二维红外及近红外相关光谱对亲水性高分子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕二维相关光谱技术在多个亲水性聚合物研究中的应用而展开。二维相关光谱技术的概念由Noda于1986年首先提出,由于其相对一维光谱来说,有较高的分辨率,同时能够辨明所研究的材料分子内各基团或分子间的相互关系,所以作为一维光谱的辅助分析手段,在很多研究领域得到了广泛应用。作为二维相关方法在高分子科学和生命科学交叉的前沿领域研究的一种尝试,我们选择了多个亲水性高分子材料,来研究它们的结构和性质。这些亲水性的高分子体系涵盖了当今前沿研究的热点领域,从人工智能材料,到天然生物大分子材料。不但如此,我们还对生物模拟材料进行了研究,尝试了二维相关方法直接对生命活动研究的可行性。
     论文正文共分六个章节,第一章为全文的绪论。第二章中,我们研究了一种重要的人工智能材料聚乙烯基甲基醚在水溶液中的热致相分离行为。实验过程中采用了中红外衰减全反射(ATR)光谱技术,以及近红外透射光谱技术。首先在ATR光谱的二维相关中,可以发现部分水合的C-H基团的变化要快于脱水的C-H基团,这暗示在PVME水溶液的相分离过程中,可能存在某一中间态;进一步由NIR光谱的二维相关结果,得到PVME主链上的CH_2基团的变化要快于侧链上O-CH_3的变化。这说明相分离过程中,首先发生主链的脱水,随着主链脱水后分子链构象的调整,导致了侧链基团的脱水。此外,加入无机盐后,盐离子与水分子之间相互作用使得水分子更加容易从PVME分子链上脱去,造成发生相分离的温度降低,但是相分离过程中的分子机理没有改变。
     第三章中,我们运用二维衰减全反射红外相关光谱,考察了一种典型的生物模拟材料AOT表面活性剂在非极性溶剂中形成反胶束的构象转变过程,以及由这种表面活性剂形成的油包水反相微乳液中的水分子结构。在升温过程中,反胶束中反式构象的AOT分子逐渐增多,并在38℃时达到最大比例,此时AOT反胶束具有最大的尺寸和最稳定的状态。这个温度又与人体的体温非常接近,而AOT等双烃链表面活性剂与生物体中组成细胞膜的磷脂分子的结构十分相似,从而可以猜测生物体体内的温度环境和两亲性分子的分子构象存在一定程度的关系。通过二维相关方法对AOT反胶束中水分子结构进行了研究,总结了水在弯曲振动区域的吸收峰归属,完善修正了水在反胶束中的四态模型,并为第四章的研究奠定了基础。
     第四章中,我们运用曲线拟合以及二维衰减全反射红外相关光谱,探讨了AOT反胶束对丙烯酰胺分子的包覆过程,从分子水平上解释了丙烯酰胺反相微乳液聚合的引发机理。丙烯酰胺分子进入反胶束后,首先与AOT的极性端相互作用,之后在反胶束的内核聚集。丙烯酰胺单体的含量较低时,倾向于吸附在反胶束的壳壁上,因此水溶性的引发剂可能效率不高,随着丙烯酰胺含量的增多,丙烯酰胺开始在内核聚集,水溶性引发剂的效率开始逐渐增强。对包覆丙烯酰胺的反胶束进行加热,发现反胶束内侧的一条碳氢长链首先发生结构调整,使得吸附在AOT极性端的AM分子受到扰动而脱离,聚集在反胶束的中心,这个过程中,AOT反胶束倾向于膨胀。向AOT反胶束中加入水后,丙烯酰胺分子在与水分子和AOT极性端相互作用的竞争中占据优势,导致更多的集聚水分子和游离水分子的出现,这就为反相微乳液的引发创造了更有利的条件。
     第五章中,我们研究了天然生物大分子纤维素的二醋酸酯化衍生物体系中的氢键网络。通过二维红外光谱和moving-window技术,我们得到:(1)在低温区域,主要发生体系内吸收水的脱离,伴随着分子内氢键的转化;(2)在高温区域,吸收水已经基本脱去,分子间氢键开始发生破坏。
     第六章是对全文所有体系的总结。对所有体系来说,我们的主要研究手段均为二维相关光谱。首先我们记录体系的动态光谱,然后利用二维相关光谱的优势分辨出若干小峰和弱峰,从而把体系中处于不同构象或不同相态的基团区分开来。然后再利用相关光谱可分辨光谱信号变化顺序的独特优点,找出各种状态下的基团在外扰影响下的相互关系,最终探寻相关的机理。对这些体系的研究,证实了二维相关光谱分析方法用于探寻生命现象中的本质是非常适合的。
This thesis centers on the application of two-dimensional infrared and near-infrared correlation spectroscopy(2DCOS) on the study of several hydrophilic polymers.2DCOS was proposed by Noda in 1986.Compared with conventional one-dimensional(1D) spectroscopy,2DCOS owns the high resolution and can distinguish the motion sequential order of the different functionalities of polymers. Thus,it is often looked upon as a useful initial probing tool to aid in the analysis of complex 1D spectra and has received wide applications in the different fields.In this thesis,the structure and performance of several hydrophilic polymers in the forefront of polymer science intercrossing with life science were characterized by 2DCOS, which included artificial intelligence materials and natural macromolecules.Moreover, the structure and property of bio-simulation material was also studied,which was supposed to be the direct investigation on the life activities.
     The thesis contains six chapters.Chapter one is the introduction of the whole research work.In chapter two,Thermo-sensitive phase transition behavior of poly(vinyl methyl ether)(PVME) in an aqueous solution during heating was investigated by Fourier transform infrared(FTIR) spectroscopy with attenuated total reflection(ATR) accessory,and Fourier transform near-infrared(FTNIR) spectroscopy.2D ATR analysis results indicate that hydrated C-H groups change prior to dehydrated C-H groups with increasing temperature around the phase transition, which suggests the existence of an intermediate state during the phase separation.2D NIR analysis results indicate that the dehydration of CH_2 groups occurs earlier than that of O-CH_3 groups.This result suggests that it is the change of the hydrophobic hydrocarbon chain conformation induced by heating that indirectly leads to the dehydration of the hydrophilic ether oxygen side groups.Thus,a two-step phase separation molecular dynamics mechanism during gradual heating has been established.When 0.5 M KC1 was added into a PVME aqueous solution,IR spectra showed that the phase transition temperature was reduced,and the features of 2DCOS did not change compared to PVME aqueous solution in the absence of KC1.The result indicates that the underlying phase transition mechanism itself was not altered by the presence of KC1,although the transition temperature is shifted.
     In chapter three,The states of sodium bis(2-ethylhexyl) sulfosuccinate(AOT) reversed micelles and of the water confined in the reversed micelles have been investigated by Fourier transform infrared spectroscopy with an attenuated total reflection(ATR) accessory.2DCOS revealed that a process of AOT molecules transforming from the trans conformation into the gauche conformation exists during heating.The quantitative analysis of the C=O stretching vibration band shows that the reversed micelles have the maximum size and lowest energy at the temperature of 38℃.The assignments of water confined in AOT reversed micelles in the O-H bending vibration region were concluded,which was considered to be the supplement for the former study results and laid a foundation of the studies in the next chapter.
     In chapter four,the state of acrylamide(AM) confined within the hydrophilic core of AOT reversed micelles has been investigated by Fourier transform infrared spectroscopy with an attenuated total reflection(ATR) accessory.2DCOS and curve fitting revealed that the acrylamide molecule tended to stick at the interface of the inverse emulsion at lower acrylamide-to-AOT molar ratio value(X);when X increased to some higher values,the acrylamide would tend to congregate in the micellar core.Therefore,it is important to choose the suitable initiator for the inverse emulsion polymerization under different experimental conditions.
     In chapter five,Temperature-dependent structural changes in hydrogen bonds in cellulose diacetate(CDA) were investigated by Fourier transform infrared spectroscopy(FT-IR).2DCOS in combination with moving-window technique was applied to analyze the overlapping O-H band due to various kinds of hydrogen bonds. In the temperature region of 35-100℃,the absorbed water in the hydrogen-bond matrix broke away,and the intra-chain hydrogen bonds in CDA changed accordingly. When temperature increased into a higher region,the inter-chain hydrogen bonds began to be weakened;both the inter-chain and intra-chain hydrogen bonds O-H groups change into free ones finally.
     Chapter six is the conclusion to the whole research work.The main technique used in all the work is the 2D correlation spectroscopy.Firstly,we record the dynamic spectra of the polymeric materials.Secondly,we take advantage of the high resolution of 2D spectroscopy to separate the weak bands and originally overlapped bands in the 1D spectra.Accordingly,we can distinguish the groups in different states and conformations.Thirdly,2DCOS analysis can often simplify spectral features corresponding to various inter-and intramolecular interactions,so we can elucidate the relationships between different groups and further search the related mechanism.
引文
[1]Crick F.On the Genetic Code,Nobel Lecture Medicine,1962.Watson J.The Involvement of RNA in the Synthesis of Proteins,Nobel Lecture Medicine,1962.Wikins M.The Molecular Configuration of Nucleic Acids,Nobel Lecture Medicine,1962.
    [2]Merrifield B.Solid Phase Synthesis,Nobel Lecture Chemistry,1984.
    [3]Deisenhofer J.Michel H.The Photosynthetic Reaction Centre from the Purple Bacterium Rhodopseudomonas Viridis,Nobel Lecture Chemistry,1988.Huber R.A Structural Basis of Light Energy and Electron Transfer in Biology,1988.
    [4]董建华.高分子科学的近期发展趋势与若干前沿[J].高分子通报,2005,5:1-7.
    [5]董建华.化学学科进展[M].北京:化工出版社,2005,p230-315.
    [6]Bax A.Two Dimensional Nuclear Magnetic Resonance in Liquids[M].Boston:Reidel,1982:
    [7]Ernst R R,Bodenhausen G,Wakaun A.Principles of Nuclear Magnetic Resonance in One and Two Dimensions[M].Oxford:Oxford University Press,1987:
    [8]Noda I,Dowrey AE,Marcott C,et al.Generalized two-dimensional correlation spectroscopy[J].Appl.Spectrosc.,2000,54:236A-248A.
    [9]Noda I.[J].J.Bull.Am.Phys.,1986,31:520-523.
    [10]Noda I.Two-Dimensional Infrared Spectroscopy[J].J.Am.Chem.Soc.,1989,111(21):8116-8118.
    [11]Noda I.2-Dimensional Infrared(2d IR) Spectroscopy-Theory and Applications[J].Appl.Spectrosc.1990,44(4):550-561.
    [12]Noda I,Dowrey A E,Marcott C.Recent Developments in 2-Dimensional Infrared (2d-Ir) Correlation Spectroscopy[J]. Appl. Spectrosc, 1993, 47(9): 1317-1323.
    [13]Noda I. Generalized 2-dimensional correlation method applicable to infrared, Raman and other types of spectroscopy[J]. Appl. Spectrosc., 1993, 47(9): 1329-1336.
    [14]Amari T, Ozaki Y. Generalized two-dimensional attenuated total reflection/infrared and near-infrared correlation spectroscopy studies of real-time monitoring of the initial oligomerization of bis(hydroxyethyl terephthalate)[J]. Macromolecules, 2002,35(21): 8020-8028.
    [15] Wu P, Siesler H W. Two-dimensional correlation analysis of variable-temperature Fourier-transform mid- and near-infrared spectra of polyamide 11 [J]. J. Mol. Struct., 2000, 521: 37-47.
    [16]Buchet R, Wu Y, Lachenal G, Raimbault C, Ozaki Y. Selecting two-dimensional cross-correlation functions to enhance interpretation of near-infrared spectra of proteins [J]. Appl. Spectrosc, 2001,55(2): 155-162.
    [17]Shen Y, Chen F E, Wu P Y, Shi G Q. A two-dimensional Raman spectroscopic study on the structural changes of a polythiophene film during the cooling process[J]. J. Chem. Phys., 2003,119(21): 11415-11419.
    [18]Salvan G, Silaghi S, Paez B, Kampen T U, Zahn D R T. Structural and morphological properties of 3, 4, 9, 10-PeryleneTetraCarboxylic DiAnhydride films on passivated GaAs(100) substrates [J]. Synetic Metals, 2005, 154 (1-3): 165-168.
    [19]Nakashima K, Yashuda S, Ozaki Y, et al. Two-dimensional fluorescence correlation spectroscopy. I. Analysis of polynuclear aromatic hydrocarbons in cyclohexane solutions[J]. J. Phys. Chem. A, 2000,104(40): 9113-9120.
    [20] Wang G F, Geng L. Two-dimensional fluorescence correlation in capillary electrophoresis for peak resolution and species identification [J]. Anal. Chem., 2000, 72(19): 4531-4542.
    [21] He Y, Geng L. Analysis of heterogeneous fluorescence decays. Distribution of pyrene derivatives in an octadecylsilane layer in capillary electrochromatography[J]. Anal. Chem. 2001, 73(22): 5564-5575.
    [22]He Y,Wang GF,Cox J,Geng L.Two-dimensional fluorescence correlation spectroscopy with modulated excitation[J].Anal.Chem.,2001,73(10):2302-2309.
    [23]Saxena S,Freed J H.Theory of double quantum two-dimensional electron spin resonance with application to distance measurements[J].J.Chem.Phys.,1997,107(5):1317-1340.
    [24]Izawa K,Ogasawara T,Masuda H,Okabayashi H,Noda I.Two-dimensional correlation gel permeation chromatography study of octyltriethoxysilane sol-gel polymerization process[J].Macromolecules,2002,35(1):92-96.
    [25]Izawa K,Ogawara T,Masuda H,Okabayashi H,O'Connor C J,Noda I.Two-dimensional correlation gel permeation chromatography(2D GPC) study of 1H,1H,2H,2H-perfluorooctyltriethoxysilane sol-gel polymerization process[J].J.Phys.Chem.B,2002,106(11):2867-2874.
    [26]Khalil M,Demirdoven N,Tokmakoff A.Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra[J].Phys.Rev.Lett,2003,90(4):0474011-0474014.
    [27]Wang Q,Sun S Q,Guo H B,Zhou O,Noda I,Hua X Y.Study of photochemically photochromism of 1,2-bis-[5'-(4"-methoxyphenyl)-2'-methylthien-3'-yl]perfluorocyclopentene using two-dimensional FT-IR spectroscopy[J].Vib.Spectrosc.,2003,31(2):257-263.
    [28]吴强,王静.二维相关分析光谱技术[J].化学通报,2000,8:45-53.
    [29]Arrondo J R,Echabe I,Iloro I,Hernando M A,de la Cruz F,Goni F.A bacterial TrwC relaxase domain contains a thermally stable alpha-helical core[J].J.Bacterio.,2003,185(14):4226-4232.
    [30]Choi H C,Jung Y M,Kim S B.Characterization of the electrochemical reactions in the Lil+xV3O8/Li cell by soft X-ray absorption spectroscopy and two-dimensional correlation analysis[J].Appl.Spectrosc.,2003,57(8):984-990.
    [31]Choi H C,Jung Y M,Noda I,Kim S B.A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft X-ray absorption spectroscopy(2D XAS),2D Raman,and 2D heterospectral XAS-Raman correlation analysis[J].J.Phys.Chem.,2003,107(24):5806-5811.
    [32]Jung Y M,Czarnik-Matusewicz B,Ozaki Y.Two-dimensional infrared,two-dimensional Raman,and two-dimensional infrared and Raman heterospectral correlation studies of secondary structure of beta-lactoglobulin in buffer solutions [J].J.Phys.Chem.B,2000,104(32):7812-7817.
    [33]Noda I,Liu Y L,Ozaki Y.Two-dimensional correlation spectroscopy study of temperature-dependent spectral variations of N-methylacetamide in the pure liquid state.2.Two-dimensional Raman and infrared-Raman heterospectral analysis[J].J.Phys.Chem.,1996,100(21):8674-8680.
    [34]Sasic S,Ozaki Y.Statistical two-dimensional correlation spectroscopy:Its theory and applications to sets of vibration spectra[J].Anal.Chem.,2001,73(10):2294-2301.
    [35]Peng X N,Shao Z Z,Chen X,Knight D P,Wu P Y,Vollrath F.Further investigation on potassium-induced conformation transition of Nephila spidroin film with two-dimensional infrared correlation spectroscopy[J].Biomacromolecules,2005,6:302-308.
    [36]彭显能,陈新,武培怡,邵正中.二维相关红外光谱研究再生蚕丝蛋白膜的构象与温度之间的关系[J].化学学报,2004,62:2127-2130.
    [37]Ozaki Y,Murayama K,Wu Y,Czamik-Matusewicz B.Two-dimensional infrared correlation spectroscopy studies on secondary structures and hydrogen bondings of side chains of proteins[J].Spectroscopy-An International Journal,2003,17:79-100.
    [38]Wu Y Q,Murayama K,Czarnik-Matusewicz B,Ozaki Y.Two-dimensional attenuated total reflection/infrared correlation spectroscopy studies on concentration and heat-induced structural changes of human serum albumin in aqueous solutions[J].Appl.Spectrosc.,2002,56:1186-1193.
    [39]Wu Y Q,Murayama K,Ozaki Y.Two-dimensional infrared spectroscopy and principle component analysis studies of the secondary structure and kinetics of hydrogen-deuterium exchange of human serum albumin[J].J.Phys.Chem.B,2001,105:6251-6259.
    [40]Murayama K,Ozaki Y.Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region:Simultaneous changes in hydration and secondary structure [J]. Biopolymers, 2002, 67: 394-405.
    [41] Jung Y M, Czarnik-Matusewicz B, Ozaki Y. Two-dimensional infrared, two-dimensional Raman, and two-dimensional infrared and Raman heterospectral correlation studies of secondary structure of beta-lactoglobulin in buffer solutions [J]. J. Phys. Chem. B, 2000,104: 7812-7817.
    [42]Torrecillas A, Corbalan-Garcia S, Gomez-Fernandez J C. Structural Study of the C2 Domains of the Classical PKC Isoenzymes Using Infrared Spectroscopy and Two-Dimensional Infrared Correlation Spectroscopy [J]. Biochemistry, 2003, 42: 11669-11681.
    [43]Torrecillas A, Corbalan-Garcia S, Gomez-Fernandez J C. An Infrared Spectroscopic Study of the Secondary Structure of Protein Kinase Ca and Its Thermal Denaturation [J]. Biochemistry, 2004,43: 2332-2344.
    [44]Iloro I, Chehin R, Goni F M, Pajares M A, Arrondo J L R. Methionine adenosyltransferase alpha-helix structure unfolds at lower temperatures than beta-sheet: A 2D-IR study [J]. Biophys. J., 2004, 86: 3951-3958.
    [45]Coto X, Iloro I, Arrondo J LR. Supramolecular Structure and Function [M]. New York: New York Press, 2004.
    [46]Yan Y B, Wang Q, He H W, Hu X Y, Zhang R Q, Zhou H M. Two-dimensional infrared correlation spectroscopy study of sequential events in the heat-induced unfolding and aggregation process of myoglobin [J]. Biophys. J., 2003, 85: 1959-1967.
    [47]Yan Y B, He H W, Zhou H M. Protein thermal aggregation involves distinct regions: Sequential events in the heat-induced unfolding and aggregation of hemoglobin [J]. Biophys. J., 2004, 86:1682-1690.
    [48]D'Auria S, Scire A, Verriale A, Scognamiglio V, Staiano M, Ausili A, Marabotti A, Rossi M, Tanfani F. Binding of glutamine to glutamine-binding protein from Escherichia coli induces changes in protein structure and increases protein stability [J]. Protein. Struct. Funct. Bioinform., 2005,58: 80-87.
    [49]Buchet R, Bandorowicz-Pikulla J, Zhang L, Kirilenko A, Azzar G, Pikula S, Probing nucleotide binding site of annexin A6 [J]. Vib. Spectrosc, 2004, 36: 233-236.
    [50]Zhou P,Xie X,Knight D P,Zong X H,Deng F,Yao W H.Effects of pH and Calcium Ions on the Conformational Transitions in Silk Fibroin Using 2D Raman Correlation Spectroscopy and 13C Solid-State NMR[J].Biochemistry,2004,43:11302-11311.
    [51]汤俊明,鲜栋,孙素琴.川乌炮制前后二维红外相关光谱的分析研究[J].现代仪器,2005,3:27-30.
    [52]许长华,周群,孙素琴,王宝栗.二维相关红外光谱法与阿胶的真伪鉴别[J].分析化学,2005,33:221-224.
    [53]Zhou Q,Sun S Q,Zuo L.Study on traditional Chinese medicine 'Qing Kai Ling'injections from different manufactures by 2D IR correlation spectroscopy[J].Vib.Spectrosc.,2004,32:207-212.
    [54]Li Y M,Sun S Q,Zhou Q,Qin Z,Tao J X,Wang J,Fang X.Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy[J].Vib.Spectrosc.,2004,36:227-232.
    [55]Sun S Q,Zhou Q,Liu J,Huang H.Study on the identification of standard and false BanXia by two-dimensional infrared correlation spectroscopy[J].Spectrosc.Spect.Anal.,2004,24:427-430.
    [56]吕光华,孙素琴,梁曦云,陈金泉.归头和归尾二维相关红外光谱法的鉴别研究[J].光谱学与光谱分析,2004,24:311-314.
    [57]孙素琴,周群,梁曦云.炮附片、黑顺片和白附片二维红外相关光谱的分析研究[J].光谱学与光谱分析,2003,23:1082-1085.
    [58]Peng Y,Wu P Y,Siesler H W.Two-dimensional/ATR infrared correlation spectroscopic study on water diffusion in a poly(epsilon-caprolactone) matrix[J].Biomacromolecules,2003,4:1041-1044.
    [59]Peng Y,Wu P Y,Yang Y L.Two-dimensional infrared correlation spectroscopy as a probe of sequential events in the diffusion process of water in poly(epsilon-caprolactone)[J].J.Chem.Phys.,2003,119:8075-8079.
    [60]Shen Y,Wu P Y.Two-dimensional ATR-FHR spectroscopic investigation on water diffusion in polypropylene film:water bending vibration[J].J.Phys.Chem. B, 2003,107,4224-4226.
    [61] Li L, Liu M J, Li S J. Dynamic process of water sorption in a thermoplastic modified epoxy resin system [J]. J. Phys. Chem. B, 2004,108: 4601-4606.
    [62] Li L, Liu M J, Li S J. Morphology effect on water sorption behavior in a thermoplastic modified epoxy resin system [J]. Polymer, 2004,45: 2837-2842.
    [63]Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y. Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy [J]. Spectrochim. Acta. A, 2005, 61: 541-550.
    [64] Zhang J, Tsuji H, Noda I, Ozaki Y. Structural Changes and Crystallization Dynamics of Poly(L-lactide) during the Cold-Crystallization Process Investigated by Infrared and Two-Dimensional Infrared Correlation Spectroscopy [J]. Macromolecules, 2004, 37: 6433-6439.
    [65] Zhang J, Tsuji H, Noda I, Ozaki Y. Weak Intermolecular Interactions during the Melt Crystallization of Poly(L-lactide) Investigated by Two-Dimensional Infrared Correlation Spectroscopy [J]. J. Phys. Chem. B, 2004,108:11514-11520.
    [66] Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y. Infrared Spectroscopic Study of CH_3…O=C Interaction during Poly(L-lactide)/Poly(D-lactide) Stereocomplex Formation [J]. Macromolecules, 2005,38:1822-1828.
    [67]Watanabe A, Morita S, Ozaki Y. Study on Temperature-Dependent Changes in Hydrogen Bonds in Cellulose 16 by Infrared Spectroscopy with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy [J]. Biomacromolecules, 2006, 7: 3164-3170.
    [68]Watanabe A, Morita S, Ozaki Y. Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Ia Studied by Infrared Spectroscopy in Combination with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy: Comparison with Cellulose Iβ [J]. Biomacromolecules 2007, 8: 2969-2975.
    [69] Liu Y L, Himmelsbach D S, Barton F E. Two-dimensional Fourier transform Raman correlation spectroscopy determination of the glycosidic linkages in amylose and amylopectin [J]. Appl. Spectrosc. 2004, 58: 745-749.
    [70]Hishikawa Y,Inoue S,Magoshi J,Kondo T.Novel Tool for Characterization of Noncrystalline Regions in Cellulose:A FTIR Deuteration Monitoring and Generalized Two-Dimensional Correlation Spectroscopy[J].Biomacromolecules,2005,6:2468-2473.
    [71]Suzuki K,Oku J,Izawa K,Okabayashi H,Noda I,O'Connor C J.Two-dimensional correlation gel permeation chromatography(2D GPC) study of aggregate-aggregate interactions during polymerization of 3-(triethoxysilyl)propyl-terminated polystyrene[J].Polym.J.,2004,36:959-970.
    [72]Suzuki K,Oku J,Izawa K,Okabayashi H,Noda I,O'Connor C J.Two-dimensional correlation gel permeation chromatography(2D GPC) study of the CH_3SO_3H-catalyzed polymerization of triethoxysilyl-terminated polystyrene.Molecular weight effect on the aggregate-aggregate interactions[J].Colloid Polym.Sci.,2004,283:306-316.
    [73]Suzuki K,Oku J,Izawa K,Okabayashi H,Noda I,O'Connor C J.Two-dimensional gel permeation chromatography(2D GPC) correlation studies of the aggregate-aggregate interactions in acid-catalyzed triethoxysilyl-terminated polystyrene systems.The effect of specific catalysts on growth process[J].Colloid Polym.Sci.,2005,283:551-558.
    [74]Suzuki K,Oku J,Izawa K,Okabayashi H,Noda I,O'Connor C J.Two-dimensional gel permeation chromatography(2D GPC) correlation studies of the aggregate-aggregate interactions in acid-catalyzed triethoxysilyl-terminated polystyrene systems:weak catalysis by HNO_3[J].Colloid Polym.Sci.,2005,283:1070-1078.
    [75]沈怡,若干典型聚合物体系的二维相关光谱学研究,博士学文论文,复旦大学,2006.
    [76]Sasic S,Muszynski A,Ozaki Y.A new possibility of the generalized two-dimensional correlation spectroscopy.1.Sample-sample correlation spectroscopy[J].J.Phys.Chem.A,2000,104:6380-6387.
    [77]Sasic S,Muszynski A,Ozaki Y.A new possibility of the generalized two-dimensional correlation spectroscopy.2.Sample-sample and wavenumber-wavenumber correlations of temperature-dependent near-infrared spectra of oleic acid in the pure liquid state[J].J.Phys.Chem.A,2000,104: 6388-6394.
    [78]Sasic S, Muszynski A, Ozaki Y. New insight into the mathematical background of generalized two-dimensional correlation spectroscopy and the influence of mean normalization pretreatment on two-dimensional correlation spectra [J]. Appl. Spectrosc, 2001,55: 343-349.
    [79] Wu Y Q, Jiang J H, Ozaki Y. A new possibility of generalized two-dimensional correlation spectroscopy: Hybrid two-dimensional correlation spectroscopy [J]. J. Phys. Chem. A, 2002,106: 2422-2429.
    [80] Wu Y Q, Yuan B, Zhao J G, et al. Hybrid two-dimensional correlation and parallel factor studies on the switching dynamics of a surface-stabilized ferroelectric liquid crystal [J]. J. Phys. Chem. B, 2003,107: 7706-7715.
    [81]Thomas M, Richardson H H. Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal, 4'-n-octyl-4-cyanobiphenyl (8CB) [J]. Vib. Spectrosc, 2000,24:137-146.
    [82]Shinzawa H, Morita S, Noda I, Ozaki Y. Effect of the window size in moving-window two-dimensional correlation analysis [J]. J. Mol. Struct., 2006, 799: 28-33.
    [83] Morita S, Shinzawa H, Noda I, Ozaki Y. Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy [J]. 2006, 60: 398-406.
    [84]Watanabe A, Morita S, Ozaki Y. Temperature-Dependent Structural Changes in Hydrogen Bonds in Microcrystalline Cellulose Studied by Infrared and Near-Infrared Spectroscopy with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Analysis [J]. 2006, 60: 611-618.
    [1] Maeda Y. IR spectroscopic study on the hydration and the phase transition of Poly(vinyl methyl ether) in water [J]. Langmuir, 2001,17:1737-1742.
    [2] Zeng X G, Yang X Z. A study of interaction of water and model compound of Poly(vinyl m ethyl ether) [J]. J. Phys. Chem. B 2004,108:17384-17392.
    [3] Maeda Y, Mochiduki H, Yamamoto H, Nishimura Y, Ikeda I. Effects of ions on two-step phase separation of Poly(vinyl methyl ether) in water as studied by IR and Raman spectroscopy [J]. Langmuir, 2003,19:10357-10360
    [4] Spevacek J, Hanykova L. ~1H NMR relaxation study of polymer-solvent interactions during thermotropic phase transition in aqueous solutions [J]. Macromol. Symp., 2003, 203: 229-237.
    [5] Schafer-Soenen H, Moerkerke R, Berghmans H, Koningsveld R. Zero and off-zero critical concentrations in systems containing polydisperse polymers with very high molar masses .2. The system water-poly(vinyl methyl ether) [J]. Macromolecules, 1997, 30: 410-416.
    [6] Maeda H. Interaction of water with Poly(vinyl methyl ether) in aqueous solution [J]. Polym. Sci. Part B: Polym. Phys., 1994, 32: 91-97.
    [7] Yang Y Y, Zeng F, Xie X L, Tong Z, Liu X X. Phase separation and network formation in Poly(vinyl methyl ether)/ water solutions [J]. Polym. J., 2001, 33: 399-403.
    [8] Wang G Z, Fang Y, Shang Z Y, Zhang Y, Hu D D. Application of ultrasonic attenuation measurements in the studies on macromolecular conformational behaviors-Phase behavior of the aqueous solution of Poly(vinyl methyl ether) sensitive to temperature and the modification of the behavior by using Poly(acrylic acid) [J]. Chinese J. Chem., 2004, 22: 28-32.
    [9] Meeussen F, Bauwens Y, Moerkerke R, Nies E, Berghmans H. Molecular complex formation in the system Poly(vinyl methyl ether)/water [J]. Polymer, 2000,4: 3737-3743.
    [10] Maeda Y, Yamamoto H, Ikeda I. The association of tetraalkylammonium ions Poly(vinyl methyl ether) in water and its effect on phase separation behavior as studied by micro-Raman spectroscopy [J]. Macromol. Rapid. Commun., 2004, 25: 720-723
    [11] Zhang J M, Zhang G B, Wang J J, Lu Y L, Shen D Y. Infrared spectroscopic study on the crystallization of water in poly(vinyl methyl ether) aqueous solution during heating [J]. J. Polym. Sci. Part B: Polym. Phys., 2002,40: 2772-2779.
    [12]Jinnai H, Smalley M V, Hashimoto T, Koizumi S. Neutron Scattering Study of Vermiculite-Poly(vinyl methyl ether) Mixtures [J]. Langmuir, 1996, 12: 1199-1203.
    [13]Nies E, Ramzi A, Berghmans H, Li T, Heenan R K, King S M. Composition Fluctuations, Phase Behavior, and Complex Formation in Poly(vinyl methyl ether)/D_2O Investigated by Small-Angle Neutron Scattering [J]. Macromolecules, 2005,38: 915-924.
    [14]Nies E, Li T, Berghmans H, Heenan R K, King S M. Upper critical solution temperature phase behavior, composition fluctuations, and complex formation in poly(vinyl methyl ether)/D_2O solutions: Small-angle neutron-scattering experiments and Wertheim lattice thermodynamic perturbation theory predictions [J]. J. Phys. Chem. B., 2006,110: 5321-5329.
    [15] Van Durme K, Loozen E, Nies E, Van Mele B. Phase Behavior of Poly(vinyl methyl ether) in Deuterium Oxide [J]. Macromolecules, 2005, 38:10234-10243.
    [16]Moerkerke R, Koningsveld R, Berghmans H, Dusek K, Solc K. Phase Transitions in Swollen Networks [J]. Macromolecules, 1995,28:1103-1107.
    [17]Moerkerke R, Meeussen F, Berghmans H, Koningsveld R, Mondelaers W, Schacht E, Ducaek K, Solc K. Phase Transitions in Swollen Networks. 3. Swelling Behavior of Radiation Cross-Linked Poly(vinyl methyl ether) in Water [J]. Macromolecules, 1998, 31: 2223-2229.
    [18]Maeda Y, Mochiduki H, Yamamoto H, Nishimura Y, Ikeda I. Effects of Ions on Two-Step Phase Separation of Poly(vinyl methyl ether) in Water As Studied by IR and Raman Spectroscopy [J]. Langmuir, 2003,19:10357-10360.
    [19]Maeda Y, Yamamoto H, Nishimura Y, Ikeda I. Micro-Raman Spectroscopic Investigation on the Phase Separation of Poly(vinyl methyl ether)/Alcohol/Water Ternary Mixtures[J].Langmuir,2004,20:7339-7341.
    [20]Fujishige S,Kubota K,Ando I.Phase transition of aqueous solutions of Poly(N-isopropylmethacrylamide)[J].J.Phys.Chem.,1989,93:3311-3313.
    [21]Tanaka H,Gubbins K E.Structure and thermodnamic properties of water-methanol mixtures-role of the water interaction[J].J.Chem.Phys.,1992,97:2626-2634.
    [22]Winnik F M.Fluorescence of aqueous-solutions of Poly(N-isopropylacrylamide)below and above their LCST[J].Macromolecules,1990,23:233-242.
    [23]Schild H G,Tirrrell D A.Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions[J].J.Phys.Chem.,1990,94:4352-4356.
    [24]Groh W,Overtone absorption in macromolecules for polymer optical fibers[J].Makromolekulare Chemie,1988,189:2861-2874.
    [25]Gu Y,Kar T,Scheiner S.Fundamental Properties of the CH…O Interaction:Is It a True Hydrogen Bond?[J].J.Am.Chem.Soc.,1999,121:9411-9422.
    [26]Mizuno K,Ochi T,Shindo Y.Hydrophobic hydration of acetone probed by nuclear magnetic resonance and infrared:Evidence for the interaction C-H…OH2[J].J.Chem.Phys.,1998,109:9502-9507.
    [27]Bryan S,Willis R,Moyer B.Hydration of 18-crown-6 in carbon tetrachloride:infrared spectral evidence for an equilibrium between monodentate and bidentate forms of bound water in the 1:1 crown-water adduct[J].J.Phys.Chem.,1990,94:5230-5233.
    [28]Sammon C,Mura C,Yarwood J,Everall N,Swart R,Hodge D.FTIR-ATR Studies of the Structure and Dynamics of Water Molecules in Polymeric Matrixes.A Comparison of PET and PVC[J].J.Phys.Chem.B,1998,102:3402-3411.
    [29]Brooksby P A,Fawcett W R.Infrared(ATR) Study of Hydrogen Bonding in Solutions Containing Water and Ethylene Carbonate[J].J.Phys.Chem.A,2000,104:8307-8314.
    [1]赵剑曦.新一代表面活性剂:Geminis[J].化学进展,1999,11:348-357.
    [2]Fendler J H.Atomic and molecular clusters in membrane mimetic chemistry[J].Chem.Rev.,1987;87:877-899.
    [3]Migliardo P.Influence of hydrogen-bond connectivity on the dynamical properties of hydrogen-bonded liquids[J].J.Mol.Struct.,1993,296:229-242.
    [4]Zinsil P E.Inhomogeneous Interior of Aerosol OT Microemulsions Probed by Fluorescence and Polarization Decay[J].J.Phys.Chem.,1979,83:3223-3231.
    [5]Jain T K,Varshney M,Maitra A.Structural Studies of Aerosol OT Reverse Mfcellar Aggregates by FT-IR Spectroscopy[J].J.Phys.Chem.,1989,83:7409-7416.
    [6]Goto A,Harada S,Fujita T,Miwa Y,Yoshioka H,Kishimoto H.Enthalpic Studies on the State of Water in Sodium Bis(2-ethylhexyl)sulfosuccinate Reversed Micelles[J].Langmuir,1993,9:86-89.
    [7]Yuan S L,Zhou G W,Xu G Y,Li G Z.Investigations of water morphology in reverse micelles:Mesoscopic simulation and IR spectral analysis[J].J.Disp.Sci.Techn.,2004,25:733-739.
    [8]Gonzalez-Blanco C,Rodriguez L J,Velazquez M M.Effect of the solvent on the water properties of water/oil microemulsions[J].J.Colloid Interf.Sci.,1999,211:380-386.
    [9]Li Q,Weng S F,Wu J G,Zhou N F.Comparative Study on Structure of Solubilized Water in Reversed-Micelles.1.FT-IR Spectroscopic Evidence of Water/AOT/ n-Heptane and Water/NaDEI-IP/n-Heptane Systems[J].J.Phys.Chem.B,1998,102:3168-3174.
    [10]Novaki L P,Correa N M,Silber J J,El Seoud O A.FTIR and ~1H NMR studies of the solubilization of pure and aqueous 1,2-ethanediol in the reverse aggregates of Aerosol-OT[J].Langrnuir,2000,16:5573-5578.
    [11]Maitra A N,Eicke H F.Effect of rotational isomerism on the water-solubilizing properties of Aerosol OT as studied by hydrogen-1 NMR spectroscopy[J].J. Phys.Chem.1981,85:2687-2691.
    [12]Zhou G W,Li G Z,Chen W J.Fourier Transform Infrared Investigation on Water States and the Conformations of Aerosol-OT in Reverse Microemulsions[J].Langmuir,2002,18:4566-4571.
    [13]Moran P D,Bowmaker G A,Cooney R P,Bartlett J R,Woolfrey J L.Vibrational Spectroscopic Study of the Structure of Sodium Bis(2-ethylhexyl)sulfosuccinate Reverse Micelles and Water-in-Oil Microemulsions[J].Langmuir,1995,11,738-743.
    [14]赖祖亮.AOT微乳液体系二维相关ATR-FTIR研究,学士学文论文,复旦大学,2006.
    [15]Shen Y,Wu P Y.Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film:water bending vibration[J].J.Phys.Chem.B,2003,107:4224-4226.
    [1]Toshiyuki M,Kazuyansu F,Yumin P.Characterization and catalytic properties of CeO-ZrO_2 ultrafine particles prepared by the microemulsionmethod[J].J.Alloy.Compd.,1998,269:116-122.
    [2]Curri M L,Agistiano A,Mavelli F,Delia Monica M.Reverse micellar systems:self organized assembly as effective route for the synthesis of colloidal semiconductor nanocrystals[J].Mat.Sci.Eng.C,2002,22:423-426.
    [3]Chen D L,Gao L.Novel synthesis of well-dispersed crystalline SnO_2nanoparticles by water-in-oil microemulsion-assisted hydrotherrnal process[J].J.Colloid Interf.Sci.,2004,279:137-142.
    [4]Meldrum A,Haglund R F,Boatner L A.Nanocomposite materials formed by ion implantation[J].Adv.Mater.,2001,13:1431-1444.
    [5]Pileni M P.Reverse Micelles as Microreactors[J].J.Phys.Chem.,1993,97:6961-6973.
    [6]Lisiecki I,Pileni M P.Synthesis of copper metallic clusters using reverse micelles as microreactors[J].J.Am.Chem.Soc.,1993,115:3887-3896.
    [7]Barnickel P,Workaun A,Sager W,Eicke H F.Size tailoring of silver colloids by reduction in W/O microemulsions[J].J.Colloid Interf.Sci.,1992,148:80-90.
    [8]Prasad B L V,Arumugam S K,Bala T,Sastry M.Solvent-Adaptable Silver Nanoparticles[J].Langmuir,2005,21:822-826.
    [9]Lahmani F,Lardeux L,Solgadi D.Energy partitioning in the VUV photodissociation of CINO as a function of excitation energy[J].J.Chem.Phys.,1982,77:275-282.
    [10]Wikander K,Petit C,Holmberg K,Pileni M P.Size Control and Growth Process of Alkylamine-Stabilized Platinum Nanocrystals:A Comparison between the Phase Transfer and Reverse Micelles Methods[J].Langmuir,2006,22:4863-4868.
    [11]Arturo M,Jose R.Chemical Reactions in Microemulsions:A Powerful Method to Obtain Ultrafine Particles[J].J.Colloid Interf.Sci.,1993,158:446-451.
    [12]Bandyopadhyaya R,Kumar R,Gandhi K S,Ramkrishna D.Modeling of Precipitation in Reverse Micellar Systems[J].Langmuir,1997,13:3610-3620.
    [13]Rautaray D,Sainkar S R,Sastry M.Thermally Evaporated Aerosol OT Thin Films as Templates for the Room Temperature Synthesis of Aragonite Crystals[J].Chem.Mater.,2003,15:2809-2814.
    [14]Rautaray D,Banpurkar A,Sainkar S R,Limaye A V,Ogale S,Sastry M.BaSO4Crystals Grown at an Expanding Liquid-Liquid Interface in a Radial Hele-Shaw Cell Show Spontaneous Large-Scale Assembly into Filaments[J].Cryst.Growth Des.,2003,3:449-452.
    [15]Lianos P,Thomas J K.Small CdS particles in inverted micelles[J].J.Colloid Interf.Sci.,1987,117:505-512.
    [16]Iwasaki K,Torimoto T,Shibayama T,Takahashi H,Ohtani B.Preparation and Characterization of Water-Soluble Jingle-Bell-Shaped Silica-Coated Cadmium Sulfide Nanoparticles[J].J.Phys.Chem.B,2004,108:11946-11952.
    [17]Ward A J I,OSullivan E C,Rang J C,Nedeljkovic J,Patel R C.The Synthesis of Quantum Size Lead Sulfide Particles in Surfactant-Based Complex Fluid Media [J].J.Colloid Interf.Sci.,1993,161:316-320.
    [18]Calandra P,Longo A,Lived V T.Synthesis of Ultra-small ZnS Nanoparticles by Solid-Solid Reaction in the Confined Space of AOT Reversed Micelles[J].J.Phys.Chem.B,2003,107:25-30
    [19]Pinna N,Willinger M,Weiss K,Urban J,Schlogl R.Local Structure of Nanoscopic Materials:V2O5 Nanorods and Nanowires[J].Nano Lett.,2003,3:1131-1134.
    [20]Chen L W,Gan L H,Yue T Y,Zhou E X.Studies on the Preparation of Aluminum-Oxide(Hydrous) Ultrafine Particles by the Method of Microemulsion Reaction[J].Chem.J.Chinese U.,1995,16:13-16.
    [21]Ernesto J,Itamar W.Photosensitization of Quantum-Size TiO2 Particles in Water-in-Oil Microemulsions[J].J.Phys.Chem.,1994,98:7628-7635.
    [22]Arriagada F J,Osseo-Asare K.Synthesis of Nanosize Silica in Aerosol OT Reverse Microemulsions[J].J.Colloid Interf.Sci.,1995,170:8-17.
    [23]Chattopadhyay P, Gupta R B. Supercritical CO_2-Based Formation of Silica Nanoparticles Using Water-in-Oil Microemulsions [J]. Ind. Eng. Chem. Res., 2003,42: 465-472.
    [24]Calvaruso G, Ruggirello A, Liveri V T. FT-IR investigation of the N-methylurea state in AOT reversed micelles [J]. J. Nanopart. Res., 2002, 4:239-246.
    [25] Ruggirello A, Liveri V T. FT-IR investigation of the acetamide state in AOT reversed micelles [J]. Colloid Polym. Sci., 2003,281:1062-1068.
    [26]Calandra P, Giordano C, Ruggirello A, Liveri V T. Physicochemical investigation of acrylamide solubilization in sodium bis(2-ethylhexyl)sulfosuccinate and lecithin reversed micelles [J]. J. Colloid Interf. Sci., 2004,277:206-214.
    [27]Calandra P, Ruggirello A, Liveri V T. Physico-Chemical Investigation of the State of Cyanamide Confined in AOT and Lecithin Reversed Micelles [J]. J. Phys. Chem. B, 2004,108: 8260-8268.
    [28]Calvaruso G, Minore A, Liveri V T. FT-IR Investigation of the Urea State in AOT Reversed Micelles [J]. J. Colloid Interf. Sci., 2001, 243: 227-232.
    [29]Caponetti E, Chillura-Martino D, Ferrante F, Pedone L, Ruggirello A, Liveri V T. Structure of Urea Clusters Confined in AOT Reversed Micelles [J]. Langmuir, 2003,19: 4913-4922.
    [30]Novaki L P, Mariano Correa N, Silber J J, El Seoud O A. FTIR and ~1H NMR Studies of the Solubilization of Pureand Aqueous 1,2-Ethanediol in the Reverse Aggregates of Aerosol-OT [J]. Langmuir, 2000,16:5573-5578.
    [31] Mariano Correa N, Pires P A R, Silber J J, El Seoud O A. Real Structure of Formamide Entrapped by AOT Nonaqueous Reverse Micelles: FT-IR and H NMR Studies [J]. J. Phys. Chem. B, 2005,109: 21209-21219.
    [32]Aoudia M, Rodgers M A J. Photoprocesses in AOT Reverse Micelles Containing Metalloporphyrins and Oligopeptides [J]. J. Phys. Chem. B, 2003, 107: 6194-6207.
    [33]Moriyama Y, Takeda K. Protective Effects of Small Amounts of Bis(2-ethylhexyl)sulfosuccinate on the Helical Structures of Human and Bovine Serum Albumins in Their Thermal Denaturations [J]. Langmuir, 2005, 21: 5524-5528.
    [34]Jimenez M,Escribano J,Gandia-Herrero F,Chazarra S,Cabanes J,Garcia-Carmona F,Perez-Gilabert M.Characterization of Patatin Esterase Activity in AOT-Isooctane Reverse Micelles[J].Biotechnol.Prog.,2002,18:635-640.
    [35]Premachandran R S,Banerjee S,Wu X K,John V T,McPherson G L.Enzymatic Synthesis of Fluorescent Naphthol-Based Polymers[J].Macromolecules,1996,29:6452-6460.
    [36]Chen W Y,Lee Y W,Lin S C,Ho C W.Renaturation and Interaction of Ribonuclease A with AOT Surfactant in Reverse Micelles[J].Biotechnol.Prog.,2002,18:1443-1446.
    [37]Gonzalez-Blanco C,Rodriguez L J,Velazquez M M.Effect of the Addition of Water-Soluble Polymers on the Structure of Aerosol OT Water-in-Oil Microemulsions:A Fourier Transform Infrared Spectroscopy Study[J].Langmuir 1997,13:1938-1945.
    [38]Suarez M J,Levy H,Lang J.Effect of Addition of Polymer to Water-in-Oil Microemulsions on Droplet Size and Exchange of Material between Droplets[J].J.Phys.Chem.,1993,97:9808-9816.
    [39]Suarez M J,Lang J.Effect of Addition of Water-Soluble Polymers in Water-in-Oil Microemulsions Made with Anionic and Cationic Surfactants[J].J.Phys.Chem.1995,99:4626-4631.
    [40]Brackman J C.Sodium Dodecyl Sulfate Induced Enhancement of the Viscosity and Viscoelasticity of Aqueous Solutions of Poly(ethylene oxide).A Rheological Study on Polymer-Micelle Interaction[J].Langmuir,1991,7:469-472.
    [41]Zhang K W,Linse P.Solubilization of Polymer in the Lyotropic Lamellar Phase:The AOT/PEO/Water System[J].J.Phys.Chem.,1995,99:9130-9135.
    [42]Lynch I,Cornen S,Piculell L.Investigation of the Segregative Phase Separation Induced by Addition of Polystyrene to AOT Oil-Continuous Microemulsions[J].J.Phys.Chem.B,2004,108:5443-5452.
    [43]Yuan S L,Xu G Y,Luan Y X,Liu C B.The interaction between polymer and AOT or NaDEHP in aqueous solution: mesoscopic simulation study and surface tension measurement [J]. Colloids Surface. A, 2005,256: 43-50.
    [44] Fan Y R, Li Y J, Yuan G C, Wang Y L, Wang J B, Han C C, Yan H K. Comparative Studies on the Micellization of Sodium Bis(4-phenylbutyl) Sulfosuccinate and Sodium Bis(2-ethylhexyl) Sulfosuccinate and Their Interaction with Hydrophobically Modified Poly(acrylamide) [J]. Langmuir, 2005, 21: 3814-3820.
    [45]Luan Y X, Xu G Y, Dai G L, Sun Z W, Liang H. The interaction between poly(vinylpyrrolidone) and reversed micelles of water/AOT/n-heptane [J]. Colloid Polym. Sci., 2003,282:110-118.
    [46] Paulo P, Laia C, Costa S. Clusters in Polymer-Surfactant AOT Microemulsions Probed by Excited State Quenching Kinetics [J]. J. Phys. Chem. B, 2003, 107: 1097-1105.
    [47] Jang J, Yoon H. Formation Mechanism of Conducting Polypyrrole Nanotubes in Reverse Micelle Systems [J]. Langmuir, 2005, 21:11484-11489.
    [48] Wines T, Somasundaran P, Turro N, Jockusch S, Francesca Ottaviani M, Investigation of the mobility of amphiphilic polymer-AOT reverse microemulsion systems using electron spin resonance [J]. J. Colloid Interf. Sci., 2005, 285: 318-325.
    [49]Pacios I E, Renamayor C S, Horta A, Iindman B, Thuresson K. Fragmentation of the Lamellae and Fractionation of Polymer Coils upon Mixing Poly(dimethylacrylamide) with the Lamellar Phase of Aerosol OT in Water [J]. J. Phys. Chem. B., 2005,109: 23896-23904.
    [50]Sapp S A, Michael Elliott C. Solid-State Solutions: Polymer-Encapsulated Reverse Micelles Containing Dye Solutions [J]. Chem. Mater., 2003, 15: 1237-1241.
    [51]Mehta S K, Sharma S. Temperature-induced percolation behavior of AOT reverse micelles affected by poly(ethylene glycol)s [J]. J. Colloid Interf. Sci., 2006, 296: 690-699.
    [52] Gonzalez-Bianco C, Mercedes Velazquez M. Dynamic Light Scattering and Infrared Spectroscopic Studies of the Interaction of Poly(vinylpyrrolidone) Polymers with Aerosol OT/Isooctane Water-in-Oil Microemulsions[J].Lang,muir 1997,13:6095-6100.
    [53]Benda D,Snuparek J,Cermak V.Inverse emulsion polymerization of acrylamide and salts of acrylic acid[J].Eur.Polym.J.1997,33:1345-1352.
    [54]Sundaraganesan N,Puviarasan N,Mohan S.Vibrational spectra,assignments and normal coordinate calculation of acrylamide[J].Talanta,2001,54:233-241.
    [55]Iogansen A V,Kurkchi G A,Dementijeva L A.Infrared-spectra in VNH Region and Structures of Associated Species of Acetanide[J].J.Mol.Struct.1976,35:101-114.
    [1]Hinterstoisser B,Akerholm M,Salmean L Load Distribution in Native Cellulose [J].Biomacromolecules,2003,4:1232-1237.
    [2]Aoki D,Teramoto Y,Nishio Y.SH-Containing Cellulose Acetate Derivatives:Preparation and Characterization as a Shape Memory-Recovery Material[J].Biomacromolecules,2007,8:3749-3757.
    [3]Watanabe A,Morita S,Kokot S,Matsubara M,Fukai K,Ozaki Y.Drying process of microcrystalline cellulose studied by attenuated total reflection IR spectroscopy with two-dimensional correlation spectroscopy and principal component analysis[J].J.Mol.Struct.,2006,799:102-110.
    [4]Ilharco L M,Brito de Barros R.Aggregation of Pseudoisocyanine Iodide in Cellulose Acetate Films:Structural Characterization by FTIR[J].Langmuir,2000,16:9331-9337.
    [5]Hinterstoisser B,Salmean L.Application of dynamic 2D FTIR to cellulose[J].Vib.Spectrosc.2000,22:111-118.
    [6]Watanabe A,Morita S,Ozaki Y.Study on Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Iβ by Infrared Spectroscopy with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy[J].Biomacromolecules,2006,7:3164-3170.
    [7]Watanabe A,Morita S,Ozaki Y.Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Ia Studied by Infrared Spectroscopy in Combination with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy:Comparison with Cellulose Iβ[J].Biomacromolecules 2007,8:2969-2975.
    [8].Sikorski P,Wada M,Heux L,Shintani H,Stokke B T.Crystal Structure of Cellulose Triacetate I[J].Macromolecules,2004,37:4547-4553.
    [9]Kataoka Y,Kondo T.FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation[J].Macromolecules,1998,31:760-764.
    [10]Hofstetter K,Hinterstoisser B,Salmean L.Moisture uptake in native cellulosethe roles of different hydrogen bonds:a dynamic FT-IR study using Deuterium exchange[J].Cellulose,2006,13:131-145.
    [11]Syturcova A,His I,Wess T J,Cameron G,Jarvis M C.Polarized Vibrational Spectroscopy of Fiber Polymers:Hydrogen Bonding in Cellulose Ⅱ[J].Biomacromolecules,2003,4:1589-1595.
    [12]Marechal Y,Chanzy H.The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry[J].J.Mol.Struct.2000,523:183-196.
    [13]Kokot S,Czarnik-Matusewicz B,Ozaki Y.Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose[J].Biopolymers,2002,67:456-469.
    [14]Watanbe A,Morita S,Ozaki Y.Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-Infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis[J].Appl.Spectrosc.,60:611-618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700