树月季不同砧穗组合生长及生理生化反应的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以日本无刺蔷薇(Rosa multiflora var)(试验代号A)、美国多花无刺蔷薇(待定)(试验代号B)、美国M1号(R. multiflora var.’Dr.Huey’)(试验代号C)为砧木;以大花月季绯扇(Hiohgi)(试验代号a)、四季玫瑰(Rosa rugosa Thunb)(试验代号b)、妙峰山玫瑰(Rosa rugosa)(试验代号c)、丰花月季曼海姆(Schloss Mannheim)(试验代号d)为接穗,采用芽接法进行树月季嫁接培育。以自根苗为对照,通过砧木对接穗生物量、光合指标、保护酶系统、激素、可溶性蛋白、脯氨酸含量等生长、生理生化指标测定,及接穗对砧木增粗、根系生长的影响强度观测,探讨和揭示不同砧穗组合树状月季砧穗相互作用规律,为合理选择砧木和认识砧穗间相互作用机理,提供理论依据。主要结论如下:
     (1)月季和玫瑰嫁接在蔷薇砧木上,可以明显提高接穗自身叶片净光合速率、提高抗氧化酶活性、增加激素含量,可以促进树体生长,加快砧木茎增粗及提高根系生长量。
     (2)所有供试材料中嫁接苗的光合速率峰值及日平均光合速率均高于接穗自根苗。全天光合速率最高值在10.57μmolm·~(-2)·s~(-1)--13.51μmolm·~(-2)·s~(-1)之间;日平均光合速率在7.73μmolm·~(-2)·s~(-1)--9.16μmolm·~(-2)·s~(-1)之间,嫁接苗较接穗自根苗高14.57%--46.56%。各供试材料叶片可溶性蛋白含量差异显著但无明显规律,四季玫瑰嫁接苗及自根苗可溶性蛋白含量整体较高,在17.83mg·g~(-1)FM--26.02mg·g~(-1)FM之间,妙峰山玫瑰嫁接苗及自根苗叶片可溶性蛋白含量整体较低,在3.90mg·g~(-1)FM--7.77mg·g~(-1)FM之间;光合色素含量除d为3.81mg·g~(-1)FM,C+d为2.68mg·g~(-1)FM以外,其余供试材料表现为嫁接苗叶片光合色素含量高于接穗自根苗。各供试材料光合生理生化指标总体呈现出嫁接苗高于自根苗。
     (3)嫁接苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性高于自根苗,丙二醛(MDA)含量嫁接苗低于自根苗;砧木与其嫁接组合体叶片SOD活性差异不显著,供试材料中SOD活性最高的是B+b组合为857.67U·g~(-1)·min~(-1)·FW,SOD活性最低的是A+a组合为775.46U·g~(-1)·min~(-1)·FW。POD活性各供试材料差异显著,其中B+a组合POD活性最高为785U·g~(-1)·min~(-1)·FW,C+c组合POD活性最低为102.5U·g~(-1)·min~(-1)·FW,后者是前者的7.66倍;不同砧木同种接穗嫁接苗叶片CAT活性的变化趋势相似,相同砧木不同接穗品种嫁接苗之间差异显著,而同种接穗的嫁接苗与接穗自根苗之间CAT活性差异不显著,CAT活性最高的是B+a组合为303.75U·g~(-1)·min~(-1)·FW,最低的是d为170U·g~(-1)·min~(-1)·FW。嫁接苗中MDA含量最高的是A+a组合为33.98U·g~(-1)·min~(-1)·FW,其余嫁接组合叶片MDA含量均小于接穗自根苗。
     (4)嫁接苗叶片脯氨酸积累量表现出高于自根苗的总趋势,且以玫瑰为接穗的嫁接苗叶片脯氨酸积累量高于以月季为接穗的嫁接苗。脯氨酸含量最低的是A+d,为9.98ug·g~(-1)·FW,最高的是C+c,为96.61ug·g~(-1)·FW,后者是前者的9.68倍。各供试材料硝酸还原酶活性(NR)没有明显的规律性,但嫁接苗叶片硝酸还原酶活性有高于自根苗叶片硝酸还原酶活性的趋势。
     (5)脱落酸(ABA)和赤霉素(GA3)含量表现为嫁接苗高于自根苗。各供试材料中,ABA含量最高的是C+b组合为5.58μg·100g~(-1)·FW,最低的是a为1.08μg·100g~(-1)·FW,前者是后者的5.17倍,玫瑰嫁接苗叶片ABA含量整体高于月季嫁接苗;GA3含量最高的是B+c组合,为6.52μg·100g~(-1)·FW,最低的是a为2.25μg·100g~(-1)·FW,前者是后者的2.90倍。
     (6)接穗对砧木生长具有明显的促进作用,且玫瑰种对促进砧木生长效果明显高于月季品种。嫁接苗砧木无论是地径生长量还是穗下5cm处径生长量都明显高于砧木自根苗相应指标。嫁接苗地径生长量最大的是B+c组合为12.20mm,自根苗地径生长量最小的是c为2.45mm,嫁接苗是自根苗的4.98倍;嫁接苗穗下5cm处径生长量最大的也是B+c组合,为9.58mm,而自根苗相应生长量最小的是c,为2.20mm,嫁接苗是自根苗的4.35倍。
In order to explore and reveal the interaction laws of different rootstocks and scionscombinations, the experiment of Tree Rose breeding was conducted with the method of budgrafting,in which4types of scions,including Hiohgi(test code a)、Rosa rugosa Thunb(testcode b)、Rose rugosa(test code c) and Schloss Mannheim(test code d), were grafted on3different kinds of rootstocks, such as Rosa spp.Rosoideae(test code A), B(test code B)andRose multiflora var.’Dr.Huey’(test code C). Taking self-root seedlings as a comparison,some growth, physiological and biochemical indexes, including yield, photosynthetic indexes,enzyme system, hormone, soluble protein, proline content, etc, which reflect the effects ofrootstocks on scions, were observed. And other growth indexes of rootstocks, includig theground diameter, root volume, etc, which reflect the effect strength of scions on rootstocks,were also observed. It provides theoretical basis for selecting rootstocks appropriately andknowing the interaction mechanism between the rootstock and scion. The main conclusionswere as follows:
     (1) After grafting Chinese rose and Rugosa rose on the rose, the blade net photosyntheticrate, the antioxidant enzymes activity, the amounts of hormone and the growth of scions wereimproved significantly. And the diameter growth and root volume of rootstocks were alsoincreased.
     (2)The peak and average daily photosynthetic rate of grafted seedlings were higher than theself-rooted seedlings in all the experimented materials. The highest value of photosynthetic rateand average daily photosynthetic rate all day were fluctuated from10.57μmolm·~(-2)·s~(-1)to13.51μmolm·~(-2)·s~(-1)and from7.73μmolm·~(-2)·s~(-1)to9.16μmolm·~(-2)·s~(-1)respectively. The height ofgrafted seedlings was about14.57%-46.56%higher than self-rooted seedlings. And the solubleprotein content of all experimented materials were significantly different, but their rules were not obvious. For the soluble protein content, the grafted and self-rooted seedlings of Rosarugosa Thunb, which fluctuated between17.83mg g~(-1)FM and26.02mg g~(-1)FM, wererelatively high. Whereas, the grafted and self-rooted seedlings of Rose rugosa, whichfluctuated between3.90mg g~(-1)FM and7.77mg g~(-1)FM, were relatively low. In addition, thecontent of photosynthetic pigments of grafted seedlings were higher than the self-rootedseedlings in all the experimented materials excluding the Schloss Mannheim. Therefore, thephotosynthetic, physiological and biochemical indexes of grafted seedlings were generallyhigher than the self-rooted seedlings in all the experimented materials.
     (3)The SOD and POD, CAT activity of grafted seedlings were higher than self-rootedseedlings, whereas, the MDA content of grafted seedlings was lower than self-rooted seedlings.The SOD activity of leaves between the rootstock and its grafted superoxide were notsignificant. Among then, the highest and the lowest value of SOD activity, which belong to thecombination of B+b and A+a, were857.67U·g~(-1)·min~(-1)·FW and775.46U·g~(-1)·min~(-1)·FWrespectively. But the POD activity of each experimented materials were significant. Thehighest value of POD activity, belonging to the combination of B+a was up to the785U g~(-1)min~(-1) FW, whereas, the lowest value, belonging to the combination of C+c, was102.5U g~(-1) min~(-1) FW. The value of former was7.66times than that of the latter. The CATactivity of the grafted seedlings with the same scions and different rootstocks were notsignificant. Whereas, the CAT activity of the grafted seedlings with the different scions and thesame rootstocks were significant. In addition, the CAT activity of the grafted and self-rootedseedlings with the same scions were not significant. The combination of B+a had the highestvalue of CAT activity, which was303.75U g~(-1) min~(-1) FW, whereas, the d had the lowest valueof CAT activity,which was about170U g~(-1)min~(-1) FW. In all grafted seedings, the highestcontent of MDA was the combination of A+a, which up to33.98U g~(-1)min~(-1) FW. For the rest ofcombinations, the content of MDA of the grafted seedlings were less than that of theself-rooted seedlings.
     (4)The leaf proline content of grafted seedlings were higher than those self-rootedseedlings in general. And the proline content of grafted seedlings with Rugosa rose scion werehigher than those with the Chinese rose scion. The lowest and the highest value of prolinecontent, which belong to A+d and C+c, were9.98ug g~(-1) FW and96.61ug g~(-1) FWrespectively, And the latter was9.68times than that of the former. The nitrate reductaseactivity of all experimented materials had no apparent regularity, but nitrate reductase activityof grafted seedlings were higher than self-rooted seedlings.
     (5)The contents of ABA and GA3of grafted seedlings were higher than those self-rootedseedlings. In all experiment materials, The highest content of ABA was the combination ofC+b, up to5.58μg100g~(-1) FW and the lowest was a, up to1.08μg100g~(-1) FW. The former was5.17times than that of the latter. The leaf ABA content of grafted seedlings with Rose scionwere higher than that of seedlings with the Chinese Rose scion as a whole; The highest contentof GA3was the combination of B+c, up to the6.52μg100g~(-1) FW and the lowest was a, up to2.25μg100g~(-1) FW, the former was2.90times than that of the latter.
     (6)The scions had obvious promotive effect in rootstocks growth. And the Rose species ofscions were obviously better than that of Chinese rose species. Both the diameter growth andthe diameter increasing below the scion by5cm of grafted seedling were significantly higherthan those of self-rooted seedlings. The biggest diameter increment of grafted seedlings wasthe combination of B+c, up to12.20mm, However, The smallest diameter increment ofself-rooted seedlings was c, up to2.45mm. And the former was4.98times than that of thelatter. The biggest diameter increment below the scion by5cm of grafted seedlings was also thecombination of B+c, up to9.58mm, and the smallest diameter increment below the scion by5cm of self-rooted seedlings was also c, up to2.20mm. And the former was4.35times thanthat of the latter.
引文
[1]余树勋.月季[M].北京:金盾出版社,2000.
    [2] D.P. de Vries, L. A.M. Dubois. The breeding of clonal rose rootstocks. ISHS Acta-Horticulturae.1992,320:97-103.
    [3] Schlitzberger A, Beiderbeck R. Transformation by Agrobacterium tumefaciens changes graftcompatibility of Nicotiana tabacum L [J]. Phytopathology,1990,128:257-262.
    [4]刘崇怀.葡萄砧木研究及利用概况[J].葡萄栽培与酿酒,1992,(3):20-21.
    [5]杨世杰,卢善发.植物嫁接基础理论研究(上)[J].生物学通报,1995,(10):4-6.
    [6]曹建华,林位夫,陈俊明.砧木与接穗嫁接亲和力研究综述[J].热带农业科学,2005,25(4):64-69.
    [7]杜继煜,白岩,白宝璋.植物的嫁接生理[J].农业与技术,2005,25(1):80-83.
    [8]仁藤伸昌.接き木の亲和、不亲和性[J].化学生物,1993,27(2):87.
    [9] Aayalsew Zerihun and Michae T.Treeby Biomass distribution and nitrate assimilation in response to Nsupply for Vitis vinifera Loc. Cabernet Sauvignon on five Vitis rootstock genotypes. CSIRO PlantIndustry. Horticulture Unit,Private Mail Bag,Merbein,Vic.3505,Australia.157-162.
    [10] Tiedemann R. Graft union development and symplastic phloem contact in the hetero graft cu cumissativas on cucurhifa ficifoila[J]. J.plant physiol,1989,134:427-440.
    [11] Wang Q,KollmannR.V vascular different nation in the graft union of in vitro grafts with differentCompatibility structure and functional aspects[J]. J. Plant Physiol,1997,147:521-573.
    [12]哈特曼HT,凯斯特DE著.郑开文,吴应祥,李嘉乐等译.植物繁殖原理和技术.北京:中国林业出版社,1981.
    [13]李锋.植物嫁接不亲和性的问题讨论[J].惠州大学学报(自然科学版),1997,17(4):170-172.
    [14] Parkinson M, Jefferee E and Yeoman M M. Incompatibility in cultured explants-grafts betweenMembers of the solanaleue[J]. New Phytol,1987,107:489-498.
    [15]张新忠,刘玉艳,龙成莲.苹果矮化砧木致矮机理的研究现状与展望[J].河北农业技术师范学院学报,1996,10(2):62-66.
    [16]肖桂山,杨世杰.黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J].农业生物技术学报,1995,3(2):32-37.
    [17]庄伊美.椪柑嫁接树和自根树叶片常量元素的研究[J].园艺学报,1987,14(4):239-244.
    [18]李能芳,苟琳,郭学君等.嫁接对茄子植株过氧化物酶同工酶的影响[J].西南园艺,1999,27(4):24-25.
    [19]王淑英,石雪晖,谷继成.葡萄不同砧木嫁接亲和力的鉴定[J].落叶果树,1998,(3):6-7.
    [20]郑均宝,梁海永,王进茂等.杨和苹果离体茎尖培养和愈伤组织分化与内源IAA、ABA的关系[J].植物生理学报,1999,25(1):80-86.
    [21]林伯年,堀内昭作(日),沈德绪.园艺植物繁育学[M].上海:上海科学技术出版社.,1994.
    [22] Stiger DE. Translation of14C-photosynhates in the graft Muslanelon/cucurbita ficifolia Act.Bot,1961,10:466-471.
    [23]余金龙,彭明碧.通过嫁接对甘薯库源关系及成熟期问题的探讨[J].国外农学—杂粮作物,1996,(1):40-43.
    [24] Rachow-Brundt G, Kollman R. Studies on graft unions IV Assimilate transport and sieve elementrestitution in homo and heterografts[J]. J. Plant physiol,1992,139:579-583.
    [25]卢善发,杨世杰.砧木与接穗间的电波传递[J].植物生理学报,1995,21(4):386-392.
    [26]杨世杰.植物生物学[M].北京:科学技术出版社,2005.
    [27]向国胜.嫁接愈合形成过程中细胞学观察及生理生化分析[D].北京农业大学硕士学位论文,1990.
    [28]卢善发,唐定台,宋经元等.利用植物激素调控嫁接形成的初步研究[J].植物学报,1996,38(4):307-311.
    [29]卢善发,宋艳茹.嫁接接合部维管组织分化的激素调节[J].云南植物研究,1999,21(4):483-490.
    [30]卢善发,宋艳茹.激素水平与试管苗离体茎段嫁接体维管束桥分化的关系[J].科学通报,1999,44(13):1422-1425.
    [31] Sundberg B, Sandberg G, Little C H A, et al. Levels of endogenous indole-3-acetic acid in the vascularcambium region of Abies balsamea trees during the activity rest quiescence transition[J]. PhysilogiaPlantarum,1987,71(2):163-170.
    [32] Sundberg B, Little C H A, Cui Keming. Distribution of indole-3-acetic acid and the occurrence of itsalkali-labile conjugates in the extraxylary region of Pinus sylvestris stems[J]. Plant Physiology,1990,93(4):1295-1302.
    [33] Sundberg B, Little C H A, Cui Keming et al. Level of endogenous indole-3-acetic acid in the stem ofPinus sylvestris in relation to the seasonal variation of cambial activity[J]. Plant, Cell&Environment,1991,14(2):241-246.
    [34] Yeoman M M,Kilpatrck D C,Miedzybzybrodzka M B,etal. Celular interactions during graft formationin plants,a recognition phenomenon [A]. in:Gurtis ASGed. Cell-cell recognition.Symposia of theSociety for Experimental Biology[C].1978,32:139-161.
    [35] Tiedemann. R.,1989, Graft union development and symplastic phloem contact in the heterograftCucumis sativus on Cucurbita ficifolia[J]. J. Plant Physiol,134:427-440.
    [36] Monzer, J. and kollmann, R. Vascular connections in the heterograft Lophophora williamsiil cout. OnTrichoereus Ricc[J]. J. Plant Physiol,1986,123:359-372.
    [37]杜秀敏,殷文璇,张慧等.超氧化物歧化酶(SOD)研究进展[J].中国生物工程杂志,2003,23(1):48-50.
    [38]卢善发.番茄/番茄嫁接发育过程中同工酶[J].园艺学报,2000,27(5):340-344.
    [39]宋金耀,齐永顺.砧-穗间作用对凤凰-51葡萄过氧化物酶同工酶的影响初报[J].河北农业技术师范学院学报,1994,6(2):53-55.
    [40]马玉坤.葡萄砧木对接穗品种生理生化特性及果实品质影响的研究[D].甘肃农业大学硕士学位论文,2007.
    [41]久宝田尚浩,李相根,安井公一.各种砧木对藤稔葡萄果实中糖、有机酸、氨基酸及花青苷含量的影响[J].湖北农业科学,1995,(4):50-53.
    [42] Lu S F. Immunohistochemical localization of IAA in graft union of explanted internode grafting [J].Chinese Science Bulletin,2000,45(19):1767-1772.
    [43] Moore R, walker DB. Studies on vegetative compalibility-incomPalibilty in higher Plants[J]. Astruetural study of compatible autogragh in Sedum telephiodes. Am J Bot,1981,1968:820-830.
    [44] Moore R. Physiological aspects of graft formation. In: Moore R(ed) Vegetative CompalibilityResponses in Plants. Baylor University Press,1983,89.
    [45]肖桂山,杨世杰.黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J].农业生物技术学报,1995,3(2):32-37.
    [46]郭传友,黄坚钦.植物嫁接机理研究综述[J].江西农业大学学报,2004,1(26):143-148.
    [47] Goleck B, Schluz A, Carstens B U et al. Evidence for graft transmission of structural phloem proteins ortheir precursors in heterografts of Cucurbitaceae[J]. Planta,1998,206(4):630-640.
    [48] Tiedemann. R, Carstens B.U. Influence of grafting on the phloem protein paterns in cucurbitaceae.I.Additional phloem exudates proteins in Cucumis sativus grafted on two Cucurbita species [J]. Journalof Plant Physiology,1994,143(2):189-194.
    [49]陈红.嫁接及其结合部变异的研究[D].四川农业大学博士学位论文,2006.
    [50]丁璇,袁坤,曹建华,徐智娟,何哲,林位夫.嫁接树砧穗互作研究进展[J].热带农业科学,2010,30(5):68-71.
    [51]丁平海,沙立杰,郗荣庭.核桃苗木枝接愈合过程观察[J].河北农业大学学报,1986,(4):457-461.
    [52]初庆刚,张长胜.梨树嫁接愈合的解剖观察[J].莱阳农学院学报,1992,9(4):256-259.
    [53]王淑英,石雪晖,谷继成.葡萄嫁接愈合过程[J].葡萄栽培与酿酒,1998,(4):12-14.
    [54]陈杰忠,邹俊渝.不同砧木甜橙幼树生长量及叶片矿质元素含量的研究[J].华南农业大学学报,1993,14(4):85-89.
    [55] Agusti M, Almela v, Juan M et al. Rootstock influence on the incidence of rind breakdown in‘Navelat’Sweet-Orange[J]. Journal of Hrticultural Science&Biotechnology,2003,78(3):555-558.
    [56]贾梯.矮化砧苹果树叶片构造及光合作用的研究[J].北京农学院学报,1995,(2):24-28.
    [57]闫树堂,徐继忠,陈海江.不同矮化中间砧红富士苹果内源激素与果实细胞分裂关系研究[J].河北农业大学学报,2005,28(3):31-32.
    [58]欧毅,毛启才,曹照春等.不同砧木锦橙叶片过氧化物酶活性与植株生长结果的关系[J].云南农业大学学报,1994,9(1):23-27.
    [59] Jensen P J, Rytter J, Detwiler E A et al. Rootstock effects on gene expression patterns in apple treescions [J]. Plant Molecular Biology,2003,53(4):493-511.
    [60]周开兵,郭文武,夏仁学等.两种柑橘体细胞杂种砧木利用价值和砧-穗互作生化机制的探讨[J].园艺学报,2004,31(4):427-432.
    [61]王淑杰,王家民,王连君等.葡萄接穗对砧木生理特性的影响[J].中外葡萄与葡萄酒,2001,(4):30-31.
    [62]王家民,王学山,郭兆林.葡萄接穗对砧木根系生理活性的影响[J].宁夏科技,2002,(1):45.
    [63]周开兵,郭文武,夏仁学等.柑桔接穗对砧木生长及若干生理生化特性的影响[J].亚热带植物科学,2005,34(3):11-14.
    [64]王玉欣.浅谈草木植物的嫁接实验[J].生物学杂志,1996,(3):33-45.
    [65]侯冬菊,张立文.樟子松嫁接植株的鉴别[J].林业月报,1991,(1):18-19.
    [66]周开兵.两种柑橘体细胞杂种砧木资源评价和穗砧互作机理的研究[D].华中农业大学博士学位论文,2004.
    [67]曹建华.巴西橡胶树砧木与接穗间的相互影响——内源激素[D].华南热带农业大学硕士学位论文,2003.
    [68]孟庆海.月季栽培与鉴赏.北京:科学普及出版社,2004.
    [69]彭春生,吴有光,李淑萍等.树状月季.北京:中国农业出版社,2006.
    [70]杨倩,彭春生.树月季砧木引种驯化与快繁[J].北京林业大学学报,1998,(25):85-92.
    [71] Gibson M. Growing roses [M].Portland: Timber press,1984,168-175.
    [72]苏兴,赵世伟,郭小平,李晓明.树状月季的发展状况及展望[J].北方园艺,2007,(5):149-152.
    [73]梁艳华,彭春生.国内树状月季研究[D],北京林业大学硕士学位论文,2003.
    [74]杨百荔.月季花[M].中国建筑工业出版社,1980.
    [75]石绍棠,宋肇棠.月季栽培[M].上海科学技术出版社,1981.
    [76]梁艳华,彭春生.树状月季砧木的选择[J].北方园艺,2002(4):38-39.
    [77] Johnson D.Rose Gardening. New York: Knopf Publishing,1995.151.
    [78] Everett. Encyclopedia of Horticulture.The New York:Garland Pub,1980.
    [79] Andrew V Roberts, Thomas Debener, Serge Gudin. Encyclopedia of Rose Science, Vol (2).2003.
    [80] Beales P. Roses. Now York: Dai Nippon Printed Co Ltd,1991.108.
    [81] de Vies D P, Dubois L A M, de Vies D P. The breeding of clonal rose rootstocks. A cta Horticulturae,1992,320:97-103.
    [82] Whiteley A. Rosa canina: the dog rose and its garden derivatives. New Plantsman,1996,3(3):131-133.
    [83] Brokenshire T. Black mould of rose in Scotland caused by Chalaropsis thielavioides. PlantPathology,1980,29(1):56.
    [84] Dubois L A M, Vies D P, Jamsen H. Rose rootstocks on the move. Prophyta,1990,44(5):117-119.
    [85] Reynders A S, Pelloli G, Betachini, et al. Analysis of the behavior of various rootstocks and botanicalspecies of the genes Rose towards Arobacterium tumefaciens. Acta Horticulturae,1995,424:215-219.
    [86] Hantselmann E. Rosa dumetorum cv. Prominent, A successful rootstock in Vienna. DeutscheBaumschule,1978,30(9):284.
    [87] M-CD. Demonstration trial comparing rootstocks for various rose varieties. Verbondsnieutvs Door debelgische ilerteelt,1980,24(4):150.
    [88] Degeyter L. A comparative trial of rootstocks for glasshouse roses. Verbondsnieutvs Door de Belgischeilerteelt,1977,21(3):90-91.
    [89] Oh kawa K. Rootstock native to Japan. Acta Horticalturae,1986,189:61-66.
    [90] Swarup V, Malik R S. Studies on the performance of rose varieties on different rootstocks. India Journalof Horticulture,1974,31(3):268-273.
    [91] Sutapradja H. The use of growth regulators on cuttings of hedge rose. Buletin Penelitian Horticulture,1988,17(2):14-18.
    [92] Van Marsbergen W. A future for the rootstock Rosa indica cv. Major. Vakblad Door de Bloemisterij,1980,35(44):32-33.
    [93] Hilal A A, Kamel B K M. Powdery mildew and rust. Agricultura Research,1990,68(3):529-541.
    [94] Debasis C, Azad M A K Datta S K, In vitro propagation of rose culti-vars.Indian Journal of PlantPhysiology,2000,5(2):189-19.
    [95] Choi B J, Sang C K, Choi E J, et al. Effects of rooting promoters and light intensity on rooting and rootgrowth of rose cuttings. Korean Journal of Horticultural Science,2000,18(6):815-818.
    [96] Vries-DP-de, Dubois-LAM, De-Vries-DP. The breeding of clonal rose rootstocksActa-Hortieulturae.1992,320,97-103.
    [97] Han-Youn Yol.etc. Effect of Propagation method on cut flower yifld quality of soil cultured roseRDA-Journal-of-Agricultural-sciences-Horticulture.1996,38(2):521-517.
    [98] Meiss-W, Roses, a rootstock experiment in Kassel, Deutsche Baumschule.1983,35(1):410.
    [99] Bogushyavichyute-A. Growth of five cultivars of own-rooted and grafted climbing and seni-climbingroses in the Lithuanian SSR..Trudy Akaemii Nauk Litovskoi SSR,1985,92(4):31.
    [100] Meiss. Roses. Frost damage on various rootstocks.Deutsche-Baumschule.1985,37:7,285.
    [101] Pol-PA-van-de. Glorie-WG, Goudriaan-J, Van-de-Pol-PA. Growth analysis of four types of the roseCV. Motrea. Acta-Hortieulturae.1988,226,11,679-686.
    [102] Kool-MTN. Pol-PA-van-de. Long-term flower Production of a rose crop1the influence of plantingsystem and rootstock clone. Journal of Horticultural Science.1996,71:3,435-43.
    [103] Agbaria-H. Hcuer-B. Effects of grafting on transpiration,C02fixation and growth of rose plants(RosaX hybrid CVs Ⅱseta and Mercedes). Journal of Horticultural Science.1995,70:4,651-656.
    [104] Dieleman-JA. Verstappen-FWA. Kuiper-D. Bud break and cytokinin concentration in bleeding sap ofRosa hybrida as affected by the genotype of the rootstock. Journal-of-Plant-Physiology.1998,152:4-5,468-472.
    [105] Agbaria-H. Heuer-B. Rootstock imposed alterations in nitrate reductase and glutamine synthetaseactivities in leaves of rose plants. Biologia Plantarum.1998,41:1,85-91.
    [106] Agbaria-H. Heuer-B. Nitrate reductase and glutamine synthetase activity in rose plants(Rosa X hybridCVs. Ⅱseta and Mercedes):effects of root-shoot interactions.Second intemational symposium on roses,Antibes, France,20-24February1995. Acta Horticulturae.1996,424,95-98.
    [107] Agbaria-H. Heuer.B. Shoot-root interaction effects on nitrate reductase and glutamine synthetaseactivities in rose((Rosa X hybrid CVs. Ⅱ seta and Mercedes)graftings. Journal of PlantPhysiology.1998,149:5,559-563.
    [108]李增武.赵良军.月季砧木选育及实生砧根茎生长的调控[D].中国农业大学硕士学位论文.2004
    [109]尹衍峰.彭春生.树状月季砧木引种初报[J].河北林业科技,2003.1:5-6.
    [110]尹衍峰.彭春生.树月季砧木研究[D].北京林业大学硕士学位论文,2004.
    [111]王美玲,艾希珍,丁飞等.紫甘蓝和普通甘蓝光合特性的比较[J].园艺学报,2008,35(4):547-552.
    [112]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.
    [113]范晶,赵惠勋,李敏.比叶重与光合能力的关系[J].东北林业大学学报,2003,31(5):37-39.
    [114]刘表喜.根系体积、总吸附面积和有效吸收面积的测定法[J].安徽农业科学,1963(3):90-93.
    [115]张明生,谢波,谈锋,等.甘薯可溶性蛋白、叶绿素及ATP含量变化与品种抗旱性关系的研究[J].中国农业科学,2003,36(1):13-16.
    [116]刘彦红,张志华.果树矮化机理研究进展[J].河北农业大学学报,2002,(S1):30-33.
    [117]丁璇,袁坤,曹建华,等.嫁接树砧穗互作研究进展[J].热带农业科学,2010,30(5):68-71.
    [118]张衍鹏,于贤昌,张振贤,等.日光温室嫁接黄瓜的光合特性和保护酶活性[J].园艺学报,2004,31(1):94-96.
    [119]田国忠,李怀方,裘维蕃,等.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344.
    [120] Bolwell GP,Wojtaszek D. Mechanisms for the generation of reactive oxygen species in plantdefenceabroad perspective[J]. Physiol Mol Plant,1997,51:347-366.
    [121] Norman G. Lewis and Etsuo Y. Lignin: Occurrence, biogenesis and biodegradation[J]. Ann Rew PlantPhysiol Plant Mol Biol,1990,41:455-496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700