铜硫化矿生物浸出高效菌种选育及浸出机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、细菌对铜硫化矿的作用及其改善
     1.铜硫化矿的细菌浸出机制目前有二种看法。
     一是认为细菌直接对铜硫化矿物进行氧化浸出,称为直接作用,如黄铜矿细菌浸出反应为:二是认为细菌把硫化矿物中释放出来的亚铁和元素硫分别氧化成高铁和硫酸,后二者作为浸出剂对铜硫化矿进行浸出,称为间接作用,则黄铜矿浸出反应为:
     2.本文研究了从大宝山铜矿的细菌浸出原液中分离出来的两种主要浸出菌种——氧化亚铁硫杆菌(Thiobacillus ferrooxidans简称D-T.f)和氧化硫硫杆菌(Thiobacillus thiooxidans简称D-T.t)氧化生理特性及其浸出,表明D-T.f菌具有较强的催化氧化Fe~(2+)、S~(2-)的活性,而几乎没有催化氧化S~0的活性;D-T.t菌只发现具有较强的催化氧化S~0的活性;D-T.f菌具有较强的氧化浸出黄铜矿精矿的能力,而D-T.f菌氧化浸出黄铜矿精矿的能力较弱。
     3.分别用Fe~(2+)、S~0、CuS和CuFeS_2为能源对原菌进行富集培养,发现用CuS富集的菌种浸矿能力最强,Fe~(2+)富集菌和CuFeS_2培养菌次之,S~0富集菌最差;用分离出的D-T.f S~(2-)氧化缺陷型菌株进行浸出,发现它比具有这种氧化能力的正常菌株的浸出效果差得多。D-T.t菌和D-T.f菌同时浸出黄铜矿精矿,在通常情况下D-T.f菌并不促进D-T.f菌对黄铜矿的浸出,而只有当外加一定量的元素硫时,方起一定的促进浸出作用。
     4.研究结果显示浸矿细菌的氧化生理特性与浸出效果有密切关系,黄铜矿的细菌浸出效果同细菌的S~(2-)氧化活性关系最大;并根据几种主要浸矿细菌的氧化生理特性,预示了它们在浸矿体系中所起的浸出作用大小和机制。
     二、浸出环境中的离子或物质对细菌氧化及对铜硫化矿浸出的影响
     1.研究了浸出环境中Ag~+、Cu~(2+)、S~0和pH等离子或物质对细菌氧化Fe~(2+)的影响,结果是:在Ag~+浸出体系中,Ag~+对细菌氧化Fe_((aq))~(2+)具有抑制作用;Cu~(2+)有抗Ag~+抑制的作用;S~0的影响与S~0/Fe~(2+)_((aq))的比值有关;pH有一定的适合范围。
    
    博士学位论文
    铜硫化矿生物浸出高效菌种选育及浸出机理
     2.研究了上述离子或物质对细菌浸出黄铜矿精矿的影响,结果是体系中
    有Ag+或无Ag十时,浸出行为刚好相反:前者铜浸出率高、溶液铁少且浓度较
    稳定、pH值较高且稳定、游离细菌浓度较高、浸渣中发现有s0生成;后者铜
    浸出率低、溶液铁不断增多、pH不断降低、游离细菌数量较少、浸渣中未发
    现s0。同时,用预先Ag十培养过的D一Tf菌浸矿效果最好,它对浸出溶液中的
    亚铁氧化也最慢;在有Ag十存在的条件下,加入D一介菌能明显促进D一Tf菌
    的浸出作用。
     三、复合矿粒间的生物电化学作用
     大宝山铜矿石中含有锌硫化物。用闪锌矿与硫铁矿紧密并存的硫化矿进
    行了矿物表面细菌浸出行为的研究,当用D一T.f菌浸出时,锌被大量浸出,
    细菌吸附于黄铁矿表面;当用D一关t菌浸出时,锌浸出较少,而且未观察到
    吸附的细菌。这些结果提示了一种新的生物电化学机制:D一大f菌是吸附在高
    电位的金属硫化物上,从中获得从低电位转移而来的电子,从而促进了矿物
    的电化学腐蚀。此种情况下,它与D一大t菌的浸出差异,同样是与它们的氧
    化生理特性的不同有关。
     四、浸矿细菌培养工艺参数及相关技术
     1.对D一厂f菌和D一大t菌在液体或固体培养基上的生长特性进行了研
    究,发现D一入f菌能在Fe2+为能源的固体培养基上较好地形成菌落,而在以
    Na石ZQ、为能源的固体培养基上不能形成菌落,在这两种能源混和的复合固体
    培养基上不长菌落,在合成的硫化铜固体培养基上菌落针尖大小。D一大t菌在
    FeZ十为能源的固体培养基上不生长,在NaZsZo。为能源的固体培养基上生长良
    好,在上述复合培养基中有一部分生长。
     D一大厂菌不能在NaZS办,为能源的固体培养基上生长和D一T.t菌能在NaZS从
    为能源的固体培养基上生长良好,这两个点分别不同于已报导的从其它地点
    分离出来的相应菌种。
     2.总结得到了D一入f菌生长和培养的一些参数:D一关厂菌在分批培养中
    生长对数期长,约占亚铁完全氧化时间的90%,生长稳定期很短,约占6一8%,
    其比生长速率平均为o.106h一’,传代时间平均为6.54h,生物干重量大致
    为0.03219/L;其固体培养基最佳配方为:FeSO‘:·SH:0 22.29/L、(N卜11)2501
    39/L、K步IPO:0.59/L、MgSOJ 0.59/L、Ca(NO3)2 0.019/L、pH3.O、琼脂
    159/L。研究出D一大t菌ZZH新配方,使它的固体培养生长良好。
     五、堆浸现场菌种实际分布及高效T.f菌培育方法
     1.对成熟期低品位硫化矿细菌堆浸场的菌种资源进行了调查,表明30
    
    博七学位论文
    铜硫化矿生物浸出高效菌种选育及浸出机理
    ℃左右的关f菌株群起主要作用,没有发现中等高温菌种和高温菌种;细菌
    亚铁氧化活性不断降低影响了细菌复制增殖速度,使浸出细菌总数量减少,
    提出有必要增强细菌的Fe2+氧化活性。
     2.鉴于以52一为能源的固体培养技术尚未成熟,只对细菌的FeZ+氧化活
    性进行了菌种驯化、筛选和诱变研究,发现D一关f菌的紫外诱变剂量以杀伤
    率为20一30%最好;正突变菌能在一定程度上提高含铜硫化矿的铜浸出率。
     3.复
The bioleaching of copper sulfide and its improving
    1. Two mechanism of bacterial leaching for copper sulfide minerals have ever been proposed, when copper sulfide minerals are leached directly by bacteria, it is the direct mechanism, such as:
    CuFeS2+4O2 bacteria CuSO4+FeSO4
    The second mechanism is indirect mechanism in which the ferrous ion and elemental sulfur releasing from sulfides are oxidized into ferric ion and sulfuric acid individually by bacteria, the copper sulfide minerals are dissolved as the following reaction:
    4FeSO4+2H2SO4+O2 bacteria 2Fe2(SO4)+2H2O
    2S0+2H2O+3O2 bacteria 2H2SO4 CuFeS2+2Fe2(SO4) CuSO4+5FeSO4+2S0
    2. In the present work, the two bacterial species in the original solution from the Da Bao Mountain Copper Mine were isolated - Thiobacillus ferrooxidans(D-T.f) and Thiobacillus thiooxidans(D-T.t). The physiological characters for oxidation and leaching of these two bacteria were studied. It was demonstrated that D-T.f is characterized by higher activities oxidizing ferrous ion and reduced sulfur, with no activity oxidizing elemental sulfur; The D-T.t is characterized by higher activities oxidizing elemental sulfur, without the activity oxidizing ferrous ion and reduced sulfur. The D-T.f has good leaching efficiency on chalcopyrite concentrate. The D-T.t can not leach the chalcopyrite concentrate.
    3. The original bacteria were enriched with ferrous ion elemental sulfur reduced sulfur and chalcopyrite as energy resource, respectively. The results showed that the bacteria enriched by reduced sulfur exhibited most effective leaching chalcopyrite concentrate, then the bacteria enriched by ferrous ion or chalcopyrite. The bacteria enriched by elemental sulfur showed poor leaching efficiency. The results further showed that when the bacteria without the activity oxidizing the reduced sulfur were used, Its leaching efficiency is much worse than normal D-T.f. When the D-T.f and D-T.t were mixed to leach the chalcopyrite concentrate, it was demonstrated that the leaching of D-T.f is not accelerated by
    
    
    
    adding T.t at common circumstance, while when the elemental sulfur is added, the D-T.t will accelerate the leaching rate.
    4. Tt was revealed from the results that the efficiency of bacterial leaching of chalcopyrite is closely related to the physiological characters of oxidation of these bacteria reported.
     Discuss on the influence of ions or other substrate on bacterial oxidation and leaching of copper sulfide
    1. The influence of silver ion, cupric ion, elemental sulfur and pH on the bacterial oxidation for ferrous ion have been studied. It has been shown that silver ion has inhibition on bacterial oxidation of ferrous ion; cupric ion has anti-inhibition of silver ion; the influence of elemental sulfur is related to the ration of elemental sulfur to ferrous ion; pH has a certain suitable range.
    2. The bacterial leaching of chalcopyrite is characterized by much higher leaching rate of copper , much less and stable in dissolved total Fe in solution higher and stable pH, higher concentration of free bacteria, elemental sulfur occuring in the residue in the presence of silver ion. In absence of silver ion the leaching showed much lower leaching rate of copper, increasing dissolved total Fe in the solution, decreasing pH, less concentration of free bacteria, no elemental sulfur occurring in the residue. The best efficiency has been obtained using the D-T.f cultured with silver ion forehand, which has also slower oxidizing ability to the ferrous ion in the leaching solution. The acceleration of the bacterial leaching of chalcopyrite was made by adding D-T.t into the leaching solution with D-T.f and silver ion.
     Discuss on bio-electrochemistry between different mineral particles The copper sulfide minerals coming from Da Bao Mountain contains zinc
    sulfide. The bacterial leaching behavior of the zinc sulfide minerals closely disseminated with pyrite has been studied. It showed that a lot of zinc ion from zinc sulfide is leached by D-T.f,
引文
[1] 吕文广,郑景宜.细菌氧化在难处理含砷硫金矿石中取得重大进展(J),地质科技管理,1 998,6,55~57.
    [2] Zhang, Yi; Yang, Zaixian; He, Wei et al. Method for manufacture of electrolytic copper from sulfide ores by bioleachingm (P), CN 1197120 A 28 Oct 1998, 5 pp.
    [3] Winby, Richard; Miller, Paul; Rhodes, Mike. et al. Bioleaching process for copper recovery from chacopyrite or sulfide ores (P), WO 2000023629 Al 27 Apr 2000, 28 pp.
    [4] Kohr, William J.; Shrader, Vandy; Johansson, Chris. Heap bioleaching of copper from chalcopyritic ore concentrates using thermophilic bacteria for increased process temperature (P), WO 2000036168 Al 22 Jun 2000, 70 pp.
    [5] 王文潜,王喜良.难浸金矿预氧化处理方法评价及新进展(J),云南冶金,1997,26(6),30-34.
    [6] Fan, Shoulong; Wang, Jinxiang. Technology of heap leaching of gold ore with microbial preoxidation and apparatus for bacteria culture (P), CN 112116 A 24 Apr 1996, 19 pp.
    [7] Lindstrom, Borje; Sundkuist, Jan-Eric; Sandstrom, Ake. Two-stage bioleaching of sulfide-ore feed containing metal values and toxic arsenic (P), Eur. Pat. Appl. EP 1050593 A1 8 Nov 2000, 9 pp.
    [8] Lizama, Hector M.; Frew, Robert G.; Abraham, Cherian C.U.S. Selective bioleaching of zinc (P). US 6103204 A 15 Aug 2000,6 pp.
    [9] Basson, Petrus; Miller, Deborah Maxine; Dew, David William. Recovery of zinc from complex-sulfide ore concentrates by bioleaching and electrowinning (P).WO 2001018266 A1 15 Mar 2001, 43 pp.
    [10] Dew, David William; Miller, Deborah Maxin. Selective recovery of nickel and copper from sulfide-ore concentrates by bioleaching with acid recycling (P). WO 2001018270 Al 15 Mar 2001,.17 pp.
    [11] Dew, David William; Basson, Petrus; Norton, Alan et al. Recovery of nickel from nickel bearing sulfide minerals by bioleaching (P). WO 2001018268 Al 15 Mar 2001, 40 pp.
    [12] K.S.N.Murthy and Natarajan. The role of surface attachment of
    
    thiobacillus ferrooxidans on the biooxidation of pyrite (J), Minerals and Metallurgical Processing, 2000,17(2), 20~25.
    [13] M.I. Sampson, C.V. Philips and R.C. BlakeⅡ. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides (J), Minerals Engineering, 2000, 13, 4, 373~389.
    [14] M.I. Sampson, C.V. Philips and A.S. Ball. Invetigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis (J), Minerals Engineering, 2000,13,6,643~656
    [15] K.A. Third, R. Cord-Ruwish, H.R. Watling. The role of iron-oxidizing bacteria in stimulation or inhibition of chalcopyrite bioleaching (J), Hydrometallurgy,2000,57,225~233.
    [16] Renato Arredondo,Alberto Garcia, Carlos A.Jerez. Partial Removal of Lipopolysaccharide from Thiobacillus ferrooxidans affects its adhesion to solids (J), Applied and Enviromental Microbio logy,1994,2846~2851.
    [17] 小西康裕,浅井悟,德重雅彦等.好酸性·好热性细菌Acidianus brierleyi 黄铜鉱浸出(J),资源素材,1999,115,585-590.
    [18] 关晓辉,赵以恒,刘海宁等.硫化物(矿石)的生物氧化机制研究(J),东北电力学院学报,1999,19,2,1-9
    [19] 张维庆,魏德洲,沈俊.氧化亚铁硫杆菌对黄铜矿的氧化作用(J),矿冶工程,1999,19,330-33
    [20] Shrihari, Kumar R.,Gandhi.K. S et al. Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans (J). Appl. Microbiol. Biotechnol. 1991, 36(2):278-282.
    [21] M. Taxiarchou, K. Adan, A. Kontopoulos. Bacterial oxidation conditions for gold extraction from Olympias refractory arsenical pyrite concentrate (J), Hydrometallurgy, 1994,36,169-185.
    [22] Shrihari, Jayant M. Modak, R. Kumar et al. Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans (J), Hydrometallurgy, 1995, 38,175-187.
    [23] E. Gómez, M.L. Blazquez, A. Ballester et al. Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria (J), Minerals Engineering, 1996,9,9985~999.
    [24] C.-C. Brtels, G. Chatzitheodorou, M. Rodriguez-Leiva et al. Novel
    
    technique for investigation and quantification of bacterial leaching by Thiobacillus ferrooxidans, Biotechnology and bioengineering (J), 1989,33,1196~1204.
    [25] G. I. Karavaiko,L. S. Smolskaja, O. K. Golyshina, et al. Bacterial pyrite oxidation: Influence of morphological physical and chemical properties (J), Fuel Processing Technology, 1994, 40, 151-165.
    [26] K. Blight, D.E. Ralph, S. Thurgate. Pyrite surfaces after bioleaching: a mechanism for biooxidation (J), Hydrometallurgy, 2000,58,227-237.
    [27] (竹也)木圭子,恒川昌美,金野英隆等.Thiobacillus ferrooxidans 黄铁鉱浸出举动鉱物表面(J),资源与素材,1993,109,1,29-35.
    [28] M. Boon, J.J. Heijnen Chemical oxidation kinetics of pyrite in bioleaching processes (J), Hydrometallurgy, 1998, 48, 27-41.
    [29] M. Boon, M. Snijder, G.S. Hansford, et al. The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans (J). Hydrometallurgy, 1998, 48, 171-186.
    [30] 张冬艳,张通.细菌浸出黄铜矿过程中黄铁矿的影响行为(J),湿法冶金,1997,2,4~7.
    [31] 张广积,方兆珩.生物氧化浸矿机理和动力学(J),国外金属矿选矿,2000,6,17-20.
    [32] L.Toro, B. Paponetti, C. Cantalini. Precipitate formation in the oxidation of ferrous ions in the presence of Thiobacillusferrooxidans (J).Hydrometallurgy, 1988, 20, 1-9.
    [33] M. Nemati, S. T. L. Harrison. A comparative study on thermophilic and mesophilic biooxida-tion of ferrous iron (J). Minerals Engineering, 2000, 13(1), 19-24.
    [34] 小西康裕,浅井悟,德重雅彦等.好酸性好热性细菌Acidianus brierleyi黄铜鉱浸出(J),资源素材,1999,115,585~590.
    [35] C. Chavarie, D. Karamanev. Comparison of the kinetics of ferrous iron oxidation by three di- fferrent stains of Thiobacillus ferrooxidans (J). Geomicrobiology Journal Volume, 1993, 11, 57-63.
    [36] 张冬艳,氧化亚铁硫杆菌的菌数测定法(J),内蒙古工业大学学报,1996,15(1),62-65.
    
    
    [37] Tuorinem O H, Kelly D E Studies on the growth of Thiobacillus ferrooxidans(Ⅰ). Use of membrane filter and ferrous iron agar to detemine viable numbers and comparison with ~(14)CO_2-fixation and iron oxidation as measures of growth (J). Arch Microbiol, 1973, 88: 285-298.
    [38] Vista P, Bianchi E, Polidoro M. A new solid medium for isllation and enumeration of thiobacillus ferrooxidans (J). J Gen Appl Microbiol, 1989, 35,:71-81.
    [39] Manning H 1. New medium for isolation iron-oxidating and heterotrophic acidophilic bacteria from acid mine drainage (J), Microbiology, 1975, 30(6):1010-1016.
    [40] Garcia O, Mukai J K, Andrade C B. Growth of Thiobacillus ferrooxidans on solid medium: Effects of some surface-Active agents on coliny formation (J). J Gen Appl Microbiol, 1992, 38: 279-282.
    [41] Khalid A M, Bhatti T. An improved solid medium for isolation, enumeration and genetic investigations of artotrophic iron- and sulphuroxidixing bacteria (J), Appl Microbiol Biotechnol, 1993, 39: 259-263.
    [42] 《浸矿技术》编委会,浸矿技术(M),北京:原子能出版社,1994,431~496.
    [43] 丁育清,卢寿慈,安蓉.难处理金矿石的细菌氧化提金技术及工业应用(J),黄金,1996,6,32-37.
    [44] M.E.C.Barros, D.E.Rawlings, D.R.Woods. Mixotrophic growth of a Thiobacillus ferrooxidans strain (J), Applied and Environmental Microbiology, 1984, 47, 3,593~595.
    [45] Visca P, Bianchi E, Polidoro M,et al. A New Solid Medium for Isolation and E numeration Thiobacillus ferrooxidans (J), J. Gen. Appl. Microbiol, 1989, 35, 71~81.
    [46] Garcia O, Mukai J K, Andrade C B, et al. Growth of Thiobaeillus ferrooxidans on Solid Medium: Effects of Some Surface-Active Agents on Colony Formation (J), J. Gen. Appl. Microbiol, 1992,38,279~282.
    [47] Ahmad M. Khalid, Tariq M.Bhatti, M.Umar. An improved solid medium for isolation, enumeration and genetic investigations of autotrophic iron-and sulphur-oxidizing bacteria (J), Appl Microbiol Biotechnol, 1993, 39:259~263
    [48] Sugio T, Uemura S, Makino I,et al. Sensitivity of iron-oxidizing bacteria,
    
    Thiobacillus ferrooxidans and Leptospirillum ferrooxidans, to bisulfite ion (J), Applied and Enviromental Microbiology, 1994,722~725.
    [49] Govardus A. H. de Jong, Win. Hazeu, Piet. B, et al. Polythionate degradation by tetrathionate hydrolase of Thiobacillus ferrooxidans (J), Microbiology, 1997, 143,499~504.
    [50] A .Sanhueza, I. J .Ferrer, T.Vargas, et al. Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties (J), Hydrometallurgy, 1999, 51, 115~129.
    [51] M.I.Sampson, C.V.Phillps, R.C.Blake. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides (J), Minerals Engineering, 2000, 13(4), 373~389.
    [52] M.I.Sampson, C.V.Phillips, A.S.Ball. Investigation of the attachment of Thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis (J), 2000,13(6), 643~656.
    [53] Schrenck M O, Edwards K J, Goodman R M, et al.Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans (J): Implications for Generation of Acid Mine Drainage, Science, 1998,279(5356): 1519~1522.
    [54] Kelly, D.P.,Physiology and biochemistry of unicellular sulfur bacteria (M). In Autotrophic Bacteria, ed. By Schlegel,H. G. and Bowien,B., Springer Verlag,New York, 1989,193~217.
    [55] Takauwa,S. and Yamanaka, T.,Dokuritsu eiyou saikin no seibutsugaku (Biology of chemoautotrophs)(in Japanese)(M).Protein, Nucleic Acid and Enzyme, 1988, 33, 2569~2578.
    [56] Kazuo Nakamura,Hideo Miki, Yoshifumi Amano. Cell growth and accumulation of thiobacillus thiooxidans S3 in a pH-controlled thiosulfate medium (J). J.Gen. Appl. Microbiol.,1990, 36, 369~376.
    [57] M. Boon, J.J. Heijnen. Chemical oxidation kinetics of pyrite in bioleaching processes (J), Hydrometallurgy, 1998, 48, 27~41.
    [58] M. Boon, H.J. Brasser, G.S. Hansford, et al. Comparison of the oxidation kinetics of different pyrites in the presence of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans (J), Hydrometallurgy, 1999, 53, 57~72.
    [59] E. Gómez, M.L.Blázquez, A.Ballester, et al.Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria (J), Minerals
    
    Engineering, 1996, 9, 9, 985~999.
    [60] Fikret Kargi,James M.Robinson. Remove of Sulfur compounds from coal by the Thermophilie organism Sulfolobus acidocaldarius (J),Applied and Environmental Microbiology, 1982,44,4,878—883.
    [61] 李智伟.难浸金矿的细菌氧化工艺发展趋势(J),云南冶金,1997,26,3,1~6.
    [62] 姜成林,徐丽华著.微生物资源学(M),北京:科学出版社,1997,166~167.
    [63] Tamara F. Kondratyeva, Lyudmila N et al. Zinc-and arsenic-resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistant genes (J), microbiology, 1995,141, 1157~1162.
    [64] 王敖全.细菌适应突变研究进展(J),微生物学报,39,3,282~285.
    [65] Y.A.Attia, M.El-Zeky. Bioleaching of gold pyrite tailings with adapted bacteria (J), Hydrome- tallurgy, 1989, 22, 291~300.
    [66] M. E.C. Barros, D. E. Rawlings, D. R. Woods, Production and regeneration of Thiobacillus ferrooxidans spheroplasts (J), Appled and Enviromental Microbiology, 1985, 50, 3, 721~723.
    [67] Henry L,Ehrlich, Corale L.Brierley. Microbial mineral recovery (M), Newyork: McGraw-Hill Publishing Company Professional and Reference Division composition unit, 1990. Part Ⅰ: Bioleaching and biobene- ficiation,29~35.
    [68] Dennis W.Grogan. Selectable mutant phenotypes of extremely thermophilic archaebacterium Sulfolobus acidocaldarius (J), Journal of Bacteriology, 1991,173, 23, 7725~7727.
    [69] Satoru Kondo, Akihiko Yamagishi, Tairo Oshima. Positive selection for uracil auxotrophs of the sulfur- dependent thermophilic archaebacterium sulfolobus acidocaldarius by use of 5-Fluoroorotic Acid (J), Journal of Bacteriology, 1991,173, 23,7698~7700.
    [70] ZHANG Zaihai,QIU Guanzhou,HU Yuehua et al. UV-induced mutagenesis of oxidation activity of ferrous ion of Thiobacillus ferrooxidans (J),Trans.Nonferrous Met.Soc.China, 2001.11 (5), 795-799.
    
    
    [71] David K.Berger, David R. Woods, Douglas E.Rawlings. Complementation of Escherichia coli σ~(54) (NtrA)-dependent formate hydrogenlyase activity by a cloned Thiobacillus ferrooxidans ntrA gene (J). Jounal of Bacteriology, 1990,172, 8, 4399~4406.
    [72] Ji-bin Peng, Wang-ming Yan, Xue-zhen Bao. Expression of heterogenous arsenic resistance genes in the obligately autotrophic bioming bacterium Thiobacillus ferrooxidans (J), Applied and Environmental Microbiology, 1994, 60, 7, 2653~2656.
    [73] 徐海岩,颜望明,刘振盈等.利用氧化亚铁硫杆菌抗砷工程菌Tf-59(pSDX3)处理含砷金精矿(J),应用与环境微生物学报,1997,3(4):366~370.
    [74] Hector M, Lizama, Isamu Suzuki. Bacterial leaching of a sulfide ore by thiobacillus ferrooxidans and thiobacillus thiooxidans, Part Ⅱ: Column leaching studies (J), hydrometallurgy, 1989, 22, 301~310.
    [75] 姜成林,徐丽华著.微生物资源学(M),上海:科学出版社,1997,159-163.
    [76] Lasse Ahomen, Olih Tuovinen. Hydrometallurgy, 1990, 24:219-236.
    [77] Comez E, Ballester A, Blazquez M L, et al. Hydrometallurgy, 1999, 51:37-46.
    [78] 邱冠周,王军,钟康年等.铜矿石银催化研究(J),矿冶工程,1998,3:22-25.
    [79] 胡岳华,张在海,邱冠周等.Ag+在细菌浸出中的催化作用研究(J),矿冶工程,2001,21(1),24-28.
    [80] Young, Sharon; Dreisinger, David Bruce; Munoz, Jesus. Silver-catalyzed process for bioleaching of copper from chalcopyrite ore heap (P), WO 2000037690 A1 29 Jun 2000, 46 pp.
    [81] King, James A. U.S. Heap bioleaching of sulfide ores with a partial recycling initiation (P). US 6207443 B1 27 Mar 2001, 8 pp.
    [82] Sharp, James E.;Karlage, Kelly L.; Young, Tom. Bioleaching of sulfide ore concentrates precoated on ball-shaped performs for increased surface contact in acidic slurry (P), WO 9851828 A1 19 Nov 1998, 28 pp.
    [83] Norton, Alan; Batty, John De Klerk; Dew, David William et al.
    
    Concentration of precious metal in ore residue by bioleaching of sulfides in slurry with oxygen injection (P). WO 20001018267 A1 15 Mar 2001, 39 pp.
    [84] Dew, David Willam; Basson, Petrus; Miller, Deborah Maxine. Bioleaching of copper sulfide ores in heated slurry with controlled oxygen feed (P), WO 20001018269 A1 15 Mar 2001, 44 pp.
    [85] Dew, David William;Basson, Petrus. Bioleaching of sulfide ores and minerals in a slurry using thermophilic bacteria and oxygen injection (P), WO 2001018262 A2 15 Mar 2001, 29 pp.
    [86] K. Nakamura, T. Noike, J. Matsumoto. Effect of operational conditions on biological Fe(Ⅱ) oxidation with rotating biological contactors (J), Water Res. 1986, 20, 73-77.
    [87] F. Carrnza, M. J. García. Kinetic comparison of support materials in the bacterial ferrous iron oxidation in packed-bed columns (J), Biorecovery, 1990, 2,15-27.
    [88] E. D. Laney, O. H. Tuovinen. Ferrous iron oxidation by Thiobacillus ferrooxidans cells immo-bilized in polyurethane foam support paricles (J), Appl. Microbiol. Biotechnol, 1984, 20, 94-99.
    [89] A. Mazuelos, R. Romero, I. Palencia, et al. Continuous ferrous iron biooxidation in flooded packed bed reactors (J), Minerals Engineering, 1999, 12,559-564.
    [90] D, G. Karamanev, Model of the biofilm structure of Thiobacillus ferrooxidans, J. Biotechnol, 1991, 20, 51-64.
    [91] A. Mazuelos, F. Carranza, I. Palencia, et al. High efficiency reactor for the biooxidation of ferrous iron (J), Hydrometallurgy, 2000, 58, 269-275.
    [92] Johnson, John A. Stoner, Daphne L.; Larsen, Eric D.et al. Learning-based controller for biotechnology processes (P), WO 9958479 A1 18 Nov 1999, 93 pp.
    [93] Basson, Petrus; Dew, David William. P. Stirred-bath apparatus with oxygen injection and stirring for increased mass transfer into heated ore-leaching slurry. (P) WO 2001018263 A1 15 Mar 2001,32 pp.
    [94] Sundvist, Jan-eric. Selective extraction suitable for electrowinning of metal values recovered from sulfuric-acid leaching solution (P), EP 1063308 A2 27 Dec 2000,5 pp.
    
    
    [95]Green, Dennis H,; Meuller, Jeff. Membrane separation for purification of sulfuric acid from biological oxidation of sulfide ores (P), WO 2000050341 A1 31 Aug 2000, 19 pp.
    [96]童雄,郭学君,黄庆柒等.从活化能角度探讨细菌氧化硫化矿的机理(J).有色金属,1998,50(2):76-80.
    [97]Herry L, Ehrlich, Corale L Brieliey. In: Microbioal mineral recovery (M), R.R.Donnelley and Son Company, 1990: 1-105.
    [98]杨显万,邱定蕃.湿法冶金(M),北京:冶金工业出版社,1997,282-366.
    [99](德国)施菜杰H.C.普通微生物学(M),陆卫平,周德庆,郭杰炎译.上海:复旦大学出版社,1990,345-348.
    [100]Sookie S Bang, Sandeep S Deshpande, Kenneth N Han. The oxidation of galena using Thiobacillus ferrooxidans (J), Hydrometallurgy, 1995, 37:181-192.
    [101]张在海,胡岳华,邱冠周等.从细菌学角度探讨硫化矿物的细菌浸出(J),2000,2,15-18.
    [102]张在海,胡岳华,邱冠周等.不同富集菌种的浸矿比较研究(J),有色矿冶,2000,(2):15-18.
    [103]柳建设,邱冠周,王淀佐等.氧化亚铁硫杆菌在氧化过程中的铁行为(J),湿法冶金,1997,(3):1-3.
    [104]施巧琴,吴松刚,工业微生物育种学(M).福建:福建科技出版社,1991,45~48.
    [105]R.E.Buchanaa,N.E.Gibbons.中国科学院微生物研究所译,伯杰细菌鉴定手册(第八版)(M),Beijin:Metallurgical Industry Press,1984,633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700