Substrate was200mg mixture of corn grain and Chinese wildryeon an equal mass basis.Each treatment (every dose of GSTT) was incubated inquadruplicate, and fermentations were repeated on two separate days. The set free of GSTTbut containing of the substrate was used as control. After24h of incubation, methaneproduction were reduced with increasing levels of GSTT, however, it was similar to that ofthe control treatment when addited with the lowest level(0.15g/L).Compared to control,methane production were decreased by26.67%,28.89%,31.11%, addited with0.15,0.30,0.60and0.90g/L of GSTT, respectively. GSTT had little effect on pH and theconcentration of volatile fatty acids(VFA)in culture fluid(P>0.05), while NH3-Nconcentrations were decreased(P<0.05), by addition of GSTT. Molar proportion of acetateand butyrate was reduced and propionate was increased with a corresponding reduction inA/P ratio(P<0.05). Total protozoal counts showed a linear decrease(P<0.01)withincreasing levels of GSTT. Compared to control, total protozoal counts were reduced by27.03%,37.84%,60.36%and72.07%for0.15,0.30,0.60and0.90g/L of GSTT(P<0.05),respectively. Excluding the lower levels(0.15and0.30g/L)of GSTT, IVDDM wasdecreased(P<0.05)at higher levels(0.60and0.90g/L).
     Exp.2The objective of this study was to further research on ruminal fermentation, methane production and microbial community in in vitro gas production test by usingANKOM RFS gas measurement system. The GSTT were added at levels of0,0.15,0.30,0.60and0.90g/L in100mL culture medium. The substrate was composed on a dry matter(DM)basis of340g/kg corn grain,160g/kg soybean meal, and500g/kg Chinese wildryegrass hay.Each treatment(every dose of GSTT)was incubated in quadruplicate, andfermentations were repeated on two separate days. The set free of GSTT but containing ofthe substrate was used as control. Results showed that methane emission decreased(P<0.01)in a line manner at all incubation times.Addition with0.15,0.30,0.60and0.90g/L of GSTT decreased methane production by8.72%(P>0.05),15.44%(P<0.05),21.48%(P<0.05)and24.16%(P<0.05)relative to controls at24h, respectively. GSTT hadlittle effect on pH and the concentration of total VFA in culture fluid(P>0.05). However,the fermentation patterns were modified, with higher propionate molar proportion, andlower acetate molar proportion, A/P ratio as well as NH3-N concentration. In addition,GSTT also altered the population of rumen microbes relative to total bacterial16SrDNA.The abundance of rumen protozoa were significantly decreased by addition ofGSTT,in general, linear and quadratic(P<0.01). The abundance of methanogens and fungidecreased by GSTT addition with linear dose–response effects.However, Fibrobactersuccinogenes and Ruminococcus falvefaciens were not affected. In summary, there were nosignificant difference in in vitro rumen fermentation, gas production or methane productionbetween Menke’s syringe system and ANKOM RFS gas measurement system,indicatedthat both systems could be used to simulate the rumen fermentation.
     Exp.3The effects of different levels of GSTT on rumen fermentation characteristicwere examined in DFCOS-Ⅱdual-flow continuous culture system. Furethermore, thepoper adding levels of GSTT in vitro was estabilished to provide reference basis forsubsequent experiment in vivo study. The GSTT were added at levels of0,0.15,0.30and0.60g/L in culture medium. Each treatment(every dose of GSTT)was incubated intriplicate. The entire experimental period was7days, including5days for adjustment andthe last2days for sample collection. It was concluded that addition with0.15,0.30and0.60g/L of GSTT had little effect on ruminal pH and the concentration of total VFA(P>0.05), while molar proportion of acetate, A/P ratio as well as NH3-N concentrationsignificantly decreased(P<0.05),molar proportion of propionate significantly increased(P<0.05). Theses results indicated that GSTT has a potential to be used as a rumenmodulator to improve the utilization efficiency of energy and protein.
     Exp.4The experiment was conducted to study the effects of GSTT on rumenmicrobial fermentation,methane production, digestion and utilization of nutriment,antioxidant capacity and immune function of dairy cows. Four healthy ruminally fistulateddairy cows were randomly assigned in a4×4Latin square design. The animals receivedthe same basal diets and added with the GSTT at levels of0(control),5,10and15g d1,respectively.The experiment lasted for four periods, each feeding period lasting for28days. The results showed as follows:
     (1)Addition with different levels of GSTT had little effect on dry matter intakes(DMI), ruminal pH and the concentration of total VFA(P>0.05). Compared with thecontrol treatment,methane emission of dairy cows,added with the GSTT at levels of10and15g d1,were decreased(P<0.05),but there were no difference between the twotreatments(P>0.05).When expressed on the basis of DMI,methane production was foundlowest(14.94g/kg DMI)for dairy cows with GSTT supplement at the dose of10g d1.Compared with the control treatment,rumen NH3-N concentration and A/P ratio was lowerfor dairy cows with GSTT supplement at the dose of10and15g d1(P<0.05).However,addition with GSTT significantly enhanced molar proportion of propionate(P>0.05).Inaddition, feeding GSTT decreased significantly rumen total protozoal counts,the totalprotozoal counts for dairy cows added with the GSTT at levels of10and15g d1werelower than those of dairy cows in control treatment(P<0.05).Moreover, The rumenmethanogens and fungi counts of dairy cows tend to decrease linearly with increasinglevels of GSTT,but there were no significant differences between different treatments(P>0.05). The rumen Fibrobacter succinogenes and Ruminococcus falvefaciens were notaffected significantly by addition with GSTT(P>0.05).
     (2)Feeding GSTT did not affect the apparent degradabity or the effectivedegradation(ED)of dry matte(rDM)(P>0.05).However, the ED of DM tend to decrease.Addition with GSTT declined the apparent degradabity and ED of CP at36h and48h,andthe numerical value of dairy cows added with the GSTT at levels of15g d1was thelowest,which was lower significantly than that of the control treatment(P<0.05).FeedingGSTT had little effect on the ED of NDF and(P>0.05).In addition, the apparent total tractdigestibilities of DM,OM,GE,CP,NDF and ADF were unaffected by the supplementationwith GSTT(P>0.05). There were no significant differences in rumen cellulase, CMCaseor salicinase activites of dairy cows between different groups(P>0.05).However, thexylanase activities of dairy cows added with the GSTT at levels of15g d1were lowerthan those of the control treatment(P<0.05).
     (3)The serum concentration of total proteins(TP), albumin(ALB), globulin(GLB)and ratio of albumin to globulin (A/G) ratio was unaffected significantly by thesupplementation with GSTT(P>0.05),but the serum concentration of TP tend to enhancewith the increasing levels of GSTT(P=0.09). Addition with GSTT reduced the serumconcentration of serum urea nitrogen(SUN)(P<0.05), triacylglycerol(TG)(P<0.01)and cholesterol(TC)(P<0.05).Moreover, The serum concentration of HDL cholesterol(HDL-C)was increased linearly with the increasing levels of GSTT(P=0.03),however,there were no significant differences among groups(P>0.05).There was no significantdifference in the enzyme activties of glutamic-oxalacetic transaminase (GOT), glutamic-pyruvic transaminase(GPT), alkaline phosphatase(ALP)and in the serumconcentration of creatinine, glueose, Ca and P among treatments(P>0.05).
     (4)Compared to the control treatment, the enzyme activities of serum T-AOC andGSH-Px for dairy cows added with the GSTT at levels of10and15g d1were improved(P<0.05), the serum concentration of MDA was declined(P<0.05),but there were nodifferences between the two treatments(P>0.05).The enzyme activities of serum SODtend to improve with the increasing levels of GSTT(P=0.06).It was concluded thataddition with GSTT contribute to improve the antioxdtion capability of dairy cows.
     (5)The serum concentrations of IgA, IL-2or TNF-a did not differ significantlyamong the gruops(P>0.05). However, the serum concentrations of IgG and IgM of dairycows added with the GSTT at levels of10and15g d1were higher than those of thecontrol treatment(P<0.05).In addition,the serum concentrations of IgA and IL-2wereimproved in a linear manner with the increasing levels of GSTT(P=0.05).It was indicatedthat the supplement of GSTT could improve immune functions of dairy cows.
     In summary, proper leves of GSTT may moderate rumen fermentation, includinginhibited rumen protozoa,decreased rumen NH3-N concentrations moderately and methaneemission of dairy cows. Moreover, antioxidant capacity and immune function of dairycows were enhanced. Ovell, under the study conditions, the optimum adding level ofGSTT to the diet in dairy cows was10g/d.
引文
[1]崔保山,杨志峰.湿地学[M].北京:北京师范大学出版社,2006.
    [2] Takahashi J. Some Prophylactic Options to Mitigate Methane Emission from Animal Agriculture inJapan [J]. Asian-Australasian Jouranl of Animal Sciences,2011,24:285–294.
    [3] Johnson D E,Ward G M. Estimates of animal methane emissions [J]. Environmental Monitoringand Assessment,1996,42(1):133–141.
    [4] Moss A R, Jouany J, Newbold J. Methane production by ruminants:its contribution to globalwarming[J]. Annales de Zootechnie,2000,49:231–253.
    [5] Holter J B.,Young A J. Methane production in dry and lactating Holstein cows [J].Journal of DairyScience,1992,72:2165.
    [6] Joblin K N.Acetogens—opportunities and constraints to use in the rumen[A]. In Meeting the KyotoTarget.Implications for the Australian Livestock Industries. P.J Reyenga. and S.M. Howden (Eds).Bureau of Rural Sciences,1998,39–44.
    [7] Murray R M, Bryant A M,Leng R A. Rates of production of methane in the rumen and large intestineof sheep[J]. British Journal of Nutrition,1976,36:1–14.
    [8]冯仰廉.反刍动物营养学[M].北京:科学出版社.2004.
    [9] Rouviere P E, Wolfe R S. Observation of red fluorescence in a new marine Methanosarcina.Abstracts of the Annual Meeting of the American Society for Microbiology,1988, I-20:184.
    [10] Garcia J L,patel K C,Ollivier B. Taxonomie,phylogenetic and Ecological Diversity of Methano-genie Archaea [J].Anaerobe,2000,6:205–226.
    [11] Marvin-Sikkema F D,Richdson A J,Stewart C S,et al..Influence of hydrogen~consuming bacteriaon cellulose degradation by anaerobic fungi [J]. Applied and environmental microbiology,1990,56:3793–3797.
    [12] Chaucheyras-durandF, MassegllaS, Fonty G,et al.Development of hydrogenotrophic micro-organisms and H2utilisation in the rumen of gnotobiotically-reared lambs.Influence of thecomposition of the cellulolytic microbial community and effect of the feed additive Saccharomycescerevisiae[A] Proceedings of the6th INRA-RRI symposium[C].Gut microbiome: functionality,interaction with the host and impact on the environment.Clermont-Ferrand:INRA,2008,Ⅰ-1077.
    [13] Irbis C,Ushida K.Detection of methanogens and proteobacteria from a single cell of rumen ciliateprotozoa[J].The Journal of General and Applied Microbiology,2004,50:203–212..
    [14] Sharp R,Ziemer C J,Stern M D, et al.Taxon specific associations between protozoal andMethanogen populations in the rumen and in a model rumen system[J].FEMS MicrobiologyEcology,1998,26,71–78.
    [15] Finlay B J,Esteban G,Clarke K J, et al. Some rumen ciliates have endosymbiotic methanogens[J].FEMS Microbiology Letters,1994,117:157–162.
    [16]成艳芬,毛胜勇,裴彩霞,等.共存于厌氧真菌分离培养液中瘤胃甲烷菌的检测及其多样性分析[J].微生物学报,2006,46(6):87–853.
    [17] Moe P W,Tyrrell J F.Methane production in dairy cows[J].Journal of Dairy Science,1979,62:1583–1586.
    [18] Demeyer D I, Henderickx H K. The effect of C10unsaturated fatty acids on methane production invitro by mixed rumen bacteria[J].Biochim.Biophts Acta,1967,137:484–497.
    [19]Demeyer D I, Van Nevel C J.Methanogenesis,an integrated part of carbohydrate fermentation,and its control[A].In:Digestion and Metabolism in the Ruminant[C](Ed.I.W.McDonald and A.C.I.Warner).The University of New England Publishing Unit,Armidale, N.S.W.,Australia.1975,366.
    [20] Beever D E,Camrnell S B,Sutton J D,et al.The effect of concentratet on energy utilization inlactating cows[A].Porc.11th Symp On Enegry Metabolism EAAP Publication [C].1989,43:33.
    [21] Johnson K A, Huyler M T, Weslerg H H,et al.Measurement of methane emissions from ruminantlivestock using a SF6tracer technique[J]. Environmental Science and Technology,1994,28:359–362.
    [22] Okine E K,Mathison G W, Hardin RT. Effects of changes in frequency of reticular contractions onfluid and Particulate Passage rates in cattle[J]. Journal of Animal Science,1989,67(12):3388–3396.
    [23] Blaxter KL. Enegry Metabolism in Animals and Man.Cmabridge University Press,New York.1989.
    [24] Milligan L P. Carbon dioxide fixing pathways of glutamic acid synthesis in the rumen. CanadianJournal of Biochemistry,1970,48,463–468.
    [25] Fahey G C, Berger L L.Carbohydrate nutrition in ruminants. in Church, D. C.(Ed.). The RuminantAnimal: Digestive Physiology and Nutrition[C].(Prentica Hall, Englewood Cliffs, New Jersey),1988,269–297.
    [26] Kennedy P M,Milligan L P. Effects of cold exposure on digestion, microbial synthesis and nitrogentransformations in sheep[J]. British Journal of Nutrition,1978,39:105–117.
    [27] Schütz H,Holazapfel-Pschorn A, Conrad R., et al. A3-year continuous record on the influence ofdaytime, season and fertilizer treatment on methane emission rate from an Italian rice paddy [J].Journal of Geophysical Research-atmospheres,1989,94(16):406–416.
    [28] Hironaka R, Mathison G W,Brian K, et al. The effect of pelleting of alfalfa hay on methaneproduction and digestibility by steers[J]. Science of the Total Environment,1996,180(3):221–227.
    [29] Wolin M J, Miller T L. Microbe interacting in the rumen microbial ecosystem. In: The RumenEcosystem [M]. New York: Elsevier Applied Science,1988.
    [30] Blaxter K L,Clapperton J L.Prediction of the amount of methane Produced by ruminants[J]. BritishJournal of Nutrition,1965,19:511-522.
    [31] Zijderveld S M, Gerrits WJJ, Apajalahti J A, et al. Nitrate and sulfate: Effective alternativehydrogen sinks for mitigation of ruminal methane production in sheep[J]. Journal of dairyscience,2010,93:5856–5866.
    [32] Leng R A.The potential of feeding nitrate to reduce enteric methane production in ruminants[R].Report to Department of Climate Change, Commonwealth Government, Canberra.2008.82.
    [33] Martin S A. Manipulation of ruminal fermentation with organic acids: a review[J]. Journal ofAnimal Science,1998,76:3123–3132.
    [34] Asanuma N, Iwamoto M, Hino T.Effect of the addition of fumarate on methane production byruminal microorganisms in vitro[J]. Journal of Dairy Science,1999,82:780–787.
    [35] May C, Payne A L, Stewart P L, et al. A delivery system for agents[P]. International PatentApplication1995, No. PCT/AU95/00733.
    [36] Sparling R,Daniels L.The specificity of growth inhibition of methanogenic bacteria bybromoethanesulfonate [J]. Canadian Journal of Microbiology,1987,33,1132–1136.
    [37] Hollmann M,Beede D K.Comparison of effects of dietary coconut oil and animal fat blend onlactational performance of Holstein cows fed a high-starch diet[J].Journal of Dairy Science,2012,95(3):1484–1499.
    [38] Soder K J,BritoA F,Rubano M D, et al.Effect of incremental flaxseed supplementation of anherbage diet on methane output and ruminal fermentation in continuous culture[J].Journal of DairyScience,2012,95(7):3961–3969.
    [39] Beauchemin K A,Mcginn S M,Benchaar C,et al.Crushed sunflower,flax,or canola seeds in lactatingdairy cow diets:Effects on methane production,rumen fermentation,and milk production[J]. Journalof Dairy Science,2009,92:2118–2127.
    [40] Hristov A N,Lee C,CassidyT,et al. Effects of lauric and myristic acids on ruminal fermentation,production,and milk fatty acid composition in lactating dairy cows[J].Journal of DairyScience,2011,94(1):382–395.
    [41] Van zijderveld S M,Dijkstra J,Perdok H B,et al.Dietary inclusion of diallyl disulfide,yuccapowder,calcium fumarate,an extruded linseed product,or medium-chain fatty acids does not affectmethane production in lactating dairy cows[J].Journal of Dairy Science,2011,94(6):3094–3104.
    [42] Hu W L,Liu J X,Ye J A, et al. Effect of tea saponin on rumen fermentation in vitro[J]. Animal FeedScience Technology,2005,120,333–339.
    [43] Guo Y Q, Liu J X, Lu Y, et al. Effect of tea saponin on methanogenesis, microbial communitystructure and expression of mcrA gene, in cultures of rumen microorganisms[J]. Letters in AppliedMicrobiology,2008,47:421–426.
    [44] Mao H L, Wang J K, Zhou YY, Liu J X. Effects of addition of tea saponins and soybean oil onmethane production, fermentation and microbial population in the rumen of growing lambs[J].Livestock Science,2010,129,56–62.
    [45]Wang C J,Wang S P,Zhou H.Influences of flavomycin,ropadiar and saponin on nutrientdigestibility,rumen fermentation, and methane emission from sheep[J]. Animal Feed Science andTechnology,2009,148,157–166.
    [46] Agarwal N,Kamra DN, Chaudhary L C,et al. Effect of Sapindus mukorossi extracts on in vitromethanogenesis and fermentation characteristics in buffalo rumen liquor[J]Journal of appliedanimal research,2006,30,1–4.
    [47] Goel G,Makkar HPS, Becker K. Effect of Sesbania sesban and Carduus pycnocephalus leaves andfenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrient fromroughage and concentrate based feeds to methane[J]. Animal Feed Science andTechnology,2008,147,72–89.
    [48] Carulla J E, Kreuzer M, Machmuller A, et al. Supplementation of Acacia mearnsii tanninsdecreases methanogenesis and urinary nitrogen in forage-fed sheep[J].Australian Journal ofAgricultural,2005,56:961–970.
    [49] Puchala R, Min B R, Goetsch A L, et al. The effect of a condensed tannin-containing forage onmethane emission by goats[J]. Journal of Animal Science,2005,83:182–186.
    [50] Grainger C,Clarke T,Auldist M J,et al.Mitigation of greenhouse gas emissions from dairy cows fedpasture and grain through supplementation with Acacia mearnsii tannins[J].Journal of AnimalScience,2009,89(2):241–251.
    [51] Michael H. Tavendale, Lucy P. Meagher, et al. Methane production from in vitro rumen incubationswith Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tanninfractions on methanogenesis[J]. Animal Feed Science Technology,2005,123:403–419.
    [52] Bento B H L, Acamovic T, Makkar H P S. The influence of tannin, pectin, and polyethylene glycolon attachment of15N-labelled rumen microorganisms to cellulose[J].Animal Feed ScienceTechnology.2005,122:41–57.
    [53] Lopez S,Mcintosh F M,Wallace R J,et al.Effect of adding acetogenic bacteria on methaneproduction by mixed rumen microorganisms[J].Animal Feed Science andTechnology,1999,78(1/2):1–9.
    [54] Oleszek W.Chromatographic determination of plant saponins[J]. Journal of Chromatography A,2002,967:147–162.
    [55]胡伟莲,陈雪君,段智勇,等.皂甙对畜禽的营养作用[J].中国畜牧杂志,2005,41:35–60.
    [56] Mamoru K, Mujo K, Takehiko Y. Antitungal activity against food-borne fungi of Aspidistra elatior[J]. Journal of Agricultural and Food Chemistry,1996,44(1):301–303.
    [57] Yun T K,Lee Y S,Lee Y H,et al.Anticarcinogenic effect of Panax ginseng C A Meyer andidentification of active compounds [J]. Journal of Korean Medical Science,2001,16(Suppl):16–18.
    [58] Quan L T, Yasuhiro T, Arjun H B, et al. New spirostanol steroids and steroidal saponins from rootsand rhizomes of Dracaena angustifolia and their antiproliferative activity [J]. Journal of NaturalProducts,2001,64(9):1127–1132.
    [59]徐先祥,夏伦祝,高家荣.中药皂苷类物质抗氧化作用研究进展[J].中国中医药科技,2004,11(2):126–128.
    [60] Rowland L O, Plyler J E, Bradiey J W. Yucca schidigera extract effect on egg production and houseammonia levels[J]. Poultry Science,1976,55:2086.
    [61] Johnston N.L,et al.Evaluation of yucca saponin on broiler performance and ammonia suppression[J]. Poultr Science.,1981,60:2289–2292.
    [62]王彦华.苜蓿皂甙和草粉对断奶仔猪和肥育猪生产性能的影响及其机理研究[D].郑州:河南农业大学,2007.
    [63] Heywang B W. High levels of alfalfa meal in diets for chickens[J].poultry Science,1950,29:804–811.
    [64]于炎湖.饲料毒物学附毒物分析[M].北京:农业出版社,1990,16–45.
    [65] Shimoyamada M, Ikedo S, Ootsubo R, et al. Effects of soybean saponins on chymotryptichydrolyses of soybean proteins [J]. Journal of Agricultural and Food Chemistry,1998,46:4793–4797.
    [66] Lila Z A, Mohammed N, Kanda S, et al. Effect of sarsaponin on rumen fermentation with particularreference to methane production in vitro[J]. Journal of Dairy Science,2003,86:3330–3336.
    [67] Wallace R J,Allace R J, Arthaud L, et al. Influence of Yucca schidigera extract on ruminal ammoniaconcentration and ruminal microorganisms[J]. Applied and Environmental Microbiology,1994,60:1762–1767.
    [68] Wang Y X, Mcallister T A, Yanke L J, et al. In vitro effects of steroidal saponins from Yuccaschidigera extract on rumen microbial protein synthesis and ruminal fermentation[J]. Journal of theScience of Food and Agriculture,2000,80:2114–2122.
    [69] Holtshausen L,Chaves A V, Beauchemin K A, et al. Feeding saponin-containing Yucca schidigeraand Quillaja saponaria to decrease enteric methane production in dairy cows[J]. Journal of DairyScience,2009,92:2809–2821.
    [70] Pen B, Takura K, Yamaguchia S, et al. Effects of Yucca schidigera and Quillaja saponaria with orwithout β-1,4galacto-oligosaccharides on ruminal fermentation, methane production and nitrogenutilization in sheep[J]. Animal Feed Science and Technology,2007,138:75–88.
    [71] Wallace R J, Mcpherson C A. Factors affecting the rate of breakdown of bacterial protein in rumenfluid[J]. British Journal of Nutrition,1987,58:313–323.
    [72] Ellenberger M A, Rumpler W V, Johnson D E, et al. Evaluation of the extent of ruminal ureaseinhibition by sarsaponin and sarsaponin fractions[J]. Journal of Animal Science,1985,61(Suppl.1):491.
    [73] Hess H D, Beuret R A, Lotscher M, et al. Ruminal fermentation, methanogenesis and nitrogenutilization of sheep receiving tropical grass hay–concentrate diets offered with Sapindus saponariafruits and Cratylia argentea foliage[J]. Animal Science,2004,79:177–189.
    [74] Benchaar C, Mcallister T A, Chouinard P Y. Digestion, ruminal fermentation, ciliate protozoalpopulations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensedtannin, or Yucca schidigera saponin extracts[J]. Journal of Dairy Science,2008,91:4765–4777.
    [75] Tamminga S.A review on environmental impact s of nutritional strategies in ruminants[J]. Journalof Animal Science,1996,74:3112–3124.
    [76] Makkar H P S, Sen S,Blummel M, et al. Effects of fractions containing saponins from Yuccaschidigera, Quillaja saponaria and Acacia auriculoformis on rumen fermentation[J]. Journal ofAgricultural and Food Chemistry,1998,46(10):4324–4328.
    [77] Sliwinski B J, Soliva C R, Machmuller A, et al. Efficacy of plant extracts rich in secondayconstituents to modify rumen fermentation[J]. Animal Feed Science and Technology,2002,101:101–114.
    [78] Hess H D, Kreuzer M, Diaz T E, et al. Saponin rich tropical fruits affect fermentation andmethanogenesis in faunated and defaunated rumen fluid[J]. Animal Feed Science and Technology,2003,109:79–94.
    [79] Abreu A,Carulla J E, Lascano C E, et al. Effects of Sapindus saponaria fruits on rumenfermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and withoutlegume[J]. Journal of Animal Science,2004,82:1392–1400
    [80] Hristov A N, Mcallister A, Vanherk F H, et al. Effect of Yucca schidigera on rumen fermentationand nutrient digestion in heifers[J]. Journal of Animal Science,1999,77:2554–2563.
    [81] Liu J Y, Yuan W Z, Ye J, et al. Effect of tea (Camellia sinensis) saponin addition on rumenfermentation in vitro [C]. In Matching herbivore nutrition to ecosystems biodiversity. Tropical andsubtropical agrosystems. Proceedings of the Sixth International Symposium on the Nutrition ofHerbiVore; Camacho, J H, Castro, C A S, Eds; Merida, Mexico,2003,3:561–564.
    [82] Lu C D, Jorgensen N A. Alfalfa saponins affect site and extent of nutrient digestion in ruminants[J].Journal of Nutrition,1987,117:919–927.
    [83] Hu W L,Liu J X,Wu Y M,et al.Effects of tea saponins on in vitro ruminal fermentation and growthperformance in growing Boer goat[J].Archives of Animal Nutriton,2006,60(1):89–97.
    [84] Valdez F R, Bush L J, Goetsch A L, et al. Effect of steroidal sapogenins on rumen fermentation andon production of lactating dairy cows[J]. Journal of Dairy Science,1986,69:1568–1575.
    [85] Singer M D, Rovinson P H, Salem A Z M, et al. Impacts of rumen fluid modified by feeding Yuccaschidigera to lactating dairy cows on in vitro gas production of11common dairy feedstuffs, aswell as animal performance[J]. Animal Feed Science and Technology,2008,146:242–258.
    [86] Santoso B,Mwenya B,Sar C,et al. Effects of supplementing galacto-oligosaccharides, Yuccaschidigera and nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep[J].Livestock Production Science,2004,91:209–217.
    [87] Baaj J, Ivan M, Hristov A N, et al. Effects of potential dietary antiprotozoal supplements on rumenfermentation and digestibility in heifers[J]. Animal Feed Science and Technology,2007,137:126–137.
    [88] Makkar H P S, Becker K. Effect of quillaja saponins on in Vitro rumen fermentation [C]. InSaponins Used in Food and Agriculture; Waller, G R, Yamasaki, Y, Eds; Plenum Press:New York,1996:387–394.
    [89] Wang Y, McallisterT A, Newbold C J, et al. Effect of Yucca schidigera extract on fermentation anddegradation of steroidal saponins in the rumen simulation technique (RUSITEC)[J]. Animal FeedScience and Technology,1998,74:143–153.
    [90] Hess H D, Monsalve L M, Lascano C E, et al. Supplementation of a tropical grass diet with foragelegumes and Sapindus saponaria fruits: effects on in Vitro rumen nitrogen turnover andmethanogenesis[J].Australian Journal of Agricultural Research,2003b,54:703–713.
    [91] Patra A K, Kamra D N, Agarwal N. Effect of plant extracts on in vitro methanogenesis, enzymeactivities and fermentation of feed in rumen liquor of buffalo[J]. Animal Feed Science andTechnology,2006,128:276–291.
    [92]胡明.苜蓿皂甙对绵羊瘤胃发酵及其他生理功能影响的研究[D].呼和浩特:内蒙古农业大学,2006.
    [93] WangY, Mcallister T A, Yanke L J, et al. Effect of steroidal saponin from Yucca schidigera extracton ruminal microbes[J]. Journal of Applied Microbiology,2000,88:887–896.
    [94] Wu Z, Sadik M, Sleiman F T, et al. Influence of yucca extract on ruminal metabolism in cows[J].Journal of Animal Science,1994,72:1038–1042.
    [95] Kil J Y, Cho N K, Kim B S, et al. Effects of Yucca extract addition on the in vitro fermentationcharacteristics of feed and feces, and on the milk yields in lactating cows[J].Korean Journal ofAnimal Science,1994,36:698–709.
    [96] Cardozo P W, Calsamiglia S, Ferret A, et al. Screening for the effects of natural plant extracts atdifferent pH on in vitro rumen microbial fermentation of a high concentrate diet for beef cattle[J].Journal of Animal Science,2005,83:2572–2579.
    [97] Agarwal N, Kamra D N, Chaudhary L C, et al. Effect of Sapindus mukorossi extracts on in vitromethanogenesis and fermentation characteristics in buffalo rumen liquor[J].Journal of appliedanimal research,2006,30:1–4.
    [98] Klita P T, Mathison G W, Fenton T W, et al. Effect of alfalfa root saponins on digestive function insheep[J]. Journal of Animal Science,1996,74,1144–1156.
    [99] Goel G, Makkar H P S, Becker K. Effect of Sesbania sesban and Carduus pycnocephalus leaves andfenugreek (Trigonella foenum-graecum L) seeds and their extracts on partitioning of nutrient fromroughage and concentrate based feeds to methane[J]. Animal Feed Science and Technology,2008,147,72–89.
    [100] Pen B,Sar C,Mwenya B, et al.Effects of Quillaja saponaria extract alone or in combination withYucca schidigera extract on ruminal fermentation and methanogenesis in vitro[J]. Animal ScienceJournal,2008,79:193–199.
    [101] Mirza I H, Khan A G, Azim A, et al. Effect of supplementing grazing cattle calves withurea-molasses blocks, with and without Yucca schidigera extract, on performance and carcasstraits[J]. Asian-Australasian Journal of Animal Sciences,2002,15,1300–1306.
    [102] Mader T L, Brumm M C. Effect of feeding sarsaponin in cattle and swine diets[J]. Journal ofAnimal Science,1987,65,9–15.
    [103] Gorgulu M, Yurtseven S, Unsal I, et al. Effect of Yucca powder on fattening performance of malelambs[J]. Journal of Applied Animal Research,2004,25,33–36.
    [104] Bosler D A, Blummel M, Bullerdieck P, et al. Influence of a saponin containing feed additive onmass development and carcass evaluation of growing lambs [J]. Proceedings of the Society ofNutrition and Physiology,1997,6:46.
    [105] Wilson R C, Overton T R, Clark J H. Effects of Yucca schidigera extract and soluble protein onperformance of cows and concentrations of urea nitrogen in plasma and milk[J]. Journal of DairyScience,1998,81:1022–1027.
    [106] Oeliwinski B J, Kreuzer M, Sutter F, et al. Performance, body nitrogen conversion and nitrogenemission from manure of dairy cows fed diets supplemented with different plant extracts [J].Journal of Animal and Feed Sciences,2004,13:73–91.
    [107] Benchaar C, Mcallister T A, Chouinard P Y. Digestion, Ruminal fermentation, ciliate protozoalpopulations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensedtannin, or Yucca schidigera saponin extracts [J]. Journal of Dairy Science,2008,91:4765–4777.
    [108] Benchaar C, Chouinard P Y. Short communication: assessment of the potential of cinnamaldehyde,condensed tannins, and saponins to modify milk fatty acid composition of dairy cows [J]. Journalof Dairy Science,2009,92:3392–3396.
    [109] Newbold CJ, Hassan S M E, Wang J, et al. Influence of foliage from African multipurpose tree onactivity of rumen protozoa and bacteria[J]. British Journal of Nutrition,1997,78:237–249.
    [110] Teferedegne B, McIntosh F, Osuji P O, et al. Influence of foliage from different accessions of thesubtropical leguminous tree, Sesbania sesban, on ruminal protozoa in Ethiopian and Scottishsheep[J]. Animal Feed Science and Technology,1999,78:11–20.
    [111] Makkar H P S, Sen S, Blu¨mmel M, et al. Effects of fractions containing saponins from Yuccaschidigera,Quillaja saponaria and Acacia auriculoformis on rumen fermentation[J]. Journal ofAgricultural and Food Chemistry,1998,46:4324–4328.
    [112] Hess H D, Kreuzer M, Diaz T E, et al. Saponin rich tropical fruits affect fermentation andmethanogenesis in faunated and defaunated fluid[J]. Animal Feed Science andTechnology,2003,109:79–94.
    [113] Hess H D, Beuret R A,Lotscher M,et al. Rumen fermentation, methanogenesis and nitrogenutilization of sheep receiving tropical grass hay-concentrate diets offered with Sapindus saponariafruits and Cratylia argentea foliage[J]. Animal Science.2004,79:177–189.
    [114] Hristov A N, Ivan M, Neill L, et al. Evaluation of several potential bioactive agents for reducingprotozoal activity in vitro[J]. Animal Feed Science and Technology,2003,105,163–184.
    [115] Hostettmann K,Marston A. Saponins[M]. Cambridge, UK: Cambridge University Press.1995.
    [116] Wina E, Muetzel S, Hoffmann E, et al. Saponins containing methanol extract of Sapindus rarakaffect microbial fermentation, microbial activity and microbial community structure in vitro[J].Animal Feed Science and Technology,2005,121:159–174.
    [117] Russell J B, Rychlik J.Factors that alter rumen microbial ecology[J]. Science,2001,292:1119–1122.
    [118] Sen S, Makkar H P S, Muetzel S, et al. Effect of quillaja saponins and Yucca schidigera plantextract on growth of Escherichia coli[J]. Letters in Applied Microbiology,1998,27:35–38.
    [119] Wina E, Muetzel S, Becker K. The dynamics of major fibrolytic microbes and enzyme activity inthe rumen in response to short-and long-term feeding of Sapindus rarak saponins[J]. Journal ofApplied Microbiol,2006,100:114–122.
    [120] Hess H D, Monsalve L M, Lascano C E, et al. Supplementation of a tropical grass diet with foragelegumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover andmethanogenesis[J]. Australian Journal of Agricultural Research,2003,54:703–713.
    [121]廖日房,彭锋,李国成,等.蒺藜总皂苷抗大鼠急性心肌缺血和心肌梗塞药理作用的研究[J].中药材,2003,26(7):502–504
    [122]崔新明,吕文伟,潘力,等.蒺藜总皂甙对实验性心肌梗塞犬的心肌的影响[J].电子显微学报,2002,21(5):531–532.
    [123]褚书地,瞿伟菁,逄秀凤,等.蒺藜皂苷对高脂血症的影响[J].中药材,2003,26(5):341–344.
    [124]徐江平,李铁军,芮耀诚,等.蒺藜总皂甙抑制培养的牛脑微血管内皮细胞表达E选择素[J].第二军医大学学报,1998,19(6):536–538.
    [125]倪受东,徐先祥,蒋斗发,等.蒺藜总皂苷抗实验性血栓形成作用[J].基层中药杂志,2001,15(5)10–11.
    [126]顾仁樾,周端,陈琼,等.白蒺藜总皂甙改善高血压病人血液流变性的临床观察[J].上海中医药杂志,1995,3:25–27.
    [127] De Kock W T, Enslin P R, Chemical investigation of photosen sitization diseases of domestricanimals. Isolation and characterization of steroidal sapogenins from Tribulus terrestris [J].Journal of the South African Chemical Institute,1958,11:33–36.
    [128]王思思,纪影实,杨世杰.蒺藜皂苷激活PKCε抗氧化应激诱导心肌细胞凋亡的机制[J].药学学报,2009,44(2):134–139.
    [129]李红,杨世杰.注射用蒺藜皂苷的抗血栓作用[J].吉林大学学报(医学版),2005,31(1):14–16.
    [130]陈慧敏.心脑舒通抗衰老29例临床观察[J].实用老年医学,1993,7(3):140.
    [131]王秀华,李红,温克,等.注射用蒺藜皂苷的抗脑缺血作用[J].吉林大学学报:医学版,2004,30(1):60–62
    [132]王雪云,李红,杨世杰.蒺藜皂苷对大鼠脑缺血/再灌注损伤的保护作用[J].中国药理学通报,2005,21(1):111–114
    [133]杨煌建,瞿伟等.蒺藜皂苷对肾癌细胞的实验影响[J].中国中药杂志,2005,30(16):1271–1274.
    [134]孙斌,瞿伟菁,柏忠江.蒺藜皂苷对乳腺癌细胞Bcap-37的体外抑制作用[J].中药材,2003,26(2):104.
    [135]李明娟,瞿伟菁,王熠非等.蒺藜皂苷的降血糖作用[J].中药材,2002,25(6):420–422
    [136]冯玛莉,武玉鹏,杨艳华等.蒺藜的降血糖作用[J].中草药,1998,29(2):107–109
    [137]曹惠玲,陈浩宏,许士凯.蒺藜及其有效成分的药理与临床研究进展[J].中成药,2001,23(8):602–605.
    [138]吴恩融,马健,立长龄,等.蒺藜皂苷抗衰老作用的实验研究[J].中国药学杂志,2000,35(2):49–50
    [139]孙少敏,张维君,橱晶,等.刺蒺藜对衰老小鼠的红细胞SOD活性和MDA含量的影响[J].黑龙江医药科学,2000,23(1):5.
    [140]郝爱功,蒺藜全草皂苷对果蝇寿命的影响.[J]中国老年学杂志2005,6
    [141]张健等,蒺藜提取物的药理研究进展[J]中医药研究,1998,14(5):56–5
    [142]褚书地,瞿伟菁,李穆,等.蒺藜化学成分及药理作用研究进展[J].中国野生植物资源,2003,22(4):4–6.
    [143]叶长华,蒋幼芹,江水,等.白蒺藜醇甙对混合培养的鼠视网膜神经细胞的作用[J].眼视力光杂志,2001,3(3):217–224.
    [144]张季,张丹参,严春临,等.蒺藜皂苷对小鼠记忆障碍的影响[J].中药药理与临床,2007,23(3):47–49.
    [145]Yanagita, K., Kamagata, Y., Kawaharasaki, M., Suzuki, T., Nakamura, Y., Minato, H..Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection ofMethanomicrobium mobile by fluorescence in situ hybridization. Biosci. Biotechnol. Biochem.2000,64:1737–1742.
    [146] Denman, S.E., McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobicfungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol.2006,58:572–582.
    [147] Denman, S. E., Tomkins, N. W. and McSweeney, C. S. Quantitation and diversity analysis ofruminal methanogenic populations in response to the antimethanogenic compoundbromochloromethane. FEMS Microbiol Ecol.2007,62:313–322.
    [148]郭嫣秋.瘤胃产甲烷菌定量检测与微生物菌群调控研究[D].2008.浙江大学博士论文.
    [149] Singh, B., Bhat, T., Kurade, N., Sharma, O.. Metagenomics in animal gastrointestinal ecosystem:a microbiological and biotechnological perspective. Indian Journal of Microbiology.2008,48:216–227.
    [150] Menke K H and Steingass H. Estimation of the energetic feed value obtained from chemicalanalysis and in vitro gas production using rumen fluid. Animal Research and Development,1988,28:7–55.
    [151] Broderick G A and Kang J H. Automated simultaneous determination of ammonia and total aminoacids in ruminal fluid and in vitro media[J]. Journal of Dairy Science,1980,63(1):64–75.
    [152] Ogimoto K and Imai S. Atlas of Rumen Microbiology Japan Scientific Societies Press,1981.Tokyo, Japan.
    [153] Preston T R, Leng K A. Matching ruminant production system with available resources in thetropics and subtropics[M]. Penambul Books. Armidale,1987,20–25.
    [154]韩正康,陈杰..反当动物瘤胃的消化代谢[M].1988科学出版社.
    [155] Van Nevel C J and Demeyer D I.1996. Control of rumen methanogenesis. EnvironmentalMonitoring and Assessment42:73–97.
    [156] Williams A G.and G S Coleman.1991. The Rumen Protozoa. Springer–Verlag Inc, New York, NY,USA.
    [157] Eug NE M, Archim DE H,Sauvant D.Quantitative meta-analysis on the effects of defaunation ofthe rumen on growth,intake and digestion in ruminants[J].Livestock ProductionScience,2004,85(1):81–97.
    [158] Williams A G and Coleman G S. The rumen protozoa[M]. In:The Rumen Microbial Ecosystem.Eds2nd ed.(Ed Hobson, P.J. and Stewart, C.S.), Blackie Academic, London, UK.1997,2,73–139.
    [159]魏晓玲.苜蓿总皂苷粗提物的提取工艺及其对绵羊瘤胃发酵功能的影响[D].呼和浩特:内蒙古农业大学,2007.
    [160]张婷婷.茶皂甙对瘤胃发酵、甲烷产量及毒理性机理研究[D].山东:山东农业大学,2011.
    [161] Goering H K,VanSoest PJ.Forage fiber analysis (apparatus, reagents, procedures and someapplications)[M],(U.S.Government Printing Office: Washington, DC.)USDA-ARS AgriculturalHandbook,1970,379..
    [162] Sylvester JT,Karnati S KR,Yu Z,et al.Development of an assay to quantify rumen ciliate protozoalbiomass in cows using real-time PCR[J]. Journal of Nutrition,2004,134,3378–3384.
    [163] Van Soest P J.Nutritional ecology of the ruminant[M].2nd Edition. Cornell University Press,Ithaca, N Y,1994.
    [164] Jouany J.PEeffet of rumen protozoa on nitrogen utilization by ruminants[J].Jouranl of Nutriton,1996,126:1335–1346.
    [165] McAllister T A, Newbold CJ.Redirecting rumen fermentation to reduce methanogenesis[J].Australian Journal of Experimental Agriculture,2008,48,7–13.
    [166] Busquet, M., Calsamiglia, S., Ferret, A., Carro, M.D., Kamel, C.,2005. Effect of garlic oil andfour of its compounds on rumen microbial fermentation[J].Journal of Dairy Science,88,4393–4404.
    [167] MillerT L. Ecology of methane production and hydrogen sinks in the rumen[M].In: Engelhardt W,Leonhard-Marek, S., Breves, G., Giesecke, D.(Eds.), Ruminant Physiology. Stuttgart,Germany,1995,317–331.
    [168] Wolin MJ, Miller TL,Stewart C S.Microbe–microbe interactions[M]. In:The Rumen MicrobialEcosystem(Hobson, P.N. and Stewart, C.S., Eds.),1997,467–491.London: Blackie Academic andProfessonal Publishers.
    [169] Cheeke P R. Actual and potential application of Yucca schidigera and Quillaja saponaria saponinsin human and animal nutrition[C]. Proceedings of the American Society of AnimalScience,1999,1–10.
    [170] Hussain, I. and Cheeke P. R.Effect of dietary Yucca schidigera extract on rumen and bloodprofiles of steers fed concentrate or roughage-based diets[J]. Animal Feed Science andTechnology,1995,51:231–242.
    [171] Stumm C K and Zwart K B. Symbiosis of protozoa with hydrogen utilizing methanogens[J].Microbiological sciences,1986,3:100–105.
    [172] Zhang J D, Xu Z, Cao Y B, et al.Antifungal activities and action mechanisms of compounds fromTribulus terrestris L[J]. Journal of Ethnopharmacology,2006,103,76–84.
    [173] Mshvildadze V, Favel A, Delmas F, et al. Antifungal and antiprotozoal activities of saponins fromHedera colchica[J]. Pharmazie,2000,55,325–326.
    [174] Muetzel S, Hoffmann E M, Becker K. Supplementation of barley straw with Sesbania pachycarpaleaves in vitro: effects on fermentation variables and rumen microbial concentration structurequantified by ribosomal RNA-targeted probes[J]. British Journal of Nutrition,2003,89:445–453.
    [175] Istiqomah L, Herdian H, Febrisantosa A,et al.Waru leaf (Hibiscus tiliaceus) as saponin source onin vitro ruminal fermentation characteristic[J]. Journal of the Indonesian Tropical AnimalAgriculture,2011,36(1):43–49.
    [176]王新峰.绞股蓝皂甙对山羊瘤胃菌群及微生物发酵特性和甲烷产量的影响[D].南京:南京农业大学,2009.
    [177] Stumm CK, Gijzen H J, Vogels G D. Association of methanogenic bacteria with ovine rumenciliates[J].British Journal of Nutrition,1982,47:95–99.
    [178] Jouany J. P., B. Zainab, J. Senaud, C. A. Groliere, J. Grain, and P.Trivend. Role of the rumenciliate protozoa Polyplastron multivesiculatum, Entodinium spp. and Isotricha prostoma in thedigestion of a mixed diet in sheep[J]. Reproduction Nutrition Development,1981,21:871–884.
    [179] Ushida, K., A. Miyazaki, and R. Kawashima.Effect of defaunation on ruminal gas and VFAproduction in vitro[J]. Japanese Journal of Zootechnical Science,1986,57:71–77.
    [180] Slyter L L.Buffers used in the artificial rumen.In:Pro.Continuous culture fermenters.Frustration orfermentation.In:Proc.Northeastern ADSA-ASAS Regional Meeting.NY:Chazy9,1990.
    [181] Kropp J R,Johnson R R,Males J R,et al. Microbial protein synthesis with lou quality roughagerations:isonitrogenous substitution of urea for soybean meal[J]. Journal of AnimalScience,1977,46:837–845.
    [182]胡明.苜蓿皂甙对绵羊瘤胃发酵及其它生理功能影响的研究[D].内蒙.内蒙古农业大学,2006.
    [183] Drummond R.B. Arable Weeds of Zimbabwe. A guide to the recognition of the more importantweeds of crops[M]. Agricultural Research Trust of Zimbabwe, Harare(Zimbabwe),1984.
    [184] Sebata A, Ngongoni N T, Mupangwa J F, et al. Chemical composition and degradationcharacteristics of puncture vine(Tribulus terrestris). Tropical and SubtropicalAgroecosystems[J].2005,5:85–89.
    [185] Lovett D K, Stack L, Lovell S, et al.Effect of feeding Yucca schidigera extract on performance oflactating dairy cows and ruminal fermentation parameters in steers[J]. Livestock Science,2006,102,23–32.
    [186] Lila Z A, Mohammed N, Kanda S, et al. Itabashi.Sarsaponin effects on ruminal fermentation andmicrobes, methane production, digestibility and blood metabolites in steers[J]. Asian-AustralasianJouranl of Animal Sciences,2005,18:1746–1751.
    [187] Sliwinski B J, Soliva C R, Machmüller A,et al.Efficacy of plant extracts rich in secondaryconstituents to modify rumen fermentation[J]. Animal Feed Science and Technology,2002,101:101–114.
    [188] Hussain I. and Cheeke P R. Effect of dietary Yucca schidigera extract on rumen and blood profilesof steers fed concentrate or roughage-based diets[J]. Animal Feed Science and Technology,1995,51:231–242.
    [189] liwiński B J, Kreuzer M, Wettstein H R,et al.Rumen fermentation and nitrogen balance of lambsfed diets containing plant extracts rich in tannins and saponins and associated emissions ofnitrogen and methane[J]. Archives of Animal Nutrition,2002,56:379–392.
    [190] Oldick B S, and Firkins J L. Effects of degree of fat saturation on fiber digestion and microbialprotein synthesis when diets are fed twelve times daily[J]. Journal of Animal Science,2000,78:2412–2420.
    [191] Armstrong D G,Blaxter K L.The utilization of the energy of two mixtures of steam volatile fattyacids by fattening sheep[J].British Journal of Nutrition,1958,12:177.
    [192] Vinogradov E, Egbosimba E E, Perry M B, et al.Structural analysis of the carbohydratecomponents of the outer membrane of the lipopolysaccharide-lacking cellulolytic ruminalbacterium Fibrobacter succinogenes S85[J].European Journal of Biochemistry,2001,268,3566–3576.
    [193] Zhou YY, Mao H L, Jiang F, et al. Inhibition of rumen methanogenesis by tea saponins withreference to fermentation pattern and microbial communities in Hu sheep[J].Animal Feed Scienceand Technology,2011,166:93–100
    [194] Dohme F, Machmuller A, Estermann B L,et al. The role of the rumen ciliate protozoa for methanesuppression caused by coconut oil[J]. Letters in Applied Microbiology,1999,29:187–192.
    [195] Vogels G D, Hoppe W F, Stumm C K.Association of methanogenic bacteria with rumen ciliates[J].Applied and environmental microbiology,1980,40:603–612.
    [196]张丽英.饲料分析及饲料质量检测技术[M].3版.北京:中国农业大学出版,2007.
    [197]φrskov E R, Mc Donald I. The estimation of protein degradability in the rumen from incubationmeasurements weighted according to rate of passage[J]. Journal of Agricultural Science (Camb),1979,92:499–503.
    [198] Oldick B S, Firkins J L. Effects of degree of fat saturation on fiber digestion and microbial proteinsynthesis when diets are fed twelve times daily[J]. Journal of AnimalScience,2000,78:2412–2420.
    [199]刘春龙.丝兰属植物提取物对绵羊瘤胃发酵及饲粮养分消化的影响[D].东北:东北农业大学,2004.
    [200]Goetsch A L, Owens F N.Effects of sarsaponin on digestion and passage rates in cattle fed mediumto low concentrates[J]. Journal of Dairy Science,1985,68:2377–2384.
    [201] Williams A G, Withers S E. Effect of ciliate protozoa on the activity of polysaccharide-degradingenzymes and fibre breakdown in the rumen ecosystem[J]. Journal of Applied Bacteriology,1991,70,144–155.
    [202] Kreuzer M, Kirchgessner M. Effect of rumen protozoa on metabolism and retention in ruminantswith special reference to diet characteristics[M]. In: The Roles of Protozoa and Fungi inRuminant Digestion (Ed. J. V. Nolan, R. A. Leng and D. I. Demeyer), Penambul Books Armidale,NSW,1988,189–198.
    [203]王全军,朱伟云.瘤胃微生物及其在饲料工业中的应用前景[J].动物科学与动物医学,2000,17(3):64–66.
    [204]高爱武.分别驱除厌氧真菌和原虫对绵羊瘤胃微生物种群及纤维物质降解的影响[D].呼和浩特:内蒙古农业大学,2008.
    [205] Santoso B, Mwenya B, Sar C,et al.Effects of supplementing galacto-oligosaccharides, Yuccaschidigera or nisin on rumen methanogenesis, nitrogen and energy metabolism in sheep[J].Livestock Production Science,2004,91:209–217.
    [206]张炳利.瘤胃原虫对牛饲料降解率和日粮消化率的影响[D].华中农业大学,2001.
    [207]王加启.反刍动物营养学研究方法[M].现代教育出版社,2011.
    [208] Krause D O, Denman S E, Mackie R I, et al.Opportunities to improve fibre degradation in therumen: microbiology, ecology and genomics[J]. FEMS Microbiol.Rev.2003,27,663–693.
    [209] Barichievin E M, Calza R E.Supernatant protein and cellulasw activities of the anaerobic ruminalfungus Neocallimastix frontalis EB188[J].Applied and environmental microbiology,1990,56:43–48.
    [210] Lowe S E, Theodorou M K,Trinci A P. Cellulases and xylanase of an anaerobic rumen fungusgrown on wheat straw, wheat straw holocellulose, celulose and xylan[J]. Applied andenvironmental microbiology,1987,53:1216–1223.
    [211] Demeyer D I. Rumen microbes and digestion of plant cell walls[J]. Agriculture and Environment,1981,6:295–337.
    [212] Williams A G,Strachan N H. The distribution of polysaccharide degrading enzymes in the bovinedigesta ecosystem[J].Current Microbiol,1984,10(4):215–220.
    [213] Devillard E, Bera-Maillet C, Flint H J, et al. Characterization of XYN10B, a modular xylanasefrom the ruminal protozoan Polyplastron multivesiculatum, with a family22carbohydrate-binding module that binds to cellulose[J]. Biochemical Journal,2003,373,495–503.
    [214]夏蕾,王丽霞,牟稷征.制何首乌和白蒺藜对小鼠毒性作用的实验研究[J].中国医院用药评价与分析,2010,1:34–35.
    [215] Sahelian, R. Experimental Tribulus terrestris poisoning in sheep: clinical laboratory andpathological findings [J]. Veterinary Research Communication,2003,27:53–62.
    [216] Halliwell B. Oxidative stress,nutrition and health.Experimental strategies for optimization ofnutrition antioxidant intake in humans[J].Free Radical Research,1996,25:57–74.
    [217]朱辛为,李质馨,陈为.蒺藜皂苷抗衰老作用的研究进展[J].吉林医药学院学报,2010,31(2):99–101.
    [218]何维.医学免疫学[M].人民卫生出版社,1993.
    [219]吴恩融,马建,李昌龄.蒺藜皂苷抗衰老作用的实验研究[J].中国药学杂志,2000,35(11):49–51.
    [220]宿燕岗,杨学义,陈灏珠.心脑舒通的临床应用及研究现状[J].深圳中西医结合杂志,1999,9(1):39–40.
    [221]时维静,李立顺,胡瑞昌.白头翁及其皂苷对鸡免疫功能的影响[J]中国兽药杂志,2009,43(7):13–15.
    [222]王晓慧,孙婧瑜,曲静,等.蒺藜对过度训练大鼠运动能力及内分泌免疫机能的影响[J].上海体育学院学报,2010,34(1):46–49.
    [223] Chikhou F H, Moloney A P. Long-term effects of cimaterol in friesian steers: I, Growth, feedefficiency, and selected carcass traits [J]. Journal of Animal Science,1993,71:906–913.
    [224] Williams P E V, Pagliani L, Innes GH. Effects of a β-agonist (clenbuterol) on growth, carvasscomposition, protein and energy metabolism of veal calves[J].British Journal of Nutrition,1987,57:417–428.
    [225] Wilso A D. Effect of age on abscorption and immune responsesto weaning or introduction ofnovel dietary antigens in pigs [J].Research in Veterinary Science,1989,46:180–186.
    [226]王宗元.动物营养代谢病和中毒病学[M].北京:中国农业出版社,1998.
    [227] Vazquez M,Bertics S.Luck M,et al.Peripartum liver triglyceride and plasma metabolites in dairycows[J].Journal of Dairy Science,1991,77:1521–1528.
    [228]阎红卫,张欣.血清总胆固醇在肝病中的应用[J].胃肠病学,2006,2(2):1–3
    [229]陈晓香,吕晓娴,王大明.人血清总胆固醇和甘油三酯的临床观察[J].中国误诊学杂志,2007,7(3):471–472.
    [230] Kom orovs kyiR R. Liver function and the levelof total cholesterol in the blood serum in livercirrhosis[J]. Likars'ka Sprava,1998,(8):83–85.
    [231] Amosova EN, LykhovskiiO I, Briuzgina TS. An analysis of the fatty acid composition of thelipoprotein lipids in patients with chronic hepatitis and liver eirrhosis[J]. Likars'ka Sprava,1999,(2):47–50.
    [232]钱本余.蒺藜研究概述[J].中成药,1990,12(1):34
    [233]宿燕岗,杨学义,陈灏珠.心脑舒通的临床应用及研究现状[J].深圳中西医结合杂志,1999,9(1):39–40.
    [234]牛伟,瞿伟菁,王煜非等.蒺藜总皂苷对营养性肥胖大鼠胰岛素抵抗和高脂血症的影响[J].营养学报,2006,28(2):170–173.
    [235]石昌杰,瞿伟菁,王捷思,邓庭亭.蒺藜皂苷对大鼠动脉粥样硬化形成的影响[J].天然产物研究与开发,2009,21:53–57,72
    [236]孙培荣,石永兵.尿白蛋白/肌酐比值对诊断早期糖尿病肾病的价值[J].现代临床医学,2007,33(1):3–4.
    [237] Sugihara Y, Nojima H, Matsuda H, et al. Antihyperglycemic effects of gymnemic acid IV,acompound derived from Gymnema sylvestre leaves in treptozotocin-diabetic mice[J].Journal ofAsian natural Products Research,2000,2(4):321–327.
    [238] Aslan K, Lakowicz J R, Geddes C D. Nanogold-plasmon-resonance-based glucose sensing[J].Analytical Biochemistry,2004,330(1):145–155.
    [239]张素军,瞿伟菁,周淑云.蒺藜皂苷对大鼠小肠-葡萄糖苷酶的抑制作用[J].中国中药杂志,2006,31(11):910–913.
    [240] Aruoma O I. Characterization of drugs as antioxidant prophylactics[J].Free Radical Biology andMedicine,1996,20:675–705.
    [241] Pezzuto J M. Plant-derived anticancer agents[J]. Biochem. Pharmacol,1997,53:121–133.
    [242] Saide J A,Gilliland S E. Antioxidative Activity of Lactobacilli Measured by Oxygen RadicalAbsorbance Capacity[J].Journal of Dairy Science,2005,88:1352–1357.
    [243] Yu B P.Cellular defenses against damage from reactive oxygen species[J].Physiological Reviews,1994,74(1):139–162.
    [244] Castillo C,Hernandez J,Valverde I,et al. Plasma malonaldehyde(MDA)and total antioxidantstatus(TAS) during lactation in dairy cows[J]. Research in Veterinary Science,2006,80:133–139.
    [245] Armstrong D, Browne R. The analysis of free radicals, lipid peroxides, antioxidant enzymes andcompounds related to oxidative stress as applied to the clinical chemistry laboratory[J].Advancesin Experimental Medicine and Biology,1994,366:43–58.
    [246] Kadry H, Abou Basha L, El Gindi O, Temraz A. Antioxidant activity of aerial parts of Tribulusalatus in rats[J].Pakistan Jouranl of Pharmaceutical Sciences,2010,23(1):59–62.
    [247]李晶莹.蒺藜皂苷过氧化氢损伤心肌细胞的保护作用[D]吉林:吉林大学,2008.
    [248]曲娴,刘建平,赵素文,等.蒺藜总皂甙对AMI家兔血清SOD和MDA变化的影响[J].中国病理生理杂志,2001,17(11):1055.
    [249]杨汉春.动物免疫学[M].北京:中国农业大学出版社,1996,26–27.
    [250]武建国.临床免疫学检验[M].南京:江苏科技出版社,1989:159.
    [251] Luettig B, Steinmüller C,Gifford G E,et al. Macrophage activation by the polysacchridearabinogalactan isolated from plant cell cultures of Echinacea purpurea[J]. Jouranl of the NationalCancer Institute,1989,81(9):669–675.
    [252] HyPers T M,Tricomi SM, Dettenmeier PA,et al.Tumor necrosis factor levels in serum andbronchoalveolar lavage fluid of patients with the adult respiratory distress syndrome[J].AmericanReview of Respiratory Disease,1991,144:268–271.
    [253]任强,李自成,巫少荣,等.血管细胞黏附分子-1在动脉粥样硬化中的作用[J].临床荟萃,2004,19(4):419–421.
    [254]殷惠军,张波,史大卓,等.蒺藜总皂苷对动脉粥样硬化家兔NF-B和ICAM-1、TNF-水平的影响[J]中西医结合心脑血管病杂志,2005,(3)8:700–702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700