智利牧豆和牛蹄豆的引种试验及其对土壤改良作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪50年代以来,我国在干热河谷引种造林方面已取得很大成绩,但在树种选择上,仍存在不少问题。为此本文进行智利牧豆(Prosopis chilensis L.)和牛蹄豆(Pithecellobium dulce Lam.)的引种试验及其对土壤的改良作用的研究。本文实验区位于攀枝花干热河谷区,气候为南亚热带半干燥气候,具有日照充足、热量丰富、干雨季分明、河谷地带焚风作用显著的气候特点,是四川省热量最高的区域。论文根据20世纪初德国迈尔(H.Mayr)提出的“气侯相似论”原理,选择与攀西地区气候相似的中美洲作为引种种源地,筛选智利牧豆、牛蹄豆在攀西地区引种研究,旨在为该区生态恢复提供优良的材料。
     引自于中美洲的智利牧豆、牛蹄豆属于豆科植物,极耐干旱,可作为干旱河谷地区生态恢复优良先锋树种。其根瘤菌固氮能力强,对改良干旱地区的土壤环境和土壤质量也具有很大的积极作用,是荒山造林的先锋树种。具有很高的经济价值、生态价值和社会价值。所以,对智利牧豆、牛蹄豆育苗技术的研究意义重大。
     本文从两个物种的育苗技术、生长节律观测、物种物候观测等方面着手,主要对两个物种在攀西干热河谷地区的适应性进行研究。在两个物种大田生长两年后,对当地土壤的改良作用和两个物种的光合作用进行了表层次的分析。得出以下主要结论:
     1)通过育苗实验,牛蹄豆的种子发芽率普遍偏低,最低达到10.67%,最高也仅为13.33%,其原因除了与浸种时间长短和浸种温度有关外,与苗期管理也有一定的关系;智利牧豆的种子发芽率保持在20%左右,这与苗期管理有一定的关系。智利牧豆在7~8月份,牛蹄豆在8~9月份是生长旺盛期;智利牧豆的出苗持续时间相对牛蹄豆较长,出土较快;苗期智利牧豆的径高比大于牛蹄豆;智利牧豆平均径高比为1.35%,牛蹄豆平均径高比为1.1%。
     2)智利牧豆抗虫性较好,但抗病性差,多发生叶斑病和立枯病,属豆科植物的病毒病类型;牛蹄豆抗病性和抗虫性均较差,易受地蛆、根节线虫、甲壳虫等害虫危害,主要在出苗期虫害严重,地蛆主要危害播种下的发芽种子,致使种子失去活力。通过对幼苗生病期、虫害期的及时处理,智利牧豆后期生长良好。但牛蹄都由于没有良好的控制虫害,导致最后总体出苗率很低。因此,在幼苗生病期、虫害期应及时加强管理。
     3)通过研究区地表土壤元素含量与全国表层土进行对照,该区重金属污染严重,尤其是Cr、Cu、Ni三种元素的含量基本上达到了全国表层土含量的1.5倍。牛蹄豆和智利牧豆具有丰富的根瘤菌,可迅速增加土壤肥力,改善土壤结构。结果表明智利牧豆和牛蹄豆都可以增加土壤的肥力,但智利牧豆的固氮能力要强于牛蹄豆的固氮能力。
     4)影响光合作用的因素有很多,诸如光强度、CO_2浓度、温度、叶绿素和叶子水分含量、矿物质含量等都会影响光合作用。光合作用是一个复杂的综合过程,因而参与光合作用过程的各个因素和条件,就不是单独起作用的,而是彼此间存在相互联系。因此,在实践中要进行全面的分析考虑。
     智利牧豆和牛蹄豆的引种在国内尚属首例,在研究中难免出现一定的误差或偏差,将在以后的研究中应不断的深入研究。
Since the 1950's, many forestry workers in the dry-hot valley of afforestation have been made great achievements. However; there are still many problems of the choice of tree species. So in this paper, we did the study on the introduction and soil improvement of Prosopis chilensis and Pithecellobium dulce. The pilot area is located in Panzhihua dry-hot valley area. The climates belong to the semi-arid subtropical climate with abundant sunshine and rich in calories, which is the role of valley foehn significant climate characterized by the highest energy region of Sichuan Province. The paper is based on the thesisof " climate is similar to theory" according to the early Meyer (H. Mayr), Germany, in 20th century. Therefore, we have chosen Panxi area as the original place where has similar climate with Central America.
     Prosopis chilensis and Pithecellobium dulce which are introduced in the Central-America are belong to Legumes and are very resistant to drought. They can be good pioneer species ecological restoration in Dry-Valley Region. Of its nitrogen-fixing ability of Rhizobium, they also can play a positive role in improving the soil environment in arid regions and soil quality. They are the pioneer trees in reforestation of barren hills. They have high values in economic, ecological and social. Therefore, there is a great significance of study of the breeding technology of Prosopis chilensis and Pithecellobium dulce.
     In the paper, we have done a feasibility study for the analysis of the two species adaptability. The study was concluding the nursery technology and the growth rhythm of observation and species phenological observations aspects of two species, in order to improve the adaptability in Panxi. Two years later, we have a study on their improvements of the local soil and the two species of photosynthetic effects analysis of the table level. We come to the following major conclusions:
     1) Through breeding experiments, the seeds germination rate of Pithecellobium dulce is generally low, the minimum to reach 10.67 percent, the maximum to reach 13.33 percent, the reasons maybe concerned with the length of soaking time and soaking temperature, and also concerned with the seedling management. The seeds germination rate of Prosopis chilensis remained at 20 percent, which is concerned with the seedling management. The vigorous growing phase of Prosopis chilensis and Pithecellobium dulce is from July to August and from August to September, respectively. Duration of Prosopis chilensis is longer and unearthed is faster accorded to Pithecellobium dulce. In seeding period, the ratio of dia-height of Prosopis chilensis is bigger than Pithecellobium dulce. The average ratio of dia-height of Prosopis chilensis is 1.35 percent, the average ratio of dia-height of Pithecellobium dulce is 1.1 percent.
     2) Prosopis chilensis is good in resistant pests, but poor in resistance diseases and often happening at leaf spot and damping-off which are the types of the virus disease of leguminous plants. The resistances of disease and insect of Pithecellobium dulce are weak in seeding period. The insets conclude soil maggots and eelworms etc. The soil maggots often made hazards to the sowing seed, resulting in the loss of vitality of seeds. By dealing with the diseases and insects of seedling in time, Prosopis chilensis have a good growth in late time. However, the absence of a good pest control, the germination rate of Pithecellobium dulce is very low. Therefore, we must do a good job in the period of seedling diseases and pests.
     3) Through the contrast study of the average content of surface soil elements between the study area and the country, the heavy metal pollution of the study area is serious. In particular, Cr, Cu and Ni have been achieved to 1.5 times of the national content of the topsoil. Prosopis chilensis and Pithecellobium dulce have a wealth of rhizobium which can improve soil fertility and soil structure quickly. The study results show that Prosopis chilensis and Pithecellobium dulce need a lot of effective P and K elements which are available, and both of the two species can improve soil fertility. Prosopis chilensis have a better Nitrogen-fixing capacity than Pithecellobium dulce.
     4) There are many affected factors of photosynthesis such as Light intensity, CO_2 concentration, temperature, chlorophyll and leaf water content, mineral content. Photosynthesis is a complex integrated process. Therefore, all the factors and conditions which are participations in the process of photosynthesis will not work alone, but work interactively. As a result, we must consider all of the factors and conditions in practice.
     Prosopis chilensis and Pithecellobium dulce are the first introduction to China and we just do a primary study. In the study, there must be having many errors or deviations. We will continue to do much more in-depth study and research in the future.
引文
[1].辜云杰,周永丽,干少雄,等.12个牧豆种源苗期生长及育苗技术初步研究[J].亚热带植物科学,2005,34(1):39-41;
    [2].李勇,田从学,郑毅,等.攀枝花生物资源概况[J].攀枝花学院学报,2005,22(1):89-92;
    [3].黄旭,李一平,王峰,等.攀枝花市气候特点与冬季光热资源开发[J].四川气象,2006,26(1):20-25;
    [4].周永丽,干少雄,吴宗兴,等.蜜牧豆引种育苗试验[J].经济林研究,2004,22(2):35-37;
    [5].周永丽,干少雄,刘福云,等.蜜牧豆生物生态学特性及引神栽培[J].四川林业科技,2005,26(3):76-79
    [6].费世民,王鹏,陈秀明,等.攀枝花市生物多样性与生物资源可持续性分析[J].四川林业科技,2002,23(3):14-22;
    [7].黄旭,张玉琴,童文林,等.攀枝花市雨季开始期的气候分析及其长期预报方法研究[J].四川气象 2000,20(1):19-21;
    [8].朱相云,杜玉芬.中国豆科植物外来种之研究[J].植物研究,2004,22(2):139-150;
    [9].何蓉,李琦华,和丽萍,等.云南7种豆科灌木的生态习性及饲用价值研究[J].云南林业科技,2003,12(4):59-66;
    [10].张友胜,吕俊峰.外来入侵植物与生态安全[J].广东农业科学,2007(12):90-93;
    [11].郑勇奇,张川红.外来物种生物入侵研究现状与进展[J].林业科学,2006,42(11):114-121;
    [12].万正杰,张楚河.外来物种入侵我国的现状与对策[J].甘肃农业,2006(26):114;
    [13].李霖,姚云珍.外来种入侵的遗传侵蚀[J].扬州教育学院学报,2007,25(4):77-80;
    [14].顾忠盈,吴新华,杨光,等.我国外来生物入侵现状及防范对策[J].江苏农业科学,2006(6):418-421;
    [15].蒋选荣,丛元高.植物引种与地理位置的关系[J].生物学教学,2007,32(7):79;
    [16].尚爱芹.苗木移植技术[J].中国花卉园艺,2005(10):30-31;
    [17].孙莉.植物引种与外来物种入侵的探讨[J].森林工程,2004,20(6):6-8;
    [18].R.A.Ralowicz等.化学处理对卷叶牧豆树种子萌发的提高作用.乔有明译自(O0urnM of Range Ma—n0,goment),1992,46(6):507-508;
    [19].M.O.A.Warrag.Autotoxic potential of foliage on seed germination andearly growth of mesquite(Prosopis juliflora).Journal of Arid Environments(1995) 31:415-421;
    [20].Gurbachan Singh,Effect of site preparation techniques on Prosopis juliflora in an alkali soil,Forest Ecology and Management 80(1996):267-278;
    [21].Hailu Shiferaw,Some biological characteristics that foster the invasion of Prosopis juliflora (Sw.) DC.at Middle Awash Rift Valley Area,north-eastern Ethiopia,Journal of Arid Environments 58(2004):135-154;
    [22].GHerrera-Arreola,Mesquite(Prosopis juliflora(Sw.) DC.),huisache(Acacia farnesiana(L.)Willd.) and catclaw(Mimosa biuncifera Benth.) and their effect on dynamics of carbon and nitrogen in soils of the semi-arid highlands of Durango Mexico,Journal of Arid Environments 69(2007):583-598;
    [23].P.Senthilkumar,Prosopis juliflora—A green solution to decontaminate heavy metal(Cu and Cd) contaminated soils,Chemosphere 60(2005):1493-1496;
    [24].K.Ravikala,Growth efficiency in feedlot lambs on Prosopis juliflora diets,Small Ruminant Research 16(1995):227-231;
    [25].Virginia Cervantes,Growth analysis of nine multipurpose woody legumes native from southern Mexico,Forest Ecology and Management 110(1998):329-341;
    [26].Osman Mahgoub,Evaluation of Meskit(Prosopis juliflora)pods as a feed for goats,Animal Feed Science and Technology 121(2005):319-327;
    [27].R.K.Kahindi,Effect of supplementing Napier grass(Pennisetum purpureum) with Madras thorn(Pithecellobium dulce) on intake,digestibility and live weight gains of growing goats,Small Ruminant Research 69(2007):83-87;
    [28].R.Foroughbakhch,Establishment,growth and biomass production of 10 tree woody species introduced for reforestation and ecological restoration in northeastern Mexico,Forest Ecology and Management 235(2006):194-201;
    [29].V.L.Goel,Genetic selection and improvement of hard wood tree species for fuelwood production on sodic soil with particular reference to Prosopis juliora,Biomass and Bioenergy 20(2001):9-15;
    [30].Pimolpan Pithayanukul,Inhibition of Naja kaouthia venom activities by plant polyphenols,Journal of Ethnopharmacology 97(2005):527-533;
    [31].V.K.Saxena,Novel prenylated flavonoid from stem of Pithecellobium dulce,Fitoterapia 70(1999):98-100;
    [32].S.Fall Toure,Occurrence of digestive interactions in tree forage-based diets for sheep,Animal Feed Science and Technology 74(1998):63-78;
    [33].JEFF P.Sloping Agricultural Lands Technologies(SALT):Nitrogen-fixing agro forestry for soil and water conservation[M].Philippines:MBRLC,1997;
    [34].TEJ P,HAROLD R W.Sloping agricultural land technology(SALT):are generative options for sustainable mountain farming[M].Nepal ICIMOD,1994;
    [35].PAULK.No Runoff,No Soil Loss:Soil and water conservation in hedgerow barrier system [D].Wageningen Agricultural U-university,1995;
    [36].胡清华,张小平,陈强,等.四川攀西干热河谷区根瘤菌的多样性研究[J].应用与环境生物学报,2007,13(5):697-703;
    [37].金淳泰,钱泳蓁,王吉礼.四川盐边地区志留纪牙形石生物地层及年代地层[J].地层学杂志,2005,29(3):281-291;
    [38].陈利顶,王军,傅伯杰.我国西南干热河谷脆弱生态区可持续发展战略[J].中国软科学,2001(6):95-99;
    [39].孙玺雯,杜凡,王娟.元江县干热河谷季雨林群落特征研究[J].西南林学院学报,2008,28(1):6-10;
    [40].杨振寅,苏建荣,李从富,等.元谋干热河谷主要植物群落物种多样性研究[J].林业科学研究,2008,21(2):200-205;
    [41].孙辉,唐亚,陈克明,等.固氮植物篱防治坡耕地土壤侵蚀效果研究[J].水土保持通报,1999,19(6):1-5;
    [42].孙辉,唐亚,黄雪菊.金沙江干旱河谷坡地复合经营系统内竞争及养分平衡研究[J].干旱地区农业研究,2005,23(1):166-171;
    [43].GICHURUM P.Residual effects of natural bush,Cajanus cajan and Tephrosia candida on the productivity of an acid soil in southeastern Nigeria[J].Plant and Soil,1991(134):31-36;
    [44].KWESIGA F,AKINNIFESIF K,MAFONGOYAP L,et al Agro forestry research and development in southern Africa during the 1990s Review and challenges ahead[J].Agro forestry systems,2003,59(3):173-186;
    [45].KADIATA B D,MULONGOY K,ISIRIMAH N O,et al Screening woody and shrub legumes for growth,nodulation and nitro-gen-fixation potential in two contrasting soils[J].Agro forestry Systems,2004,33(2):137-152;
    [46].许绍彪,罗志梁,周斌汉,等.果园绿肥引种观察及其栽培技[J].广西热带农业,2001(4):28-29;
    [47].李昆,曾觉民.元谋干热河谷地区不同造林树种对土壤的改良作用研究[J].西南林学院学报,1999,19(3):161-164;
    [48].BAIJUKYA F P,RIDDER N,GILLER K E.Nitrogen release from decomposing residues of leguminous cover crops and their effect on maize yield on depleted soils of bukoba district,Tanzania[J].Plant and soil,2006,279(1-2):77-93;
    [49].ZAHID HM.Farmer's view on soil organic matter depletion and its management in Bangladesh[J[.Nutrient Cycling in Agro co-systems,2001,61:197-204;
    [50].龙莎莎,谈树成,蒋顺德.浅析环境地球化学的研究现状[J].云南地理环境研究,2005,17:81-84;
    [51].张辉,马东升.环境地球化学、环境化学、环境生物无机化学的联系与区别[J].环境化学,2000,19(2):190-192;
    [52].陈道公,支霞臣,杨海涛.地球化学[M].合肥:中国科技大学出版社,1994,1-360;
    [53].中国科学院地球化学所.高等地球化学[M].北京:地质出版社,1998,1-491;
    [54].杨忠芳,朱立,陈后龙.现代环境地球化学[M].北京:地质出版社,1999,278-279;
    [55].滕彦国,庹先国,倪师军,等.地球化学基线的确定方法研究—以攀枝花地区为例[J].成都理工大学学报(自然科学版),2003,30(4):422-426;
    [56].滕彦国,倪师军,张成江.环境地球化学基线研究简介[J].物探化探计算技术,2001,23(2):135-139;
    [57].滕彦国,倪师军,张成江.攀枝花地区昔格达组土壤中微量元素地球化学分异特征[J].成都理工大学学报(自然科学版),2005,32(3):288-293;
    [58].滕彦国,庹先国,倪师军,等.攀枝花市土壤微量元素分布[J].城市环境与城市生态,2003,16(1):47-50;
    [59].滕彦国,庹先国,倪师军,等.攀枝花地区昔格达土的土壤层环境地球化学特征[J].地质灾害与环境保护,2002,13(4):16-20;
    [60].涂光炽.地球化学[M].上海:上海科学出版社,1984,326-358;
    [61].戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1990,219;
    [62].李生汲.环境科学基本原理[M].北京:北京农业大学出版社,1986,54-147;
    [63].王焰新.环境地球化学研究进展评述——第四届国际环境地球化学学术讨论会简要回顾[J].1997,16(4):75-77;
    [64].欧阳自远.中国矿物学岩石学地球化学研究新进展[M].兰州:兰州大学出版社,1994,1-446;
    [65].朱立新,马生明,王之峰.城市环境地球化学研究新进展[J].物探与化探,2004,28(2):95-98;
    [66].宋玉芳,等.土壤整体质量的生态毒性评价[J].环境科学,2005,(1):130;
    [67].杨秀虹,等.统计学方法在环境污染研究中的应用[J].中山大学学报,2005(3):98;
    [68].张庆辉.环境地球化学研究方法[J].阴山学刊,2006,20(4):53-54;
    [69].王徽.生态环境地球化学的研究进展[J].地质与勘探,2001,37(5):67-70;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700