硫化矿细菌浸出过程的电化学机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文系统研究了Fe~(2+)离子的氧化与T.f菌生长规律,单一及混合硫化矿、大宝山实际铜矿物细菌浸出的工艺及浸出过程机理。运用T.f菌修饰粉末微电极方法对T.f菌氧化Fe~(2+)的机理及硫化矿细菌浸出过程的电化学机理及动力学进行了较为系统的研究。
     循环伏安、稳态极化法、暂态电位阶跃等方法研究表明,Fe~(2+)T.f菌修饰碳粉粉末微电极上的氧化是一可逆反应。Fe~(2+)在Tf茵修饰粉末微电极上稳态极化极限扩散电流为i_L=1.85e~(-6)Am·cm~(-2),以此计算的电荷扩散系数为6.25×10~(-6)cm~2·s~(-1)。循环伏安法研究表明,i_P与υ~(1/2)关系为二次曲线,但Δ(?)_P~′,与υ为线性关系。对于快速扫描过程,通过T.f菌修饰粉末微电极上的电流为微盘电流与薄层电流之和。当[Cu~(2+)]在0.015mol·dm~(-3)以下时,Cu~(2+)的存在不会抑制Fe~(2+)在T.f菌修饰粉末微电极上的氧化,且在0.004~0.012mol·dm~(-3)范围内,Cu~(2+)的存在会使电极反应电荷扩散系数增大,对Fe~(2+)的氧化有加强作用。当pH在1.5~2.5之间,[Fe~(2+)]在0.22mol·dm~(-3)以下变动时,电极反应的可逆程度不变,且证明在pH为2、·[Fe~(2+)]为0.16mol·dm~(_3)时T.f菌氧化Fe~(2+)的活性最强。电位阶跃计时电流、计时电位法与稳态极化法求得的电荷扩散系数基本相同。设计了T.f菌生长电化学池,利用开路电压值及阴阳极电解液中[Fe~(3+)]/[Fe~(2+)]关系导出了计算T.f菌电池输出电压的数学表达式;并建立了反映Tf菌生长速率的动力学方程,实验值与由动力学方程所得的计算值符合较好。
     基于粉末微电极可体现短暂的中间反应过程的特征,循环伏安法研究认为,黄铁矿、黄铜矿、CuS、镍黄铁矿的阳极氧化分解过程均由多步反应组成。T.f菌的加入使阳极反应成一连续过程,反应峰电流增加,峰电位负移,反应的可逆性增强,且对中间生成的元素硫有氧化作用。Fe~(3+)的加入、pH的降低亦可使硫化矿阳极氧化峰区域加宽,电流增加,反应可逆性增强。pH的变化对镍黄铁矿的阳极过程有复杂影响。
     半导体电化学分析认为,黄铁矿的氧化是基于半导体与溶液间空穴转移的反应,黄铜矿、铜蓝、镍黄铁矿初始反应为空穴的消耗,随之有电子转移。T.f菌的存在使溶液中Fe~(2+)氧化为Fe~(3+),从而使溶液中空穴数量增加,氧化电位上升,溶液费米能级更接近于价带,空穴转移速度加快,反应加剧。
     动力学研究认为,细菌存在时,黄铁矿、黄铜矿、镍黄铁矿阳极氧化过程为电化学反应与扩散混合控制,铜蓝的氧化则主要以扩散控制为主。根据粉末微电极Tafel曲线求得,细菌的加入使黄铁矿、黄铜矿、镍黄铁矿腐蚀电位降低腐蚀电流升高,反应加速。结果表明,混合矿腐蚀电流较单一矿高。运用电位阶跃法测得了铜蓝、黄铁矿、黄铜矿、镍黄铁矿阳极过程的电荷扩散系数及反应速率常数。测定了黄铁矿与黄铜矿、镍黄铁矿混合粉末微电极阳极过程的各动力学参数,并得到了相应的动力学方程,混合矿浸出结果进一步证明了混合矿细菌浸出过程的原电池效应。单一矿浸出显示在有氧酸性体系,黄铁矿会不断氧化分解,浸出体系pH不断下降,而黄铜矿、镍黄铁矿的浸出对pH的贡献不大,浸出体系pH的下降主要是因为黄铁矿氧化分解所致。
     扫描电镜(SME)及表面EDS能谱研究证实了混合电位效应对硫化细菌矿浸出的作
    
    中南大学博士学位论文 硫化矿细菌浸出过程的电化学机理及工艺研究
    用。浸出前后表面原子数比例显示黄铁矿浸出过程中表面不会生成元素S’膜,而黄铜矿、
    镍黄铁矿表面会生成 s’,元素 s‘膜会阻碍黄铜矿进一步氧化分解,但并不影响镍黄铁矿中
    Ni的浸出,细菌对 S’的氧化会促进黄铜矿的进一步氧化溶解。
     应用大宝山铜矿物进行了实际矿物细菌浸出实验,证明大宝山铜矿适合细菌浸出提
    铜。实际腑中黄栅的存在赡出过程洲逐步下降,不需补充过多的酸以保证龊。
    溶液中Na+等半径较大的阳离子的存在会加速铁钒的生成,阻碍铜的浸出,竹的存在会大
    大加速铜的浸出。部分会在矿山天然形成的有机物或苹余液中的有机物会阻碍铜的细菌氧
    化浸出,阻碍作用大小依次为:EDTA>羟函>单宁腐植酸。
In this paper, the fundamental and technological investigations about roles of the oxidation of Fe*and increment of T. ferrooxidans have been proceeded as well as the bio條eaching of sulf ide .. mixed sulf ide and Da BaoShan' s copper ore. The electrochemistry mechanisms of the Fe1* oxidation and sulf ide anode behavior were studied using T. ferrooxidans modified and un-modified powder microelectrode in acid solution systematically.
    Cyclic votalmmetry, steady potentiodynamic, transient potential stair-step measurement show that the oxidation on the T. ferrooxidans modified carbon powder microelectrode is a reversibility reaction. The unti-diffusion current is 1. SSe^Am. cm"2. By calculation we get the charge diffusion coefficient is 6.25X lO^cm2. s"1. From CV curve we know that the relationship between ipand u12 is a quadric curve. Further more, the Acpp' is liner with u. To quick scan speed, the current晅hrough the T. ferrooxidans modified carbon powder microelectrode
    include the micro-disc and thin layer current. When the concentration of Cu^under 0. OlSrool. dm"3, even if it varies from 0. 004mol. dnf3to 0. 012mol. dm"3, the presence of Cu^could increase the charge diffusion coefficient, rather than inhibit the Fe2* oxidation. When the electrolyte PH at 1.5-~2.5 and [Fe2*] under 0.16 mol. dm"3, the variation of pH and [Fe2*] can not change the reversibility of the electrode process. It demonstrates that the effect of T. ferrooxidans on the Fe2* oxidation is more active at pH 2 and [Fe2l 0.16mol. dm"3.
    The T. ferrooxidans bath culture bio-cell is designed. The dynamic equations about the output voltage of bio-cell and the growth of T. ferrooxidans are proposed by utilization of calculation and measuring valve about voltage, [Fe2*] and [Fe3*] concentration. The calculated results using dynamic equation are well consistence with the measurements.
    Based on the character of powder micro-electrode, which could detect the transient reaction process, the intermediate reactions of the anode process of pyrite^chalcopyrite>covelite,pentlandite,which could not be detected using common electrode are measured by CV test. When the T. ferrooxidans in presence as well as in the presence of Fe3* and the decreasing of pH , the anode process of sulf ide are the successive reactions, company with the peak current and reversibility of reaction increasing, the peak potential negatively moving and the peak area expanding. The T. ferrooxidans has contribution to the oxidation of element sulfur formatted during the intermediate process. The pH has complex effect on the pentlandite anode process.
    
    
    
    The semiconductor electrochemistry investigate demonstrate that the pyrite is oxidized by the transfer of holes between semiconductor and solution surface, but to chalcopyrite, covelite and penlandite, in the initial time is by the holes transfer, then company with the electron transfer.
    The dynamic study show that the anode behavior of pyrite, chalcopyrite and penlandite is a mixed control process by electro- chemical reaction and charge diffusion, but to the covelite, charge diffusion is the main control factor. The polarize Tafel curve prove that the addition of T. ferrooxidans can makes the corrosion potential of sulfide decrease , the exchange current increase and the oxidation rate is accelerated. From the potential step-stair measurement, the charge diffusion coefficient and the reaction velocity constant of the anode process of individual and mixed sulfide are acquired. The results show that the corrosion current of the mixed sulfide is higher than that of the individual one. The results of leaching for the mixed sulfide certify the galvanic effect in the processing of the bio- leaching. The leaching for the individual sulfide show that the pyrite will be decomposed continuously company with the decrease of the pH, but the chalcopyrite and pentlandite has little contribution to the decrease of pH.
    The scan electron microscope and surface electron probe method verify the mixed potential effect in the sulfide bio-leachin
引文
[1]NRC. Evolutionary and-Revolutionary Technologies for Mining. National Academy Press,Washington DC. 2001 .In Press.
    [2]王淀佐.生物工程与矿物提取技术.1998中国科学技术前沿(中国工程院版),北京:高等教育出版社,1999.155.
    [3]王淀佐.新世纪有色金属选冶科技,中国有色金属学会第三届学术会议论文集(战略.研究综述部分),1997:53.
    [4]Norris, P.R & Kelly, D.P. The use of mixed microbial cultures in metal recovery. In A.T. Bull and J.H. Slater (eds),Microbial Interactions and Communities. London: Academic Press., 1982:443-474
    [5]Von Michaelis,H.2000. Randol Gold and Silver Forum 2000,Vancouver,Bc,April 25-28,2000.
    [6]Whitlock, J.L.Biooxidation of refactory gold ores (The Geobiotics Process),Biomining:Theory, Microbes and Industrial Processes (Ed.D.E.Rawlings),Springer-Verlag and Landes Bioscience, 1997:117-127.
    [7]Mitsubishi. Copper expected to improve in 2001. Mining Engineering. 2001, 54(4): 13-17
    [8]Dorian, J.P. Mining in China:an update. Mining Engineering 2001,51(2):35-44.
    [9]Hiroyoshi, N., H.Miki, T. Hirajima, M Tsunekawa. Enhancement of chalcopyrite leaching by ferrous ions in acidic ferric sulfate solutions. Hydrometallurgy 2001,60:185-197.
    [10]D.S.Holmes. Processing maustries: challenges and opportunities[J]. Minerals and Metallurgical Processing, 1988, (5): 49-56.
    [11]H.L. Ehrlich [J]. Minerals and Metallurgical Processing, 1988,(5): 57-60.
    [12]Nicolaides,A.A.Microbial mineral processing: the opportunities for genetic manpulation[J]. Journal of chemical Technology and Biotechnology. 1987, 38:167-185.
    [13]Bryner, L.C. Beck,J.V. et al. microorganisms in leaching sulfides minerals. Industrial and Engineering chemistry. 1954,46:2587-2592.
    [14]Bryner, L.C. and Anderson,R. Bryner, L.C. Beck,J.V. et al. microorganisms in leaching sulfides minerals. Industrial and Engineering chemistry. 1957,49:1721-1724.
    [15]Bryner, L.C. and Jameson,A.N.. microorganisms in leaching sulfides minerals. Appliede Microbiology. 1958,46(6):281-287.
    [16]Sheffer, H.W. and Evans L.G. Copper leaching practices in the western United states.U.S.Bureau of Mines, Information circular. 1968:8341.
    [17]Fletcher, A.W. Metal mining from low-grade ore by bacterial leaching. Transitions of Institution of Mining an Metallurgy.1970,79:C247-52.
    
    
    [18]Sasson, A. The earth's invisible garbage men. The UNESCO Courier. 1975 (7):29-30.。
    [19]Kelly, D.P. Cheap uranium from bacteria? Nature, London. 1977,265:406
    [20]Duncan, D.W. and Trussel, P.C. Advances in the microbiological leaching of sulphide ores.Canadian Metallurgical Quarterly. 1964,3:43-55.
    [21]Le Roux, N.W. Mining with microbes. New Scientist. 1969,43:12-16.
    [22]Duncan, D.W. and Bruynesteyn,A. Microbiological leaching of uranium. New Mexico State Bureau of Mineral Resources, Circular. 1971,117:55-61.
    [23]Tuovinen, O.H. and Kelly, D.P. Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching sulphide ores.Zeitschrift fur Allgemeine Mikrobiologie.1972,12:311-46.
    [24]Tuovinen, O.H. and Kelly, D.P. Use of microorganisms for recovery metals. International Metallurgical Reviews. 1974,19:21-31.
    [25]Kelly, D.P. Extraction of metals from ores by bacterial leaching:present status and future prospects. In Microbial Energy Conversion. eds H.G. Schlegel and J. Barnea. Gottingen: E.Goltze. 1976,329-38.
    [26]张冬艳.氧化亚铁硫杆菌 C—1#菌株的分离及特性研究.内蒙古大学学报.1995(4):1-5.
    [27]裘荣庆.微生物冶金应用现状.国外金属矿选矿.1994,31(8):1-3.
    [28]李宏煦,邱冠周,胡岳华 等.大宝山废铜矿细菌浸出铜的研究.矿产综合利用.2000,(5):31-33.
    [29]柳建设,邱冠周,王淀佐.硫化矿细菌浸出机理探讨.湿法冶金.1997,16(3):1-3.
    [30]邱冠周,王军,钟康年.银催化铜矿石的细菌浸出.矿冶工程.1998,18(3):22-26.
    [31]李洪枚.细菌浸出含镍磁黄铁矿金矿.湿法冶金.2000,19(3):28-31.
    [32]童雄,郭学君.从活化能角度探讨细菌氧化硫化矿机理.有色金属.1998,50(2):76-80.
    [33]张维庆,魏德洲,沈俊.氧化亚铁硫杆菌对黄铜矿的氧化作用.矿冶工程.1999,19(3):32-33.
    [34]钟慧芳,李亚琴.细菌浸出中等低品位硫化镍矿.微生物学报.1980,20(1):82-87.
    [35]孙讽芹.难选低品位铜镍矿细菌浸出的研究.矿冶.2000,9(2):54-59.
    [36]常志东 等.氧化亚铁硫杆菌对硫铁矿和含铜硫铁矿浸矿动力学研究.湿法冶金.1997,34(3):4-8.
    [37]裘荣庆 等.含金硫化矿石的细菌氧化预处理.黄金科学技术.1994,(2):34-41.
    [38]Torma, A.E. The role of Thiobacillus ferrooxidans in hydrometallurgical processes. In Advances in Biochemical Engineering, eds T.K. Ghose,A.Fiechter &
    
    N.Blackbrough.Berlin,Heidelberg,NewYork: Springer-Verlag. 1977:1-37.
    [39] Whittenbury, R. & Kelly, D.P. Autotrophy: a conceptual phoenix. In Microbial Eenergetics, eds B. A. Haddock & W. A. Hamilton. 27 th Symposium of the Society for General Microbiology. Cambridge University Press. 1977: 121-49.
    [40] Nelson, D.L. & Beck, J.V. Chalcocite oxidation and coupled carbon dioxide fixation by Thiobacillus ferrooxidans. Science. 1972,175:1124-6.
    [41] Tuovinen, O.H. and Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans. I. Use of membrane filters and ferrous iron agar to determine viable numbers, and comparison with 14CO2 fixation and iron oxidation as measures of growth . Archrv fur Mikrobiologie. 1973, 88:285-98.
    [42] Tuovinen, O.H. and Kelly, D.P. Use of micro-organisms for the recovery of metals. International Metallurgical Reviews. 1974,19:21-31.
    [43] Tuovinen, O.H. and Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans. II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. Archives of Microbiology. 1974, 95:153-64.
    [44] Tuovinen, O.H. and Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans. III. Influence of uranium, other metal ions and 2,4-dinitrophenol on ferrous iron oxidation and carbon dioxide fixation by cell suspensions. Archives of Microbiology. 1974, 95:165-80.
    [45] Tuovinen, O.H. and Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans.IV. Influence of monovalent cations on ferrous iron oxidation and uranium toxicity in growing cultures. Archives of Microbiology. 1974, 98:167-74.
    [46] Tuovinen, O.H. and Kelly, D.P. Studies on the growth of Thiobacillus ferrooxidans. V. Factors affecting growth in liqid and development of colonies on slid media containing inorganic sulphur compounds. Archives of Microbiology. 1974, 98:351-64.
    [47] Kelly, D.P. and Tuovinen, O.H. Recommendation that the names Ferrobacillus ferrooxidans Leathen and Braley and Ferrobacillus sulfooxidans Kinsel be recognized as synonyms of synonyms of Thiobacillus ferrooxidans Temple and Colmer. International Journal of Systematic Bacteriology. 1972,22:170-2.
    [48] Kelly, D.P. and Tuovinen, O.H. Metabolism of inorganic sulphur compounds by Thiobacillus ferrooxidans and some comparative studies on Thiobacillus A2 and T. neapolitanus. Plant and Soil. 1975,43:77-93.
    [49] Lewis, A. J. & Miller, J. D. A. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans. Canadian Journal of Microbiology. 1977, 23:319-24.
    [50] Eccleston, M.& Kelly, D. P. Oxidation kinetics and chemostat growth of Thiobacillus ferrooxidans on trtrathionate and thiosulfate. Journal of Bacteriology. 1978,134:718-27.
    
    
    [51] McCready , R.G.L. Progress in the bacterial leaching of metals in Canada Biohydrometallurgy , Proc. Intern. Symp.,Warwick, eds P.R. Norros & D.P. Kelly. Science and Technology Letters, Kew,U.K.1988:177-195.
    [52] Norris, P.R. & Kelly,D.P. The use of mixed microbial cultures in metal recovery. In A.T. Bull and J.H. Slater (eds), Microbial Interactions and Communities. London: Academic Press., 1982:443-474.
    [53] Harrison, A.P. Genomic and physiological diversity amongst strains of T. f and genomic comparison with T. t . Arch. Microbiol. 1982,131:68-76.
    [54] Bassos, M.E.C., Rowlings, D.E. & Woods, D.R. Mixotrophic growth of a Thiobacillus ferrooxidans stran. Appl. Envion. Microbiol 1984,47:593-95 Thiobacillus thiooxidans
    [55] Khalid, A.M. & Ralph, B.J. The leaching behavior of various Zinc sulphide minerals with three Thiobacillus species. Conference Bacterial Leaching, ed. W. Schwartz. GBF Monograph NoAWeinheim, New York: Verlag Chemie. 1977:165-73.
    [56] Lizama, H.M. & Suzuki, I. Bacterial leaching of a sulphide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: 1. Shake flask studies.Biotechnol.Bioeng. 1988,32:110-116.
    [57] Karavaiko, G.I. & Moshniakova,T.A. Oxidation of sulphide minerals by Thiobacillus thiooxidans .Mikrobiologyiya. 1973,42:128-35.
    [58] Guay, R. & Silver, M. Thiobacillus acdophilus sp.nov.; isolation and some physiological characteristics. Canadian Journal of Microbiology. 1975,21:281-8.
    [59] Norris, P.R. & Kelly, D.P. Dissolution of pyrite (FeS2) by pure and mixed cultures of some acidophilic bacteria. FEMS Microbiology Letters 1978 99:317-24.
    [60] Tsuchiya, H.M., Trivedi, N. C. & Schuler M.L. Microbial mutualism in ore leaching. Biotechnology and Bioengineering. 1974,16:991-5.
    [61] Williams. R.A.D. & Hoare, D.S. Physiology if a new facultatively autotrophic thermophilic Thiobacillus. Journal of General Microbiology. 1972,70:555-66.
    [62] Le Roux, N. W.,Wakerley, D.S. & Hunt, S.D. Thermophilic Thiobacillus_type bacteria from Icelandic thermal areas. Journal of General Microbiology. 1977,100:197-201.
    [63] Brierly, C.L. Thermophilic micro-organism in extraction of metals from ores. Development in Industrial Microbiology. 1977, 18:273-84.
    [64] Brierly, J.A. & Lockwood, S. J. The occurrence of themophilic iron-oxidizing bacteria in a copper leaching system. FEMS Microbiology Letters. 1977, 2:163-65.
    [65] Norris, P. R. Marsh, R. M., & Linstrom, E. B. Growth of mesophilic and thermophilic acidophlic bacteria on sulfur and tetr athionate. Biotechnol. Appl. Biochem. 1986, 8:318-329.
    
    
    [66] Karavaiko, G. I. & Moshniakova, S.A. Oxidation of sulfide minerals by Thiobacillus thiooxidans. Miikrobiologiya. 1974. 43:156-8.
    [67] Karavaiko, G. I., Shchetinina, E. V. et al. Denitrifying bacteria isolation from deposits of sulphide ores. Miikrobiologoiya. 1973,42:128-35.
    [68] Brock, T. D. & Gustafson, J. Ferric iron reduction by sulfur and iron oxidizing bacteria. Applied and Environmental Microbiology. 1976, 32:567-71.
    [69] Konig, H., Skorko, R. et al. Glycogen in thermoacidophlic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcus and Thermococcus . Arch. Microbiol. 1982,132:297-303.
    [70] Norris,P. R. & Barr. D. B. Growth and iron oxidation by moderate thermophiles. FEMS. Microbiol. Lett. 1985,28:221-24.
    [71] Harrsion. A.R Characteristics of Thiobacillus ferrooxidans and other iron-oxidizing bacteria, with emphasis on nucleic acid analyses. Biotechnol.Appl.Biochem. 1986,8:249-257.
    [72] Wood, A. P. & Kelly, D. P., growth and sugar metabolism of a thermoacidophilic iron-oxidizing mixotrophic bacterium, J. Gen. Microbiol. Lett. 1984,130:1337-1349.
    [73] Brierley, J. A. , Thermophilic iron-oixdizing bacteria found in copper leaching dumps,Aool,Environ.Microbiol. 1 978,36:523-525.
    [74] Dutrizac, J. E. & MacDonald, R. J. C. Ferric iron as a leaching medium. Minerals Science Engineering. 1974,6:59-100.
    [75] Stumm-Zollinger, E. The bacteria oxidation of pyrite. Archiv fur Mikrobiologie. 1972,83:110-19.
    [76] Duncan, D. W., Landesman, J. & Walden. C. C. Role of Thiobacillus ferrooxidans in the oxidation of sulfide minerals. Canadian Journal of Microbioligy. 1967,13:397-403.
    [77] Torma, A. E. Microbiologial oxidation of synthetic cobalt, nickel and zinc sulfides by Thiobacillus ferrooxidans. Revue Canadienne de Biologic. 1971,30:209-16.
    [78] Silver, M. & Torma, A. E. Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Canadian Journal of Microbiology. 1974, 20:141-7.
    [79] Sugio, T., Munakata, C. et al. Role of a ferric iron-reducing system in sulfur oxidation of Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 1985,49:1401-1406.
    [80] Sugio, T., Katagiri,T.,Inagaki,K.,and Tano.T.,Actual substrate for elementsl sulfur oxidation by sulfur:ferric ion oxidoreductase purified from Thiobacillus ferrooxidans, Biochim. Biophys. Acta 1989,973:250-256.
    [81] Sugio, T., Wada, K.. Mori, M., Inagaki. K., and Tano. T., Synthesis of an iron-oxidizing system duiring growth of Thiobacillus ferrooxidans on sulfur-basal salts medium, Appl. Environ. Microbiol. 1988,54:150-152.
    
    
    [82] Sampson, M. I., Philips, C. V. & Ball, A. S. Investigation of the attachment of Thiobacillus ferrooxidation to minerals using scanning electron microscopy analysis. Mierals Enginering. 2000,13:643-56.
    [83] Rowson, N. & Saeid, A. Bacterial leaching-beneficial bugs. Mine and Quarry. 1997,26:35-40.
    [84] Natarajan, K. A. Electrochemical aspect of bioleaching multisulfide minerals. Minerals and Metallurgical Processing. 1988,(50) :61-65.
    [85] Lang, D.S. & Lawson, F. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans. Biotechnol. Bioeng. 1970,12:29-50.
    [86] Eccleston, M. & Kelly, D.P. Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulfate. J. Bacteriol. 1978,134:718-727.
    [87] Dispirito, A.A.& Tuovine, O.H. Kineticies of uranous and ferrous iron oxidation by Thiobacillus ferrooxidans. Arch. Microbiol. 1982,133:33-37.
    [88] Braddock, J.F., Luong, H.V. & Brown, E.J. Growth kinetics of Thiobacillus ferrooxidans isolated from arsentic mine drainage. Applied and Environment Microbiology. 1984,48:48-55.
    [89] Karamanev, D.G. & Nikolov, L.N. Influence of physicochemical parameters on bacterial activity of biofilm: ferrous iron oxidation by Thiobacillus ferrooxidans. Biotechnology and Bioengineering. 1988,31:295-299.
    [90] Nagpal, S. A structured model for Thiobacillus ferrooxidans growth on ferrous iron. Biotechnology and Bioengineering. 1997,53310-319.
    [91] Schaeffer, W. I., Holbert, P. E. and Umbreit, W. W. attachment of Thiobacillus ferrooxidans to sulfur crystals. Journal Bacteriology. 1963,85:137-40.
    [92] Golovacheva, R.S. Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. Mikrobiologiya. 1979,48:528-533.
    [93] Poliani, C., Curutchet, G., Donati, E. & Tedesco, P.H. A need for contact with particle surface in the bacterial oxidation of covellite in the absence of a chemical lixiviant. Biotechnology Letters. 1990,12:515-18.
    [94] Murthy, K.S.N. & Natarajan, K.A. The role of surface attachment of Thiobacillus ferrooxidans on the bio-oxidation of pyrite. 1992,(2) :20-24.
    [95] Ohmura, N., Tsugita, K. et al. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans. Journal of bacteriology. 1996,178(19) :5776-80.
    [96] Escoba, B.J., Jedlicki, E. & Vargas, T. A method for evaluating the proportion of free and attached bacteria in the bio-leaching of chalcopyrite with thiobacillus ferrooxidans. Hydrometallurgy. 1996,40:1-10.
    [97] Poglazova, M.N., Mitskevich, I.N. & Kuzhinovsky, V.A. A spectroflurimetric method for
    
    determination of total bacterial counts in environmental samples. Journal of microbiological methods. 1996. 24:211-218.
    [98] Bennet, J.C. & Tributsch, H. Bacterial leaching patterns on pyrite crystal surface. Journal of bacteriology. 1978,134:310-317.
    [99] Kran, G. Natarajan, K.A. & Modak, J. M. Estimation of mineral-adhered biomass of Thiobacillus ferrooxidans by protein assay:some problems and remedies. Hydrometallurgy. 1996,42:169-75.
    [100] Fernandez, M.G.M. Mustin, C. et al. Occurences at mineral-bacteria interface during oxidation of arsenopyrite by thiobacillus ferrooxidans. Biotechnology and Bioengineering. 1995,48:13-21.
    [101] Jerez, C.A. & Arrendondo, R. A sensitive immunological method to enumerate Leptospirillum ferrooxidans in the presence of Thiobacillus ferrooxidans. Microbiology Letters. 1991,78:99-102.
    [102] Murr, L.E. & Berry, V.K. Direct observations of selective attachment of bacteria on low grade sulfide ores and other mineral surfaces. Hydrmetallurgy,1976,2:11-24.
    [103] Berry, & V.K Murr, L.E. Bacterial attachment to molybdenite: An electron microscope study. Metallurgical Transactions B. 1975,6B:488-90.
    [104] Hiltunen. P. Vuorinen, A. et al. Bacterial pyrite oxidation : release of iron and scanning electron microscope observation. Hydrometallurgy. 1981,7:147-57.
    [105] Rodriguez-Leiva, M. & tributsch, H. Morphology on synthetic pyrite. Archives of Microbiology. 1988,149:401-405.
    [106] Samposn, M.I., Philips, C.V. & Blake, R.c. Influence of the attachment of acidophlic bacteria during the oxidation of sulfides. Minerals Engineering. 2000,13:373-89.
    [107] Shrihari, J.J.M., Gandhi, K.S. & Natarajan, K.A. Role of cell attchment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans. Applied Microbiology and Biotechnology. 1991,36:278-282.
    [108] Shrihari, J.J.M., Kumar, R. &Gandhi, K.S. Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans. Hydrometallurgy. 1995,47:175-187.
    [109] Devasia. P., Natarajan, K. A., Sathyanarayana, D.N. and Ramananda Rao, g., Surface Chemistry of Thiobacillus ferrooxidans Relevent to Adhession on Mineral Surfaces. Applied and Environmental Microbiology. 1993,59:4051-4055.
    [110] Takakuwa, S., Fujimori, .T. & Iwasaki. H. Some properties of cell surful adhesion in Thiobacillus thiooxidans. Journal of General Applied Microbiology. 1979,25:21-29.
    [111] Coster, J.W., Geesey, G.G. & Cheng, K.-J. How bacteria stick Scientific Amernican. 1978. 238:86-95.
    
    
    [112] Black, R.C., Shute, E.A. and Howard. G.T., Solubilization of Minerals by Bacteria: Electrophoretic mobility of Thiobacillus ferrooxidans in the presence of iron, pytrite and sulfur. Applied and Environmental Microbiology. 1994,60:3349-57.
    [113] Loosdrechr van, M.C.M., Lyklema, J. et al. Electrophoretic mobility and hydrophobicity in adhesion. Applied and Environmental Microbiology. 1987,53:1893-97.
    [114] Hajima, H. et al. The leaching of chalcopyrite in ferric chloride and ferric sulfate solution. Can. Metall. Q. 1985,24(4) :283-291.
    [115] Hirato, T. & Kinoshita, M. The leaching of chalcopyrite with FeCl3. Metall Trans. 1986,178:19-28.
    [116] McDonald, G.W. et al. Equilibria associated with cupric chloride leaching of chalcopyrite concentrate. Hydrometallurgy. 1984,13:125-35.
    [117] Dutrizac, J.E. Elemental sulphur formation during the ferric chloride leaching of chalcopyrite. Hydrometallurgy. 1990,23:153-176.
    [118] Dutrizac, J.E. The dissolution of sphalerite in ferric chloride solutions. Metall. Trans. 1987,9B:543-51.
    [119] Dutrizac, J.E. The kinetics of dissolution of chalcopyrite in ferric ion media. Metall. Trans. 1978,9B:431-439.
    [120] Mulak, W. The catalytic action of cupric and ferric iron in nitric acid leaching of N3S2-Hydrometallurgy. 1987,17:210-204.
    [121] McCready, R.G.L., Wadden, D. & Marchbank. A. Nutrient requirements for the in place leaching of uranium by Thiobacillus ferrooxidans. Hydrometallurgy. 1986,17:61-71.
    [122] Wadden, D. & Gallant, A. The in-place leaching of uranium at Denison Mines. Can. Metall, Q. 1985,24:127-134.
    [123] Anonymous. Agnew Lake plans $37M in-situ uranium leaching project. Can. Min. J. 1976, 97(4) :99-103.
    [124] Hoffman, L.E. & Hendrix, J.L. Inhibition of Thiobacillus ferrooxians by soluble silver. Biotechnology and Bioengineering. 1976,18:1161-5.
    [125] Palencia, I., Romero, R. & Carranza, F. Silver catalyzed IBES process copper-Zinc sulphide concentrate. Part 2. Bio-oxidation of the ferrous iron and catalyst recovery. 1998. 48:101-112.
    [126] Durtizac, J.E. The leaching of silver sulphide in ferric ion media. Hydrometallurgy. 1994,35:275-292.
    [127] Kolodziej, R. digestion of silver in acidic ferric chloride and copper chlorine solutions. Hydrometallurgy. 1988,20:219-33.
    [128] Miller, J.D. Electrochemistry in silver catalyzed ferric sulfate leaching of chalcopyrite.
    
    Electrochemical reactions and solution chemistry. 1981. 328-338.
    [129] Price, D.W. & Warren, G.W. The influence of silver ion on the electrochemical response of chalcopyrite and other mineral sulfide electrodes in sulfuric acid. Hydrometallurgy. 1986,15:303-324.
    [130] Lizama, H.M. & Suzuki, I. Rate equations and kinetic parameters of the reactions involved in pyrite oxidation by Thiobacillus ferrooxidans.Applied and Environmental Microbiology. 1989,55:2918-2923.
    [131] Boon, M., Snijder, M. et al. The oxidations kinetics of zinc ulphide with thiobacillus ferrooxidans. Hydrometallurgy. 1998,48:171-186.
    [132] Boon, M., Heijnen, J.J. Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy. 1998,48:27-44.
    [133] Sugio, T., T. Katagiri, K. Inagaki, & T. Tano. Actual substrate for elemental sulfur oxidation by sulfur:ferric ion oxidoreductase purified from Thiobacillus ferrooxidans. Biochim. Biophys. Acta. 1989, 973:250-256.
    [134] Boon, M., Luyben, K.Ch.A.M. & Heijnen. J.J. The use of on-line off-gas analyses and stoichiometry in the bio-oxidation kinetics of sulphide minerals. Hydrometallurgy. 1998, 48:1-26.
    [135] Cathles, L.M. & Apps, J.A. A model of the dump leaching process that incorporates oxygen balance and air convection. Metall. Trans.B, 1975, 68:617-624.
    [136] Herrera, M.N., Wiertz, J.V. et al A phenomenological model of the bioleaching of complex sulfide ores. Hydrometallurgy. 1989. 22:193-206.
    [137] Neuburg, H.J. Castillo, J.A. et al. A model for the bacterial leaching of copper sulfide ores in pilot-Scale columns. International Journal of Mineral Processing. 1991,31:247-264.
    [138] Casas, J.M., Martinez,J. et al. Bioleaching Model of a copper-sulfide ore bed in heap and dump configurations. Metall. Trans B. 1998. 29B:899-909.
    [139] Baas Becking, L.G.M, Kaplan, I.R. & Moore, D. Limits of natural enviroment in terms of pH and oxidation-reduction potentials. J. Geol. 1968,68:243-284.
    [140] Pesic, B.& Oilver, D.J. An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnology and Bioengineering. 1989,33:428-439.
    [141] Yunker, S.B. & Rodovich, J.M. Enhancement of growth and ferrous iron oxidation rate of T. ferrooxidans by electrochemical reduction of ferric iron. Biotechnology and Bioengineering. 1986,28:1867-1875.
    [142] Blake, R.C. Howard, G.T. & McGinness. S. Enhanced yields of iron-oxidizing bacteria by in situ-electrochemical reduction of soluble iron in the growth medium. Appl. Environ.
    
    Microbiol. 1994,60:2704-2710.
    [143] Gottschalk, V. & Buehler, H. Oxidation of sulfides. Econ. Geol. 1910,5:28-35.
    [144] Dutrizac, J.E. & MacDonald, R.A.J. The effect of some impurities on the rate of chalcopyrite dissolution. Can. Metall. 1973,12:409-420.
    [145] Hesky, J.B. & Wadsworth, M.E. Galvanic conversion of chalcopyrite. Metall. Trans B. 1975,66:183-190.
    [146] Nicol, M.J. Mechanism of aqueous reduction of chalcopyrite by copper, iron, and lead. Trans. Min. Metall. 1975,84:C206-C209.
    [147] Berry, V.K., Murr, L.E. & Hiskey, J.B. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low grade waste. Hydrometallurgy. 1978,3:309-326.
    [148] Mehta, A.P. & Murr, L.E. Kinetic study of sulfide leaching by galvanic interaction between between chalcopyrite, pyrite and sphalerite in the presence of T. ferroxidans and thermophilic micro-organism. Biotech. Bioeng. 1982,24:919-940.
    [149] Mehta, A.P. & Murr, L.E. Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy. 1983,9:235-256.
    [150] Natarajan, K.A. & Iwasaki, I. Role of galvanic interactions in the bioleaching of Duluth gabbro copper-nickel sulfides. Sep. Sci. Tech. 1983,18:1095-1111.
    [151] Natarajan, K.A. Electrochemical aspects of bio-leaching of base-metal sulfides. Ehrlich, H.L. & Brierly, C.L. editor Miccrobial mineral recovery. New Yoke: McGraw-Hill Publishing company. 1990,81-87.
    [152] Mahmood, M.N. & Turner, A.K. Yhe selective leaching of Zinc from chalcopyrite-sphalerite concentrates using sllury electrodes. Hydrometallurgy. 1985,14:317-329.
    [153] Yelloji Rao, M.K & Natarajan, K.A. Electrochemical aspects of sphalerite dissolution in the presence and absence of chalcopyrite. Miner. Metall. Process. 1989,6:29-35.
    [154] Pozzo, R.L., Natarajan, K.A. et al Electrochemical processing of complex copper-nicklel sulfide concentrate. In proc. XV IMPC, Cannes, France. 1985,303-313.
    [155] Tapper, K.P. & Naveke, R. Experiments on combined electro and bacterial leaching. In conf. Bacterial Leaching. Veslay Chemie, Weinheim. 1977,211-216.
    [156] R.Woods. Recent advances in electrochemistry of sulfide mineral flotation. Trans.Nonferrous Met.Soc.China.. 2000,10 (Special Issue):26-29.
    [157] Palencia, I. Wan, R.Y. & Miller, J.D. The electrochemical bechavior of a semiconducting natural pyrite in the presence of bacteria. Metallurgical Transactions B. 1991,22B:774.
    [158] Choi, W.K., Torma, A.E. et al. Electrochemical aspects of zinc sulphide leaching by Thiobacillus ferrooxidans. Hydrometallurgy. 1993,33:137-152.
    
    
    [159]QIU Guan-zhou(邱冠周), LIU Jian-she(柳建设) & HU Yue-hua (胡岳华).Electrochemical behavior of chalcopyrie in presence of Thiobacillus ferrooxidans. Trans.Nonferrous. Metal. Soc. China. International workshop on electrochemistry of flotation of sulfide mineral. (Honoring professor WANG Dian-zuo (王淀佐) for his 50 years working at mineral processing. 2000,10(Special-Issue):23-25.
    [160]王军.硫化矿细菌浸出的理论及工艺研究(D),长沙:中南工业大学1999.
    [161]V.E.Vigdergauz., V.A.Chanturiya. Methodes of electrochemical study of metal sulfides.Trans.Nonferrous Met.Soc.China.. 2000, 10 (Special Issue):30-39..
    [162]张祖训 著.超微电极电化学.北京:科学出版社.1998:1.
    [163]Bard,A.J.& Faulkner,L.R.著,谷林英 等译.电化学研究方法(原理及应用).北京:化学工业出版社.1984:158-320.
    [164]Fleschman, M.A.J. Electroanal. Chem.,1988, 250:269.
    [165]金葆康、张祖训.超微盘电极线性准稳态可逆波及其导数波理论.化学学报.1995,53:480-487.
    [166]金葆康、张祖训、超微盘电极线性扫描伏安法准稳态准可逆波理论.化学学报.1995,53:357-361.
    [167]庄乾坤、陈洪渊.超微盘、微半球电极上准稳态电流公式及其实验验证.化学学报.1996,54:1121-1127.
    [168]李长明,查全性.软嵌式薄层粉末电极(Ⅰ).化学学报.1988,46:73-75.
    [169]查全性.软嵌式薄层粉末电极(Ⅰ).化学学报.1988,46:452-55.
    [170]C.S. Cha, C.M. Li. et al. Powder microelectrodes. Journal of electroanalytical chemistry.1994,368:47-54.
    [171]李长明,查全性.粉末微电极(1).物理化学学报.1988,4(2):167-171.
    [172]李长明,查全性.粉末微电极(2).物理化学学报.1988,4(3):273-278.
    [173]胡蓉晖,杨汉西 等人.微电极定量方法评价贮氢合金的电化学性质.电化学.1996,2(4):391-396.
    [174]刘建华.掺杂Ni(OH)_2:电化学性质研究(D).中南工业大学.1997.
    [164][175] Dawei Wei & K.Osseo-Asare.Semiconductor electrochemistry of particulate pyrite.J.Electrochem.Soc.144547-553.
    [176]但德忠,陈文等人.聚氯乙烯膜修饰碳微电极的研制及应用.分析化学.2000,28:1150-1154.
    [177]胡朵宗、许浩 等.还原菌修饰碳糊电极研究及对微量金进行的测定.电化学.1998,4(3):323-327.
    [178]胡荣宗,阮源萍 等.细菌修饰的碳糊电极表面超细微粒金膜的制备及应用.电化学.1999,5(2):231-234.
    
    
    [179]K. Xu., Dexter, S.C. & Luther, G.W. Voltammetric microelectrodes for bio-corrosion studies.
    [180]舒余德,陈白珍 编著.冶金电化学研究方法.长沙:中南工业大学出版社.1990.
    [181]董绍俊,车广礼 著.化学修饰电极.北京:科学出版社.1995.
    [182]吴浩青,李永舫 著.电化学动力学.北京:高等教育出版社,施普林格出版社.1998.
    [183]杨显万.湿法冶金.北京:冶金工业出版社,1994
    [184]张英杰,杨显万.硫化矿生物浸出过程的热力学.贵金属.1998,19(3):26-29.
    [185]Stumm, W. & Morgan, J.J. Aquatic chemistry, An introduction emphasizing chemical equilibriums in natural waters. Wiley-Interscience:New York, 1970.
    [186]Lowson, R.T.Aqueous oxidation of pyrite by molecular oxygen. Chemical Reviews. 1982,82(5):461-497.
    [187]Bigler, T. & Swift, D.A. Anodic behavior of pyrite in acid solutions. Electrochemica Acta.1979, 24:415-420.
    [188]Lalvami, S. B. & Shami, M. Electrochemical oxidation of pyrite slurries. J. Electrochem.Soc. 1986, 133(7):1364-1368.
    [189]Mishra, K.K. & Osseo-Asure.,K. Electrodeposition of H~+ on oxide layers at pyrite(FeS_2)surface. J. Electrochem. Soc. 19868 135(8): 1898-1901.
    [190]Jaegermann, W. & Tributsch, H. Photo-electrochemical reactions of FeS_2 (pyrite) with H_2O and reduction agents. J. Appl. Electrochem. 1983, 13:743-750.
    [191]Ennaoui, A., Fiechter, S., Jagermann, W., Tributsch, H. Photo-electrochemistry of highly quamtum single-crystalline n-FeS_2(pyrite). J. Electrochem. Soc. 1986, 133(1):97-106.
    [192]Mishra, K.K. & Osseo-Asure.,K. Fermi level pinning at pyrite(FeS_2)/electrolyte junctions.J. Electrochem. Soc. 1992, 139(3):749-751.
    [193]Mishra, K.K. & Osseo-Asure. Aspect of the interface electrochemistry of semiconductor. J.Electrochem. Soc. 1988, 135(10):2502-2508.
    [194]Ximeng. Zhu, Jun Li, et al. Transpassive oxidation of pyrite. J. Electrochem. Soc. 1993,140(7): 1927-1935.
    [195]Palencia, I., Wan, R.Y., Miller, J.D. The electrochemical behavior of semiconductor natural pyrite in the presence of bacteria. Metal. Trans. 1991, 22B:765-773.
    [196]Bigler, T. & Home, M.D. The electrochemistry or surface oxidation of chalcopyrite. J.Electrochem. Soc. 1985, 132(6):1363-1368.
    [197]Bigler, T. & Swift, D.A. Anodic electrochemistry of chalcopyrite. J. Appl. Electrochem.1979, 9:545-554.
    [198]Gomez, C., Figuera, M. et al. Electrochemistry of chalcopyrite. Hydrometallurgy. 1996,43:331-344.
    
    
    [199]Mcmillan, R.S., Mcmillan, D.J., Dutrizac. Anodic dissolution of n—type and p—type chalcopyrite. J. Appl. Electrochem. 1982, 12:743-757.
    [200]Holliday, R.I. & Richmond, W.R. An electrochemical study of the oxidation of chalcopyrite in acidic solution. J. Electtroanal. Chem. 1990, 288:83-98.
    [201]Janes, D.L. & Peters. High temperature high pressure electrochemistry in aqueous solutions NACE-4, National Asseciation of Corrosion Enginers, Houston. 1976, p433.
    [202]Hillrichs, H. & Berteran, R. Anodic dissolution of copper sulphides in sulphuric acid solution.(Ⅰ). Hydrometallurgy. 1983, 11:181-193.
    [203]Hillrichs, H. & Berteran, R. Anodic dissolution of copper sulphides in sulphuric acid solution.(Ⅱ). Hydrometallurgy. 1983, 11:195-1206.
    [204]Gerlach, J. & Kuzeci, E. Application of carbon paste electrodes to elucidate hydrometallurgy dissolution processes with special reaction to chalcocite and covellite.Hydrometallurgy. 1983, 11:345-361.
    [205]冯其明,陈荩 编著.硫化矿浮选电化学.长沙:中南工业大学出版社.1992.
    [206]古列维奇,波利斯科夫 著,彭瑞伍 译.半导体光电化学.北京:科学出版社.1989.
    [207]S.R莫里森 著,吴辉煌 译.半导体与金属氧化膜的电化学北京: 科学出版社.1988.
    [208]John, O.M. & Shahed, U.M. On the evolutions of concepts concering events at the semiconductor/solution interface. J. Electrochem. Soc. 1985, 132:2648-2655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700