细菌浸出黄铜矿过程中矿物表面化学变化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用筛选富集的高效浸矿细菌,以黄铜矿相态的溶解特性及其细菌浸出过程中黄铜矿物相和化学转化为研究对象,采用电化学、XRD和表面分析方法SEM,及其澳大利国家同步辐射中心同步辐射X射线衍射在线分析方法,对黄铜矿相态转化和浸出过程中黄铜矿物相及化学转化过程进行了系统的研究。
     针对筛选富集的高效浸矿混合菌,进行了基础的生理特性研究。结果表明,该菌对温度和pH具有较宽的适应区间,适宜的生长温度为25-40℃C,最佳生长温度为30℃;适应的生长pH范围1.0~3.5,最佳生长pH为2.0。适宜生长电位区间为502-750mV vs.SCE具有较高的亚铁和硫的氧化活性,在最佳生长条件下,培养60小时,亚铁氧化率为96%;培养120h,溶液pH有初始值2.0下降到0.8。该菌对Cu2+、总铁、Ni2+和Mg2+的耐受浓度分别为:20g/L、25g/L、12g/L和20g/L
     绘制了Cu、Fe、S三种元素-H2O、Cu-S-H2O、Fe-S-H20、接近实际条件下的Cu-Fe-S-H20体系以及常见硫化矿物Eh-pH图。分析得知:在细菌浸出体系中, Fe2+/Fe3+的理论转化电位值为0.771v。Cu2+是细菌浸出过程中铜的稳定存在组分,电位小于0.161V时Cu+可能存在;硫元素以多种价态形式存在,高电位条件下,HS04-、SO42-为热力学的稳定组分,pH=1.99为转化平衡条件。低电位、高pH时,元素硫还原为H2S,随着电位变得更负pH更高时,H2S将转化为HS-,pH大于6时,随着电位的升高,HS-被氧化为S042-;pH小于6时,电位的升高促进H2S经由元素硫,逐步被氧化为S4062-、S2032-、S02、HSO-及S2062-;在碱性条件下,HS-将被氧化为SO32-,继而被氧化为+5价的S2062-。硫化铜矿的细菌浸出体系中,辉铜矿Cu2S和铜蓝CuS具有较宽的稳定存在区间,是铜铁硫化矿物溶解过程的中间物质。CuFeS2的溶解过程有CuFeS2→CuS→Cu2+或CuFeS2→CuS-Cu2S→Cu2+两种途径。铁的优先溶解是铜铁硫化矿物分解的初始步骤。
     黄铜矿相态转化试验结果表明:小于200℃时,黄铜矿以饺相α稳定存在,其晶格a=b=5.2894A,c=10.4221A。200℃C-420℃范围内,随着温度的升高,黄铜矿晶格快速增大。在552℃条件下,随着焙烧时间的延长,黄铜矿晶格显著增加。硫元素在其相态转化过程中起着关键作用。同步辐射原位相变试验表明,黄铜矿相变过程可分为三个阶段,第一阶段温度范围在200℃-490℃,黄铜矿以四方晶体存在,晶格随温度的升高增大;第二阶段温度范围在490℃C-550℃,黄铜矿由四方晶系转为立方品系,品格继续增大。第三阶段温度范围在55O℃-600℃,黄铜矿以立方晶体的形态存在。混合细菌浸出24天,自然黄铜矿、203℃、382℃和552℃条件下焙烧所得黄铜矿中铜的浸出率为30.98%、32.99%、40.54%和60.95%。黄铜矿的晶格增大,晶格能降低,是浸出率显著提高的组最根本原因。
     各相态黄铜矿电化学研究显示,随着焙烧温度的升高,黄铜矿的静电位降低,自然黄铜矿的静电位为214mV,203℃、382℃C及552℃条件下静电位分别为188mV、176mV和56mV。各相态黄铜矿阳极氧化过程相同,出现三个黄铜矿氧化特征峰。但随着温度升高所得黄铜矿还原过程特征峰减少。退火温度的升高导致腐蚀电流密度增加,腐蚀电压降低,极化电阻减小。自然黄铜矿的腐蚀电流密度为0.461μA.cm2,203℃和382℃下的分别增大到0.457μA-cm-2、0.837μA.cm-2,552℃时,黄铜矿腐蚀电流密度增大到2.221μA.cm-2。自然黄铜矿的极化阻力为80.31kΩ.cm,203℃和382℃下的极化阻力分别为54.03kΩ-cm2、28.84kΩ.cm2,552℃下,黄铜矿的极化阻力下降到9.09kΩ-cm2。
     在黄铜矿整个浸出过程中,Cu8S5和Cu339Fe0.61S4为黄铜矿浸出初期的中间产物出现。Cu3.39Fe0.61S4中铜铁硫原子个数比为5.5:1:6.5,为铜铁的富硫化合物,Fe优先溶解为黄铜矿溶解的初始步骤。斑铜矿的溶解初始步骤为铁的优先溶解,形成非化学计量的铜铁硫化合物CuxFeySz,在细菌和高铁等的氧化下,斑铜矿溶解过程生成了Cu8S5、Cu7S4、Cu39S28、CuS、Cu2S等中间物质。斑铜矿溶解基本过程可描述如下:
     黄铜矿的浸出基本分为两个阶段,第一阶段,亚铁氧化均为优势细菌,浸出速率高,电位快速升高;第二阶段,硫氧化菌为优势浸矿细菌,铜浸出率平稳,电位稳定,溶液pH显著降低。分阶段接种细菌,将大大促进硫化铜矿的溶解,第二阶段初期添加At和A.caldus后浸出到75天后,铜浸出率为43.78%。
     细菌柱浸出过程中,混合菌B的浸出效果最好。当细菌接种量为10%、矿石粒度:-10+5mm、喷淋强度:3ml/cm2.h、自然温度条件下,浸出75天,铜浸出率为43。64%。矿石粒度、喷淋强度对铜的浸出有显著的影响。
The dissolution characteristics of different phase chalcopyrite and its mineralogical and chemical phase transformation were systematically investigated by electrochemical measurements, XRD, SEM and in situ Powder Diffraction of Synchrotron, during bioleaching by the adapted effective bacteria.
     The physiological characteristics of the adapted culture were studied. It was showed that the culture had a wide growth range of temperature (25-40℃) and pH (1.0-3.5), with the optimal temperature at30℃and pH at2.0. This culture had fairly high oxidative activity of ferrous ion and S0.96%ferrous ion were oxidized in60hours under the optimal condition in9K medium, and the pH of medium decreased to0.8cause of the oxidation of S0into SO42-. This culture could resist Cu2+, total Fe, Ni2+and Mg2+up to20g/L,25g/L,12g/L and20g/L respectively. And the optimal potential range was502-750mV vs. SCE.
     Eh-pH diagrams of Cu-H2O, Fe-H2O, S-H2O, Cu-S-H2O, Fe-S-H2O as well as Cu-Fe-S-H2O system for physical conditions and sulfide minerals-H2O were drew. It was obsevered that the iron mainly existed as Fe2+and Fe3+, of which the theoretical potential of transformation was0.771V. Cu2+was the stable component of copper in of bioleaching of copper sulphide, and Cu+might exist while the potential was below0.161V. S existed in multiple valence states, HSO4-and SO42-were stable components in higher potential, while pH=1.99was the equilibrium condition of transformation. At lower potential as well as higher pH, sulphur was reduced to H2S, H2S translated into HS-with the potential reduce and pH increase. Moreover, HS-was oxidized to SO42-with potential increased at pH above6. While less than6, H2S was oxidized to S0, S4O62-,S2O32-, SO2, HSO-and S2O62-. HS-would be oxidized to SO32-, and then to S2O62-at alkalic solution. In the bioleaching of copper sulfide, there was a relatively broad region for the existence of Cu2S and CuS which were the intermediate product in the dissolution of copper-iron sulfides. The CuFeS2could be dissolved by two ways as CuFeS2→CuS→Cu2+and CuFeS2→CuS-Cu2S→Cu2+. Preferential release of iron from sulfide minerals was the first step of copper-iron sulfide minerals dissolution.
     The chalcopyrite with different phase was obtained by quenching at desired temperature and the basic properties of the chalcopyrite weith different phase were also investigated. As shown from the result of XRD, when chalcopyrite was quenched below200℃, it existed in the stable form of phase a, the parameters of lattice was a=b=5.2894A, c=10.4221A, respectively. As for the sample quenched between200℃and420℃, the lattice size of the quenched chalcopyrite increases rapidly as long as the temperature increased. For the sample quenched at552℃, the lattice size of chalcopyrite increased significantly with the roasting time. Elemental sulfur played a pivotal role in the process of chalcopyrite phase modification. The in situ study of the phase transformation indicated that the phase modification of chalcopyrite could be divided into three stages:in the first stage, chalcopyrite presented as tetragonal crystal, the lattice size increased with the temperature. The second phase of the temperature ranging from490℃to550℃, chalcopyrite had accomplished the process of phase modification, in which chalcopyrite transferred from tetragonal crystal to cubic crystal with the lattice size increased. The last phase of the experiments, temperature ranging from550℃to600℃, chalcopyrite existed in form of cubic crystals in the zone. The mixed bacterial leaching test showed that, when chalcopyrite was roasted under the conditions of natural temperature,203℃,382℃and552℃, the leaching rate of copper were30.98%,32.99%,40.54%and60.95%, respectively. The high leaching rate mostly lies in the larger chalcopyrite lattice size and lower lattice energy.
     The electrochemical studies of the chalcopyrite with different phases showed that the Open Circuit Potential reduced as the quenched temperature increase. The Open Circuit Potential of nature chalcopyrite was214mV, and188mV at203℃,176mV at382℃and56mV at552℃. The anodic oxidation process of the different phase chalcopyrite was similar to nature chalcopyrite and three oxidation peaks was determined. However, with temperature increased, the cathodic peaks reduced. The corrosion potential of the different chalcopyrite modification electrode decreased and the corrosion current density increased with the roasting temperature. The corrosion current indensity of nature chalcopyrite was0.461μA·cm-2, and increased to0.457μA·cm-2and0.837μA·cm-2at203℃and382℃, respectively, finally reduced to2.221μA·cm-2at552℃. The corrosion resistance of nature chalcopyrite was80.31kΩ·cm2and it were54.03kΩ·m2and28.84kΩ·cm2quenched at203℃and382℃respectively. The corrosion resistance reduced to9.09kΩ·cm2at552℃
     In the bioleaching of chalcopyrite, Cu8S5and Cu3.39Fe0.61S4was observed as intermediate products. The ratio of Cu Fe S is5.5:1:6.5in Cu3.39Fe0.61S4which was the copper-iron sulphied with abundant sulpher. Preferential dissolution of iron was the first step of chalcopyrite dissolution. CuxFeySz was determined as the product of the first step of bornite dissolution caused by the preferential release from bornite. In addition, Cu8S5, CU7S4, Cu39S28, CuS, Cu2S and other intermediate substances formed during the bioleaching of bornite. The dissolution bornite could be described as followas:
     The bioleaching of chalcopyrite by mixed culture and A.f was carried out. It was indicated that the bioleaching process could be devided into two steps. At first step the preponderant bacteria was iron oxidation bacteria, furthermore, the leaching rate keep in high level and the redox potential increased rapidlly. However, at the second step the sulphur oxidation bacteria were preponderant. The redox potential keep at stable and the pH of solution reduce significantly because of the oxidation of sulpher by the sulphur oxidation bacteria. Furthermore, the copper extraction was enhached by inoculating the sulphur oxidation bacteria at the end of the fist step, resulting as the the copper extraction reached to43.78%after leaching for75days throuth inoculating the A.t and A.caldus into the leaching system.
     The extraction of copper reached43.64%after leaching75days by mixed culture B using the column reacter with the partical size of ore at-10+5mm, spraying intensity3ml/cm2·h and at natural temperature.
引文
[1]杨显万,沈庆峰,郭玉霞.微生物湿法冶金.北京:冶金工业出版社,2003.2-3.
    [2]Weeks, Mary Elvira. The discovery of the elements:Ⅲ. Some eighteenth century metals. Journal of Chemical Education,1932,9:22.
    [3]Akcil A.Potential bioleaching developments towards commercial reality:Turkish metal mining's future. Minerals Engineering.2004,17(3):477-480.
    [4]Davis. ASM Specialty Handbook:Nickel, Cobalt, and Their Alloys (ISBN 978087170685 0). Materials Park, Ohio:ASM International,2000.7-13.
    [5]Kuck, Peter H.. Mineral Commodity Summaries 2006:Nickel. United States Geological Survey, http://minerals.usgs.gov/minerals/pubs/commodity/nickel/ mcs-2008-nicke.pdf.
    [6]Paola Costamagna, and Supramaniam Srinivasan. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part Ⅱ. Engineering, technology development and application aspects. Journal of Power Sources,2001, 102(1-2):253-269.
    [7]Klaus Bosecker.Bioleaching:Metal solubilization by microorganisms.FEMS Microbiology Reviews.1997(20):591-604.
    [8]Deveci H. Effect of salinity on the oxidative activity of acidophilic bacteria during bioleaching of a complex Zn/Pb sulphide ore.The European Journal of Mineral Processing and Environmental Protection.2002,2:141-150.
    [9]Chandraprabha M N, Modak J M, Natarajan K A. and Raichur A M. Strategies for efficient start-up continuous biooxidation process for refractory gold ores. Minerals Engineering,2002(15):751-753.
    [10]《浸矿技术》编委会编.浸矿技术.北京:原子能出版.1994.
    [11]Taylor J H and Whelan P F. The leaching of cuprous pyrite and the precipitation of copper at Rio Tinto. Spain, Trans. Inst. Min. Metal.,1943,52:35-71.
    [12]Rudolfs W. Oxidation of pyrites by microorganisms and their use for making mineral phosphates available. Soil Sci.,1922,14:135-147.
    [13]Rudolfs W and Helbronner A. Oxidation of zinc sulfides by microorganisms. Soil Sci.,1922,14:459-464.
    [14]Colmer A R and Hinckle M E. The role of microorganisms in acid mine drainage. A Preliminary Report, Science,1947,106:253-256.
    [15]Temple K L and Delchamps E W. Autotrophic bacteria and the formation of acid in bituminous coal mines. Applied Microbiology,1953,1:255-258.
    [16]Leathen W W, Kinsel N A and Braley S A. Ferrobacillus ferrooxidans:A chemosynthetic autotrophic bacterium. Bacterial.,1956,72:700-704.
    [17]Bryner L C, et al. Microorganisms in leaching of sulfide minerals. Industrial and Engineering Chemistry,1954,46:2587-2592.
    [18]Zimmerly S R, Wilson D G and Prater D J. Cyclic leaching process employing Iron oxidizing bacteria. U. S. Patent,1958:2829964.
    [19]Malouf E E and Prater J D. Role of bacterial oxidation in leaching processes. Metals,1961,13:353-356.
    [20]Spedden H R, Malouf E E and Prater J D. Cone-type precipitators for improved copper recovery. Metals,1966,18:1137-1141.
    [21]Woodcock J T. Copper dump leaching. Proc. Austral. Inst. Min. Met.,1967,224: 47-66.
    [22]Shoemaker R S and Darrah R M. The economics of heap leaching, Mining Engineering.1968,20(12):90-92.
    [23]Fisher J R. Bacterial leaching of elliot lake uranium ore. Trans. Can. Min. Met. 1966,69:167-171.
    [24]McGregor R A. The bacterial leaching of uranium. Nuclear Applications,1969,6
    [25]Gow W A and Ritcey G M. The treatment of canadian uranium ores. A Review. Can. Min. Met.1969,2:1330-1339.
    [26]Silverman M P. Mechanism of Bacterial Pyrite Oxidation. Bacteriol.,1967,94: 1046-1051.
    [27]Brock T D, et al. Thermophilic microorganisms and life at high temperatures. Arch Microbiol.,1972,84:54.
    [28]Brierley C L and Brierley J A. A chemoautotrophic and thermophilic Microorganism isolated from an acid hot spring. Canadian J. Microbiol.,1973, 19:183-188.
    [29]Golocheva R S and Karavaiko G I. A new genus of thermophilic spore-forming bacteria. Mikrobiologiya,1978,47:658-665.
    [30]Markosyan G E. A new acidophilic iron bacterium leptospirillum ferrooxidans. Biol. Zh. Arm.,1972,25:26-33.
    [31]Torma A E. The role of thiobacillus ferrooxidans in hydrometallurgical processes. Advances in Biochemical Engineering,1977,6:1-37.
    [32]Torma A E. Effects of carbon dioxide and particle surface area on the microbiological leaching of a zinc sulfide concentrate. Biotechnol. Bioeng., 1972,14:777-786.
    [33]McElroy R O and Bruynesteyn A. Continuous leaching of chalcopyrite concentrates:Demonstration and economic analysis, Metallurgical applications of bacterial leaching and related microbiological phenomena. Murr L E, Torma A E and Brierley J A. eds., New York, Academic Press, 1978:441-472.
    [34]Torma A E. Microbiological extraction of cobalt and nickel from sulfide ores and concentrates. Canadian patent,1975, No.960463.
    [35]Schwartz W. Conference bacterial leaching. Weinheim, Germany, Verlag Chemie, 1977:1-270.
    [36]Murr L E, Torma A E and Brierley J A eds., Metallurgical applications of bacterial leaching and related microbiological phenomena. New York, NY, Acaedmic Press,1978:1-526.
    [37]Trudinger P A, Walter M R and Ralph B J. Biogeochemistry of ancient and modern envirnments. Canberra, Australia, Australian Academy of Science,1980: 1-723.
    [38]Rossi G and Torma A E. Recent progress in biohydrometallurgy. Iglesias, Italy, Associazione Mineraria Sarda,1983:1-752.
    [39]Lawrence R W, Branion R M R and Ebner H G. Fundamental and applied biohydrometallurgy. Amsterdam, The Netherlands, Elsevier,1986:1-501.
    [40]Norris P R and Kelly D P. Biohydrometallurgy. Kew Surrey, Great Britain,1988: 1-578.
    [41]Salley J, McCready R G and Wichlacz P L. Biohydrometallurgy. Ottawa, Ontario, Canada, CANMET Publication SP89-10,1989:1-771.
    [42]Bustos S, Castro S, Montealegre S. The sociedad mineral pudahuel bacterial thin-layer leaching process at Lo Aguirre. FEMS Microbol Revs,1993,11: 231-236.
    [43]Schnell H. A. Bioleaching of copper, In:D.E. Rawlings (eds). Biomining: Theory, Microbes and Industrial Processes, New York:Springer,1997.21
    [44]Brierley J A, Brierley C L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy,2001,59:233-239
    [45]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy,2006,84:81-108
    [46]Olson G J, Brierley J A, Brierley C L. Bioleaching review part B:Progress in bioleaching:applications of the microbial processes by the mineral industries. Applied Microbiology Biotechnology,2003,63:249-257
    [47]Suzuki I. Microbial leaching of metals from sulfide minerals. Biotechnology Advances,2001,19:119-132
    [48]Rawlings D E, Silver S. Mining with microbes. Bio/Technology,1995,13:773-8
    [49]Brierley C L. Bacterial succession in bioheap leaching. Hydrometallurgy,2001, 59:249-255
    [50]Morin D, Lips A, Pinches T, et al. BioMinE-Integrated project for the development of biotechnology for metal-bearing materials in Europe. Hydrometallurgy,2006,83:69-76
    [51]Rawlings D E. Microbially assisted dissolution of minerals and its use in the mining industry. Pure Appl. Chem.,2004,76(4):847-859
    [52]裘荣庆.微生物冶金应用现状.国外金属矿选矿.1994,31(8):1-3.
    [53]李宏煦,邱冠周,胡岳华等.大宝山废铜矿细菌浸出铜的研究.矿产综合利用.2000,(5):31-33.
    [54]柳建设,邱冠周,王淀佐.硫化矿细菌浸出机理探讨.湿法冶金.1997,16(3):1-3.
    [55]邱冠周,王军,钟康年.银催化铜矿石的细菌浸出.矿冶一工程.1998,18(3):22-26
    [56]李洪枚.细菌浸出含镍磁黄铁矿金矿.湿法冶金.2000,19(3):28-31.
    [57]童雄,郭学君从活化能角度探讨细菌氧化硫化矿机理.有色金属.1998,50(2):76-80.
    [58]张维庆,魏德洲,沈俊.氧化亚铁硫杆菌对黄铜矿的氧化作用.矿冶工程.1999,19(3):32-33.
    [59]钟慧芳,李亚琴.细菌浸出中等低品位硫化镍矿.微生物学报.1980,20(1)82-87.
    [60]孙讽芹.难选低品位铜镍矿细菌浸出的研究.矿冶.2000,9(2):54-59.
    [61]常志东等.氧化业铁硫杆菌对硫铁矿和含铜硫铁矿浸矿动力学研究.湿法冶金.1997,34(3):4-8.
    [62]裘荣庆等.含金硫化矿石的细菌氧化预处理.黄金科学技术.1994,(2):34-41.
    [63]Arbiter N, Fletcher A W, Copper hydrometallurgy evolution and milestones. Mining Engineering 1994,118-123
    [64]Readett and Townson. Practical aspects of copper solventextraction from acidic leach liquors. Unpublished paper presentedat ALTA Copper 1997:Copper Hydrometallurgy Forum (Brisbane, Qld.), ALTA Metallurgical Services, Melbourne,37.
    [65]Bartos P J, SX-EW.copper and the technology cycle. Resources Policy,2002.28: 85-94.
    [66]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review[J]. Hydrometallurgy,2006,84(1):81-108.
    [67]Fernado A. Present and future of bioleaching in developing countries. Electronic Journal of Biotechnology,2002,5(2):196-199.
    [68]王淀佐.生物工程与矿物提取技术.中国科学技术前沿(中国工程院版).北京:高等教育出版社,1999.
    [69]王淀佐,李宏煦.硫化矿生物冶金的研究现状与进展.矿冶,2002,11(增).
    [70]李宏煦,王淀佐.生物冶金中的微生物及其作用.有色金属,2003,55(2):60-63.
    [71]Isamu Suzuki Microbial leaching of metals from sulfide minerals. Biotechnology Advances,2001,19:119-132.
    [72]李宏煦.硫化铜矿的生物冶金.北京:冶金工业出版社,2007.11-13.
    [73]邓敬石.中等嗜热菌强化镍黄铁矿浸出的研究:[博士学位论文].昆明:昆明大学,2002.
    [74]钱林Acidithiobacilius ferrooxidans和Acidiphilium spp细菌的分离鉴定及其协同浸出黄铜矿能力研究:[硕士学位论文].长沙:中南大学,2008.
    [75]符波.硫氧化细菌的分离鉴定以及与铁氧化细菌混合浸出黄铜矿:[硕士学位论文].长沙:中南大学,2007.
    [76]高健.极端环境中嗜铁钩端螺旋菌的选择性分离、鉴定与特性研究:[博士学位论文].长沙:中南大学,2007.
    [77]李宏煦,王淀佐,陈景河等.细菌浸矿作用分析.有色金属,2003,55(3):68-71..
    [78]李宏煦,阮仁满,宋永胜等.矿物加工中的微生物技术.矿冶,2002,11(增)
    [79]Ann P. Wood and Don P Kelly. Autotrophic and mixotrophic growth of three thermoacidophilic iron-oxidizing bacteria. FEMS Microbiol Lett,1983,20:107-112.
    [80]P.R. Norris and D.W. Barr. Growth and iron oxidation by acidophilic modetate thermohiles. FEMS Microbiol Lett,1985,28:221-224.
    [81]R.M. Marsh and P.R. Norris. The isolation of some thermophilic, auto trophic, iron-and sulfur-oxidizing bacteria. FEMS Microbiol Lett,1983; 17:311-315.
    [82]N.W. Le Roux, D.S. Wakerley and S.D. Hunt. J. Gen. Mirobiol,1977,100:201.
    [83]J.A. Brierley and S.J. Lockwood. FEMS Microbiol Lett,1977,2:163-165
    [84]J.A. Brierley. Appl. Environ. Microbiol,1978 36:523-525.
    [85]R.S. Golovacheva and G.I. Karavaiko. A new genus of thermophilic spore-forming bacteria. Microbiology(Moscow),1978,47(5):658-665.
    [86]J.A. Brierley, P.R. Norris, D.P. Kelly and N.W. Le Roux. Eur. J. Appl. Microbiol. Biotechnol,1978,5:291-299.
    [87]P.R. Norris, J.A. Brierley and D.P. Kelly. FEMS Microbiol Lett,1980,7:119-122.
    [88]R.E. Rivera-Santillan, A. Ballester Perezb, M.L. Blazquez Lzquierdo and F. Gonzalez. Bioleaching of a copper sulphide flotation concentrate using mesophilic and thermophilic microorganisms. Biohydrometallurgy and the Environment Toward the Mining of the 21st Century,1999,PartA,149-158
    [89]N.S. Vardanyan. Oxidation of chalcopyrite by strains of the thermoacidophilic bacterium sulfobacillus thermosulfidooxidans. Biol. Zh. Arm(Armenian),1999, 52(1):3 8-43.
    [90]N.S. Vardanyan. The effect of external factors on pyrite oxidation by sulfobacillus thermosulfidooxidans sulbsp asporogenes. Biotekhnologiya(Russ), 1998,(6):48-55.
    [91]Cwalina, Beata. Metal leaching from sulfide minerals by sulfur-and iron-oxidizing mixotrophic bacteria. Fizykochem.. Probl. Mineralurgii(Pol),1994,28: 145-152.
    [92]Cwalina, Beata. Adaptive simulation of resistance to copper and zinc ions in mixotrophic iron and sulfur-oxidizing bacteria. Bull. Pol. Acad. Sci.:Biol. Sci, 1994,42(2):177-181.
    [93]N.S. Vardanyan. A new thermoacidophilic bacterium belonging to the Sulfobacillus genus. Mikrobioloyiya(Russ),1988,57(2)268-274.
    [94]N.S. Vardanyan. The effect of organic compounds on the growth and oxidation of inorganic substrates by sulfobacillus thermosulfidooxidans asporogenes. Mikrobioloyiya(Russ),1990,59(3):411-417.
    [95]N.S. Vardanyan. The resistance of sulfobacillus thermosulfidooxidans sulbsp asporogenes against copper, zinc and nickel ions. Biotekhnologiya(Russ),1990, 59(4):587-594.
    [96]柳建设.硫化矿生物提取及腐蚀电化学研究:[博士学位论文].长沙:中南大学,2002.
    [97]M.A. Jordan and C.V Philips. Acidophilic bacteria-their potential mining and environmental applications. Min Eng,1996,9 (2):169-181.
    [98]D.A.Clark and P.R. Norris. Oxidation of mineral sulphides by thermophilic mcroorganisms. Min Eng,1996,9 (2):169-181.
    [99]Y Konishi, S. Toshido and S. Asai. Bioleaching of Pyrite by acidophilic thermophile Acidianus brierleyi. Biotechnol. Bioeng,1995,48:592-600
    [100]Y Konishi, K. Kogasaki, and S. Asai. Bioleaching of Pyrite by Acidianus Brierley in a continuous-flow stirred-tank reactor. Min Eng,1997,52(24): 4525-4532.
    [101]C.J. Han and R.M. Kelly. Biooxidation capacity of the extremely thermoacidophilic archaeon Metallosphaera Sedula under bioeenergetic challenge. Biotechnol Bioeng,1998,58(6):617-624.
    [102]C.L. Brierley and L.E. Murr. Leaching:use of a thermophilic and chemoautotrophic microbe. Science,1973,179:488-490.
    [103]S.R. Hutchins, J.A. Brierley and C.L. Brierley. Microbial pretreatment of refractory sulfide and carbonaceous ores improves the economics of gold recovery. Min. Eng,1988,40:249-254.
    [104]Thomas D. Brock and Katherine M. Brock. Sulfolobus:A new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch. Mikrobiol,1972,84:54-68.
    [105]M. Nemati and STL Harrison. Effect of solid loading on thermophilic bioleaching of sulfide minerals. J Chem Technol Biotechnol,200,75:526-532.
    [106]Clark D A, Norri P R.Acidimicrobium ferrooxidans gen.nov.sp.nov. Mixed-culture ferrous iron oxidation with sulfobacillus species, Microbiology,1996, 142:785-790
    [107]Snad W, Gerke T, Hallmann E.The sulfur chemistry biofilm and direct attack mechanism critical evaluation of bacteria leaching. Apply Microbiology Biotechnol-ogy,1995,43:961-966.
    [108]张成桂.嗜酸氧化亚铁硫杆菌适应与活化元素硫的分子机制研究:[博士学位论文].长沙:中南大学,2008.
    [109]Bryant R D, McGroarty K M, Costeron J W, et al. Isolation and characterization of a new acidophillic Thiobacillus species (T. albertis). Can. J. Microbio,29: 1159-1170
    [110]Brierley J A, Norris P R, Kelly D P, et al. Characteristic of a moderately thermophillc and acidophilic iron oxidizing Thiobacillus. Eur. J. Appl. Microbiol. Biotechnol,1978,5:291-299.
    [111]Tuovinen O H, Niemela S I, Gyllenberg HG. Tolerance of Thiobacillus ferrooxidans to some metals. Eur. J. Appl. Microbiol. Antonie van Leeuwenhoek Journal of Microbiology and Serology,1971,37:489-496.
    [112]Natarajan K A, Iwasaki I. Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Separation Science and Technology,1983, 18:1095-1111.
    [113]Sampson M I, Phillips C V. Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates using mesophiles and moderate thermophiles. Minerals Engineering,2001,14:317-340.
    [114]Li H M, Ke J J. Influence of Cu2+ and Mg2+ on the growth and activity of Ni2+ adapted Thiobacillus ferrooxidans. Minerals Engineering,2001,14:113-116.
    [115]Watling H R. The bioleaching of nickel-copper sulfides. Hydrometallurgy,2008, 91:70-88.
    [116]Tributsch H.Direct versus indirect bioleaching. Hydrometallurgy,2001.177-185
    [117]Crundwell F K. How do bacteria interact with minerals. Hydrometallurgy, 2003,75-81
    [118]Boon M, Heijnen J J.Biohydrometallurgical Technologies,1993(1):217-230
    [119]张英杰,杨显万,硫化矿细菌浸出机理,有色金属,1997,49(4):39-44
    [120]Berry V K, Murr L E. Scanning Electron Microscopy,1997,1:137-146.
    [121]胡岳华,康自珍,王军等,国外金属矿选矿,1997,8:42-45.
    [122]康自珍,黄铜矿细菌氧化机理的初步研究,[硕士学位论文],长沙,中南大学,1997.
    [123]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射光源的原理、结构和特征,理化检测—物理分册,2008,44(1):28-47.
    [124]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射光源的原理、结构和特征(续),理化检测—物理分册,2008,44(2):103-106.
    [125]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术及其应用,理化检测—物理分册,2008,44(3):137-142.
    [126]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术 及其应用,理化检测—物理分册,2008,44(4):215-219.
    [127]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术及其应用,理化检测—物理分册,2008,44(5):275-279.
    [128]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术及其应用,理化检测—物理分册,2008,44(6):327-330.
    [129]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术及其应用,理化检测—物理分册,2008,44(7):391-395.
    [130]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术及其应用,理化检测—物理分册,2008,44(8):454-459.
    [131]杨传铮,程国锋,黄月鸿,同步辐射的基本知识—同步辐射中的衍射技术及其应用,理化检测—物理分册,2008,44(9):524-529.
    [132]曾召权,同步辐射光源及其应用研究综述,云南大学学报,2008,30(5):477-483.
    [133]唐福元,同步辐射的发现、特性及其应用领域的拓展,物理与工程,2004,14(3):34-40
    [134]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology,2003,149:1699-1709.
    [135]傅崇悦等编著,冶金溶液热力学与计算[M],北京:冶金工业出版社,1989
    [136]傅崇悦等编著,冶金溶液热力学与计算(二)[M],北京:冶金工业出版社,1989
    [137]杨显万,邱定蕃,湿法冶金[M],北京:冶金工业出版社,1998
    [138]杨显万,高温水溶液热力学数据计算手册[M],北京:冶金工业出版社,1983
    [139]梁英教,无极热力学数据手册[M],沈阳:东北大学工业出版社,1993.
    [140]龚竹钱,梅光贵,化学位图在湿法冶金和废水处理中的应用[M],长沙:中南工业大学出版社,1987.
    [141]F. A. Crundwell, The influence of the electronic structure of solid on the anodic dissolution and leaching of semi-conducting sulphide minerals, Hydrometallu-rgy,21 (1988) 155-190.
    [142]S. R. Hall and Stewart, The crystal structure refinement of chalcopyrite CuFeS2, Acta Crystallographic, B29,1973 579-585
    [143]J.A. Tossell and D. J. Vaughan, Theoretical Geochemistry:Applications of Quantum Mechanics in the Earth and Minerals Science, Oxford University Press Inc, USA, New York
    [144]P. Balaz, K. Tkacova and E. G. Avvvakumov, The effect of mechanical activation on the thermal decomposition of chalcopyrite, Journal of Thermal Analysis, Vol.35 (1989) 1325-1330.
    [145]Rohwerder T, Sand W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology,2003,149:1699-1709.
    [146]J.A. Tossell and D. J. Vaughan, Theoretical Geochemistry:Applications of Quantum Mechanics in the Earth and Minerals Science, Oxford University Press Inc, USA, New York
    [147]M. B. Stott, H. R. Watling, P. D. Franzmann, D.Sutton, The role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching, Minerals Engineering. (10) 2000,1117-1127
    [148]G. J. Olson, J. A. Brierley, C. L. Brierley, Bioleaching review B:processing in bioleaching:applications of microbial processes by the minerals industries, Applied Microbiology and Biotechnology. (63)2003,249-257
    [149]Z.Y.Lu, M.I. Jeffrey, F.Lawson, An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solution, (56) 2000 145-155
    [150]J. Louis, New data on phase relations in the Cu-Fe-S system, Economic Geology, (68) 1973,443-454.
    [151]R. Padilla, M. Rodriguez and M. C.Ruiz, Sulfidation of chalcopyrite with element sulfur, (34B) 2003,15-23
    [152]Yu. Vorobyev, S. Borsovskiy, Phase transformation and composition of chalcopyrite, Interniational Geology Review, (23)1981 1023-1036
    [153]R. Padilla, P. Pavez, M. C. Ruiz, Kinetics of copper dissolution from sulfidized chalcopyrite at high temperature in H2SO4-O2, Hydrometallurgy, (91) 2008, 113-120
    [154]L. Winkel, J. Wochele, C. Ludwig, I. Alxneit, M. Sturzeneggger, Decomposition of copper concentrates at high temperature:An efficient method to remove volatile impurities, Minerals Engineering,(21) 2008 731-742
    [155]L. H. Sarah, R. P. Allen, H. N. Wayne, E. F. Michal, Sulfur species at chalcopyrite fracture surfaces, American Mineralogist,(89) 2004 1026-1032
    [156]M. A. Migahed, E. M. S. Azzam, A. M. Al-Sabagh, Corrosion inhibition of mild steel in 1M sulfuric acid solution using anionic surfactant, Materials Chemistry and Physics,(85) 2004 273-279
    [157]X. L. Zhang, Zh. H. Jiang, Zh. P. Yao, Y. Song, Zh. D. Wu, Effect of scan rate on the potentiodynamic polarization curve obtain to determin the Tafel slops and corrosion cuttent density, Corrosion Science (51) 2009 581-587
    [158]Taki Guler, Cahit Hicyilmaz, and Zafir Ekmekci, Electrochemical behavior of chalcopyrite in the absence and presence of dithiophosphate, Minerals Processing,75 2005 217-228
    [159]M. A. Elsa, Igonacio Gonzalez, A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bornite in culfuric acid solution, Minerals Processing,67 2002 17-28.
    [160]C. Gomez, M. Figueroa, J. Munoz, M. L. Blazquez, Electrochemistry of chalcopyrite, Hydrometallurgy,43 1996 331-344
    [161]Isabel Lazaro, Norma Mzrtinez-Medina, Israel Rodriguez, Elsa Arce, Ignacio Gonzalez, The use of carbon paste electrodes with non-conducting binder for the study of minerals:chalcopyrite, Hydrometallurgy,38 1995 277-287
    [162]V. Branzoi, Florentina Golgovici, Florina Branzoi, Aluminum corrosion in hydrochloric acid and the effect of some organic inhibiter, Materials Chemistry and Physics,78 2002 122-131
    [163]R. I. Holliday and W. R. Richmond, An electrochemical study of the oxidation of chalcopyrite in acid solution, Electoral chemistry,288 1990 83-98
    [164]Li Hongxu, Qiu Guangzhou, Hu Yuehua, Wang Dianzuo, Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans, Trans. Nonferrous Met. Soc,16 2006 1240-1245
    [165]A. Lopez-Juarez, N. Gutierrez-Arenas and R. E. Rivera-Santillan, Electrochemical behavior in presence of silver at 35℃, Hydrometallurgy,83 200663-68
    [166]《浸矿技术》编委会.浸矿技术.北京:原子能出版社,1994
    [167]Natarajan K A. Electrochemical aspects of bioleaching of base-metal sulfides. In:Ehrlich H L and Brierley C L eds. Microbial Mineral Recovery. New York, NY, McGraw-Hill Publishing Company,1990:79-106.
    [168]Zhou, Q G, Bo F., Bo Z H, Xi L, Jian G, Fei L F, Hua C X.Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite. World Journal of Microbiology & Biotechnology,2007,23,1217-1225.
    [169]Mehta A P, Murr L E. Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy, 1983,9:235-256
    [170]Sampson M I, Phillips C V. Influence of base metals on the oxidising ability of acidophilic bacteria during the oxidation of ferrous sulfate and mineral sulfide concentrates using mesophiles and moderate thermophiles. Minerals Engineering,2001,14:317-340.
    [171]Belzile N, Chen Y W, Cai M F et al. A review of pyrrhotite oxidation. Journal of Geochemical Exploration,2004,84:65-76.
    [172]Plumb J J, Muddle R, Franzmann P D. Effect of pH on rates of iron and sulfur oxidation by bioleaching organisms. Minerals Engineering,2008,21:76-82.
    [173]Zhang G, Fang Z. The contribution of direct and indirect actions in bioleaching of pentlandite. Hydrometallurgy,2005,80:59-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700