生物质秸秆—高密度聚乙烯定向秸塑板的制备及其热压成材机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国2012年秸秆总产量预计超过7亿吨,充分利用丰富的秸秆资源,增加生物质秸秆的经济附加值成为关注的热点问题。本研究以棉秆、甜高梁秆生物质秸秆为原料,以热塑性塑料高密度聚乙烯(HDPE)为胶合剂,采用热压工艺制备了生物质秸秆-HDPE定向秸塑板,研究了生物质秸秆的热稳定性以及秸塑板热压过程中的热传导和秸秆热解问题,探讨了热压法制备定向秸塑板的成材机理,取得的主要结论如下:
     1.使用高效液相色谱仪分析了甜高梁秆的化学成分,结果表明甜高梁秆的纤维素、半纤维素、木质素和水溶性糖的含量分别为24.58%,21.07%,19.08%和10.38%。
     2.使用TGA分析了棉秆、甜高梁秆及其表皮和髓芯的热稳定性,得到其热解温度分别为236.0℃、185.8℃、199.9℃和179.2℃;在秸塑板热压过程中,甜高梁秆中水溶性糖和木质素受热最先热解,其次是半纤维素,纤维素受热最稳定。
     3.分别以HDPE粉末和HDPE薄膜为胶合剂,开发了棉秆-HDPE定向秸塑板和甜高梁秆-HDPE定向秸塑板。研究了秸秆长径比、热处理温度和HDPE塑料含量对秸塑板物理力学性能的影响,得到:秸秆长径比越大,棉秆-HDPE秸塑板的力学性能越好;棉秆热处理温度为103℃和140℃时,制备的秸塑板力学性能最优,热处理温度为170℃时,秸塑板的吸水厚度膨胀率最低;添加10%的HDPE的甜高梁秆-HDPE定向秸塑板的力学性能、耐水性能和断面密度均匀性,比未添加HDPE的甜高梁秆定向板有较大改善,但HDPE添加量从10%增加到40%时,板材的力学性能有下降趋势;添加的MAPE、PF和pMDI偶联剂增强了生物质秸秆与HDPE塑料之间的界面结合力,提高了生物质秸秆-HDPE秸塑板的物理力学性能。
     4.通过热压压力测试、红外光谱分析、微观结构和板材失效形式观察等手段,研究了生物质秸秆-HDPE定向秸塑板的热压成型机理,得到塑料含量越高,热压时获得相同密度的板材需要的压力越小,板坯断面密度变化越大;在HDPE和偶联剂的作用下,在秸秆和HDPE接合界面形成局部机械啮合和化学接合,提高了板材性能;秸塑板的失效发生在生物质秸秆髓芯、生物质秸秆之间以生物质秸秆与HDPE塑料之间。
     5.利用独立平行反应模型模拟了生物质秸秆在秸塑板热压成型过程中的热解程度,计算了甜高梁秆中的水溶性糖、半纤维素、纤维素和木质素的热解动力学参数,得到其活化能分别为:101,110,202和26kJ/mol,指前因子分别为1.2×10~(11),5.0×10~9,3.0×10~(17)和20min~(1);预测了热压过程中甜高梁秆在板坯的表层、1/4处和中心层的热解量分别为5.4%,2.8%和2.0%。
     6.建立了甜高梁秆和HDPE比热容随温度变化的数学模型,甜高梁秆和熔化之前的HDPE的比热容随温度的增加而增加;在熔化过程中,使用Gauss方程和Lorentz方程拟合了由HDPE熔化吸热引起的表观比热容。
     7.建立了包含HDPE含量、板坯密度和温度三个参数的秸塑板导热系数数学模型。在稳态条件下测试了秸塑板的导热系数,甜高梁秆-HDPE秸塑板的导热系数随密度和温度的增加而线性增加,随HDPE含量的增加而非线性增加。
     8.建立了包含HDPE熔化吸热在内的秸塑板热压过程中的一维热传导模型,通过Matlab求取了热传导模型的数值解,并对模拟结果进行了实测验证,得到板坯热压过程中,随着HDPE含量的增加,当温度达到塑料熔化温度时,由HDPE熔化吸收的热量增多,在热压后期板坯的温度越低。
China has very abundant biomass resources, and the total production of biomass stalks isover0.7billion ton in2012and is expected to increase in the future. It is a big challenge toutilize those abundant biomass stalks and increase their economy values. This study usedcotton stalk and sweet sorghum stalk as raw materials to fabricate composites with high-density polyethylene (HDPE) using hot pressing process. The fabrication process ofcomposites was investigated, besides the thermal stability of biomass stalks, heat transfer andthermal degradation of mat during hot press were also analyzed. The results are concluded asfollowing:
     1. High performance liquid chromatography (HPLC) was used to analyze the chemicalcomponents of sweet sorghum stalk, and the results showed that cellulose, hemicellulose,lignin and water-soluble sugar content of sweet sorghum were24.58%,21.07%,19.08%and10.38%, respectively.
     2. Thermal stability of cotton stalk, sweet sorghum stalk and sweet sorghum rind and pithwas analyzed by thermogravimetric analyze (TGA), and showed that their degradationtemperatures were236℃,185.8℃,199.3℃and179.2℃at mass loss of2%, respectively.
     3. Cotton stalk-HDPE oriented composites (CSHC) and sweet sorghum stalk-HDPEoriented composites (SSHC) were manufactured using powdered HDPE and film-formedHDPE as adhesive. The effects of stalk length-to-diameter ratio, thermal treatmenttemperature and HDPE content on the physical and mechanical properties of composites wereinvestigated. The results showed that the CSHC had better mechanical performance at greaterlength-to-diameter ratio of cotton stalk and had optimal mechanical properties at thermaltreatment temperatures of103℃and140℃with best thickness swelling property at thethermal treatment temperature of170℃. The SSHC with10%HDPE content had bettermechanical properties, water resistance property and vertical density distribution than thosewithout HDPE content. The mechanical properties of SSHC had a downward trend whenHDPE content increased from10%to40%. The addition of MAPE, PF and pMDI couplingagents in the composites increased the interfacial adhesion between the biomass stalks andHDPE, which resulted in physical and mechanical increase of composites.
     4. The molding mechanisms of biomass stalk-HDPE composites were investigated using pressure testing duing hot pressing process, infrared spectroscopy, microstructure andcomposite failure observation. The results showed that the higher the HDPE content ofcomposite mat, the smaller the pressure of hot press to obtain the same mat density and thegreater the variation of vertical density profile of resulted composites. Mechanicalinterlocking and chemical bonding that produced by HDPE and coupling agents improved theinterfacial adhesion between biomass stalk and HDPE and contributed to the increase ofphysical and mechanical properties. The composites failure occurred at stalk pith, interfacebetween stalks and between stalks and HDPE.
     5. Independent parallel reaction model was employed to predict the thermal degradationof biomass stalks during hot pressing process. The reaction energies of water-soluble water,hemicelluloses, cellulose and lignin of sweet sorghum stalk were101,110,202and26kJ/mol respectively, and their pre-exponential factors were1.2×10~(11),5.0×10~9,3.0×10~(17)and20min~(1), respectively. Thermal degradation of sweet sorghum stalk at composites with10%HDPE content under the hot-press temperature of160℃for10minutes was predicted andfound to be5.4%,2.8%and2.0%at surface, one quarter thickness position and core of mat.
     6. Mathematical models for predicting specific heat capacity of sweet sorghum andHDPE were created based on experimental testing data. The specific heat capacity of sweetsorghum and HDPE before melting increased with temperature. Gauss equation and Lorentzequation were used to fit the apparent specific heat capacity of HDPE caused by heatabsorption during melting.
     7. Mathematical model including HDPE content, density and temperature for predictingthermal conductivity of biomass stalk-HDPE oriented composites was established based ontesting data at steady-state condition. The results showed that thermal conductivity of SSHClinearly increased with composite density and temperature, and non-linearly increase withHDPE content.
     8. One-dimensional heat conduction model including heat absorption of HDPE duringmelting was created and numerically solved using Matlab. Simulation results of the modelwere compared with experimental testing data and found had good consistency. Thesimulation and testing results showed that the heat absorption caused by HDPE meltingincreased with HDPE content when the mat temperature reach the melting temperature ofHDPE, and resulted in lower temperature of mat during final stage of hot press processing athigher HDPE content.
引文
陈桂华.2006.农作物秸秆表面性能及胶合重组技术研究.[博士论文].长沙:中南林业科技大学
    陈海翔.2006.生物质热解的物理化学模型与分析方法研究.[博士论文].合肥:中国科学技术大学
    柴岩,万富世.2007.中国小杂粮产业发展报告.中国农业科学技术出版社.
    国家林业局.2012a.中国森林资源(2004-2008年),北京.
    国家林业局.2012b.中国林业统计年鉴.中国林业出版社,北京.
    国家统计局农村社会经济调查司.2012.中国农村统计年鉴,北京.
    韩鲁佳,闫巧娟,刘向阳,胡金有.2012.中国农作物秸秆资源及其利用现状农业工程学报,18(3),87-91
    蔺焘,郭文静,高黎,常亮,王正.2012.棉秆的解剖特性及化学成分研究.西北林学院学报,27(5),201-206.
    联合国粮食及农业组织.2012.2012年世界森林状况.联合国粮食及农业组织,罗马.
    刘一星,赵广杰.2004.木质资源材料学.中国林业出版社,北京.
    宋孝周.2008.秸秆重组材制备及成板机理研究.[博士论文].杨凌:西北农林科技大学
    王丽,李雪铭,许妍.2008.中国大陆秸秆露天焚烧的经济损失研究.干旱区资源与环境,22(2),170-175.
    王旺霞,谷峰,金永灿,张厚民, HasanJameel, Phillips, R.,李忠正.2011.绿液预处理对棉秆化学成分及酶水解糖化的影响.纤维素科学与技术,19(3),1-10.
    王新运.2006.生物质热解动力学研究.[硕士论文].淮南:安徽理工大学
    吴清良,赖燕玲,顾海静,梁以流.2011.导热系数测试方法的综述.佛山陶瓷,184(12),20-22.
    于文吉,马红霞,王天佑,李同军,来宽清.2005.农作物秸秆人造板发展现状与应用前景.木材工业,9(4),5-8.
    隋月梅.2011.酚醛树脂胶黏剂的研究进展.黑龙江科学,2(3),42-44.
    中国石油化工股份有限公司.2009. HDPE牌号. http://www.sinopec.com/products_services/for_business/chemical_products/resin/20080324/2965.shtml[2009-07-20].
    中国碳汇林网.2011.中国森林覆盖现状,中国碳汇林网.http://www.carbontree.com.cn/newsshow.asp?bid=538[2013-04-01].
    张强.2007.热压法木材/聚丙烯复合材料的制备及性能研究.[硕士论文].福州:福建农林大学
    曾敏.2011.喷蒸热压法棉秆无胶碎料板的研究.[硕士论文].南京:中南林业科技大学
    Almodares, A., Hadi, M.R.2009. Production of bioethanol from sweet sorghum: a review. African Journalof Agriculature Research,4(9),772-780.
    Arbelaiz, A., Fernández, B., Ramos, J.A., Retegi, A., Llano-Ponte, R., Mondragon, I.2005. Mechanicalproperties of short flax fibre bundle/polypropylene composites: Influence of matrix/fibre modification,fibre content, water uptake and recycling. Composites Science and Technology,65(10),1582-1592.
    Ashori, A.2008. Wood-plastic composites as promising green-composites for automotive industries!Bioresource Technology,99(11),4661-4667.
    Ashori, A., Nourbakhsh, A.2009. Characteristics of wood–fiber plastic composites made of recycledmaterials. Waste Management,29(4),1291-1295.
    ASTM-International.2011. Standard test method for determining specific heat capacity by differentialscanning calorimetry. ASTM E1269-11, ASTM International. Pennsylvania, United States, pp.6.
    ASTM-International.2007. Standard Test Method for Decomposition Kinetics by Thermogravimetry.ASTM E1641-07, ASTM International. Pennsylvania, United States.
    Ayrilmis, N., Jarusombuti, S.2010. Flat-pressed Wood Plastic Composite as an Alternative to ConventionalWood-based Panels. Journal of Composite Materials,45(1),103-112.
    Ayrilmis, N., Buyuksari, U.2011. Enhancement of Dimensional Stability of Biocomposites ContainingAgricultural Waste by Heat-Treatment Method. Drying Technology,29(5),591-598.
    Ayrilmis, N., Jarusombuti, S.2011. Flat-pressed Wood Plastic Composite as an Alternative to ConventionalWood-based Panels. Journal of Composite Materials,45(1),10.
    B.Volbehr.1896. Swelling of wood fibers, Vol. Ph.D, Kiel. Germany.
    Benthien, J.T., Thoemen, H.2012. Effects of raw materials and process parameters on the physical andmechanical properties of flat pressed WPC panels. Composites Part A: Applied Science andManufacturing,43(4),570-576.
    Billa, E., Koullas, D.P., Monties, B., Koukios, E.G.1997. Structure and composition of sweet sorghum stalkcomponents. Industrial Crop Production,6(3–4),297-302.
    Bledzki, A.K., Mamun, A.A., Volk, J.2010. Physical, chemical and surface properties of wheat husk, ryehusk and soft wood and their polypropylene composites. Composites Part A: Applied Science andManufacturing,41(4),480-488.
    Brown, M.E., Galwey, A.K.1979. The distinguishability of selected kinetic models for isothermal solid-state reactions. Thermochimica Acta,29(1),129-146.
    Capart, R., Khezami, L., Burnham, A.K.2004. Assessment of various kinetic models for the pyrolysis of amicrogranular cellulose. Thermochimica Acta,417(1),79-89.
    Cardoso, C.R., Miranda, M.R., Santos, K.G., Ataíde, C.H.2011. Determination of kinetic parameters andanalytical pyrolysis of tobacco waste and sorghum bagasse. Journal of Analytical and AppliedPyrolysis,92(2),392-400.
    Carvalho, L.M.H., Costa, C.A.V.1998. Modeling and simulation of the hot-pressing processing process inthe production fo medium density fiberboard (MDF). Chemical Engineering Communications,170(1),1-21.
    Chen, G., Leung, D.Y.C.2003. Experimental Investigation of Biomass Waste,(Rice Straw, Cotton Stalk,and Pine Sawdust), Pyrolysis Characteristics. Energy Sources,25(4),331-337.
    Chen, H.C., Chen, T.Y., Hsu, C.H.2006. Effects of Wood Particle Size and Mixing Ratios of HDPE on theProperties of the Composites. European Journal of Wood and Wood Products,64(3),172-177.
    Colom, X., Carrillo, F., Nogués, F., Garriga, P.2003. Structural analysis of photodegraded wood by meansof FTIR spectroscopy. Polymer Degradation and Stability,80(3),543-549.
    Dai, C., Yu, C.2004. Heat and Mass Transfer in Wood Composite Panels During Hot-Pressing: Part I. APhysical-Mathematical Model. Wood and Fiber Science,36(4),585-597.
    Das, S., Malmberg, M.J., Frazier, C.E.2007. Cure chemistry of wood/polymeric isocyanate (PMDI) bonds:Effect of wood species. International Journal of Adhesion and Adhesives,27(3),250-257.
    Dey, T.K., Tripathi, M.2010. Thermal properties of silicon powder filled high-density polyethylenecomposites. Thermochimica Acta,502(1–2),35-42.
    Di Blasi, C.2008. Modeling chemical and physical processes of wood and biomass pyrolysis. Progress inEnerty and Combustion Science,34(1),47-90.
    Dunlap, F.1912. The specific heat of wood. U.S. Departmet of Agriculture, Government Printing Office,Washington, D.C.
    Esteves, B., Gra a, J., Pereira, H.2008. Extractive composition and summative chemical analysis ofthermally treated eucalypt wood. Holzforschung,62(3),344-351.
    Esteves, B.M., Pereira, H.M.2009. Wood modification by heat treatment: A review. Bioresource,4(1),370-404.
    Falk, R.H., Vos, D., Cramer, S.M.1999. The comparative performance of woodfiber-plastic and wood-based panels. in: The Fifth International Conference on Woodfiber-Plastic Composites. Madison, pp.270-274.
    FAO.2013.世界主要粮食以及秸秆产量. http://www.fao.org/corp/statistics/en/[2013-04-13]
    Flynn, J.H., Wall, L.A.1966. A quick, direct method for the determination of activation energy fromthermogravimetric data. Journal of Polymer Science Part B: Polymer Letters,4(5),323-328.
    Follrich, J., Muller, U., Gindl, W., Mundigler, N.2010. Effects of Long-term Storage on the MechanicalCharacteristics of Wood Plastic Composites Produced from Thermally Modified Wood Fibers. Journalof Thermoplastic Composite Materials,23(6),845-853.
    Forest Products Laboratory.2010. Wood handbook:wood as an engineering material. Forest ProductsLaboratory, Madison, Wisconsin.
    Friedman, H.L.1964. Kinetics of thermal degradation of char-forming plastics from thermogravimetry.Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia,6(1),183-195.
    Garc a-Pèrez, M., Chaala, A., Yang, J., Roy, C.2001. Co-pyrolysis of sugarcane bagasse with petroleumresidue. Part I: thermogravimetric analysis. Fuel,80(9),1245-1258.
    Gnansounou, E., Dauriat, A., Wyman, C.E.2005. Refining sweet sorghum to ethanol and sugar: economictrade-offs in the context of North China. Bioresource Technology,96(9),985-1002.
    Habibi, Y., El-Zawawy, W.K., Ibrahim, M.M., Dufresne, A.2008. Processing and characterization ofreinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrialresidues. Composites Science and Technology,68(7–8),1877-1885.
    He, G., Riedl, B.2004. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in thepresence of wood substrates. Wood Science and Technology,38(1),69-81.
    Hu, S.M., Xu, M.2010. Coupling Agents Effect on Properties of Straw/HDPE Composites and MechanismAnalysis. Advanced Materials Research,113-116,1797-1800.
    Humphrey, P.E.1989. The Hot Pressing of Dry-formed Wood-based Composites. Part II. A SimulationModel for Heat and Moisture Transfer, and Typical Results. Holzforschung,43(3),199-206.
    Idicula, M., Boudenne, A., Umadevi, L., Ibos, L., Candau, Y., Thomas, S.2006. Thermophysical propertiesof natural fibre reinforced polyester composites. Composites Science and Technology,66(15),2719-2725.
    J., B., C., B.M., R., G.1989. Thermal treatment of wood: analysis of the obtained product. Springer, Berlin,Allemagen.
    K.E.Wikes.1981. Thermo-physical properties data base activities at Owens-Corning fiberglas. in: Thermalperformance of the exterior envelopes of buildings, ASHRAE SP28, American Society of Heating,Refrigerating and Air-Conditioning Engineers. Atlanta, pp.662-677.
    Kaboorani, A., Faezipour, M., Ebrahimi, G.2008. Feasibility of Using Heat Treated Wood inWood/Thermoplastic Composites. Journal of Reinforced Plastics and Composites,27(16-17),1689-1699.
    Kalaprasad, G., Pradeep, P., Mathew, G., Pavithran, C., Thomas, S.2000. Thermal conductivity and thermaldiffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimatelymixed sisal/glass fibres. Composites Science and Technology,60(16),2967-2977.
    Kamke, F.A.1989. Effects of wood-based panel characteristics on thermal conductivity. Forest ProductsJournal,39(5),19-24.
    Kargarfard, A., Jahan-Latibari, A.2011. The performance of corn and cottn stalks for medium densityfiberboard production. Bioresoures,6(2),1147-1157.
    Kim, H.-S., Kim, S., Kim, H.-J., Yang, H.-S.2006. Thermal properties of bio-flour-filled polyolefincomposites with different compatibilizing agent type and content. Thermochimica Acta,451(1–2),181-188.
    Kollmann, F.1951. Tecnologie des Holzes und der Holzwerkstoffe/Franz Kollmann, Berlin: Springer.
    Kumluta, D., Tavman,.H., Turhan oban, M.2003. Thermal conductivity of particle filled polyethylenecomposite materials. Composites Science and Technology,63(1),113-117.
    Lewis, W.C.1967. Thermal Conductivity of Wood-Base Fiber and Particle Panel Materials. USFS, ForestProducts Laboratory Research Paper, FPL-RP-77.
    Li, G., Yu, Y., Zhao, Z., Li, J., Li, C.2003. Properties study of cotton stalk fiber/gypsum composite. Cementand Concrete Research,33(1),43-46.
    Li, X., Tabil, L.G., Oguocha, I.N., Panigrahi, S.2008. Thermal diffusivity, thermal conductivity, andspecific heat of flax fiber–HDPE biocomposites at processing temperatures. Composites Science andTechnology,68(7–8),1753-1758.
    Lin, Q., Zhou, X., Dai, G.2002. Effect of hydrothermal environment on moisture absorption andmechanical properties of wood flour–filled polypropylene composites. Journal of Applied PolymerScience,85(14),2824-2832.
    M.W.Woo, P.Wong, T.Tang, V.Triacca, P.E.Gloor.1995. Melting behavior and thermal properties of highdensity polyethylene. Polymer Engineering&Science,35(2),151-156.
    MacLean, J.D.1941. thermal conductivity of wood. Heating Piping Air Condition,13,380-391.
    Malkapuram, R., Kumar, V., Negi, Y.S.2008. Recent Development in Natural Fiber ReinforcedPolypropylene Composites. Journal of Reinforced Plasitcs&Composites,28(10),1169-1189.
    Mamleev, V., Bourbigot, S., Yvon, J.2007. Kinetic analysis of the thermal decomposition of cellulose: Themain step of mass loss. Journal of Analytical and Applied Pyrolysis,80(1),151-165.
    Maxwell, J.C.1954. A treatise on electricity and magnetism.3rd ed. Courier Dover Publications, New York.
    Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K., Wolcott, M.2009a. Effects of processingmethod and fiber size on the structure and properties of wood–plastic composites. Composites Part A:Applied Science and Manufacturing,40(1),80-85.
    Migneault, S., Koubaa, A., Erchiqui, F., Chaala, A., Englund, K., Wolcott, M.P.2009b. Effects ofprocessing method and fiber size on the structure and properties of wood–plastic composites.Composites Part A: Applied Science and Manufacturing,40(1),80-85.
    Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M.2009. Thermal analysis anddevolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and airatmospheres. Bioresource Technology,100(3),1413-1418.
    Nagarajan, V., Misra, M., Mohanty, A.K.2013. New engineered biocomposites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly(butylene adipate-co-terephthalate)(PBAT)blends and switchgrass: Fabrication and performance evaluation. Industrial Crops and Products,42(0),461-468.
    Nayak, R., Tarkes, D.P., Satapathy, A.2010. A computational and experimental investigation on thermalconductivity of particle reinforced epoxy composites. Computat. Mater. Sci.,48(3),576-581.
    Ouajai, S., Shanks, R.A.2005. Composition, structure and thermal degradation of hemp cellulose afterchemical treatments. Polymmer Degradation and Stability.,89(2),327-335.
    Ozawa, T.1965. A New Method of Analyzing Thermogravimetric Data. Bulletin of the Chemical Society ofJapan,38(11),1881-1886.
    Panthapulakkal, S., Sain, M.2007. Agro-residue reinforced high-density polyethylene composites: Fibercharacterization and analysis of composite properties. Composites Part A: Applied Science andManufacturing,38(6),1445-1454.
    Pauluhn, J., Brown, W.E., Hext, P., Leibold, E., Leng, G.2006. Analysis of biomarkers in rats and dogsexposed to polymeric methylenediphenyl diisocyanate (pMDI) and its glutathione adduct. Toxicology,222(3),202-212.
    Qi, C., Guo, K., Liu, Y.2012. Preparation and properties of cotton stalk bundles and high-densitypolyethylene composites using hot-press molding. Journal of Reinforced Plasitcs&Composites,31(15),1017-1024.
    Reddy, N., Yang, Y.2009. Properties and potential applications of natural cellulose fibers from the bark ofcotton stalks. Bioresource Technology,100(14),3563-3569.
    Rowell, R.M.2005. Handbook of Wood Chemistry and Wood Composites. Taylor&Francis.
    Russell, H.W.1935. Principles of heat flow in porous insulators. J. Amer. Ceramic Society,18(1-12),1-5.
    Sahoo, S., Misra, M., Mohanty, A.K.2011. Enhanced properties of lignin-based biodegradable polymercomposites using injection moulding process. Composites Part A: Applied Science and Manufacturing,42(11),1710-1718.
    Satyanarayana, K.G., Arizaga, G.G.C., Wypych, F.2009. Biodegradable composites based on lignocellulosicfibers—An overview. Progress in Polymer Science,34(9),982-1021.
    Sellers, T., Miller, G.D., Katabian, M.2000. Recycled thermoplastics reinforced with renewablelignocellulosic materials. Composite and Manufactured Products,50(5),24-28.
    Shi, S.Q., Gardner, D.J.2006. Hygroscopic thickness swelling rate of compression molded woodfiberboard and wood fiber/polymer composites. Composites Part A: Applied Science andManufacturing,37(9),1276-1285.
    Siau, J.F.1984. Transport processes in wood. Springer-Verlag, Berlin.
    Skreiberg, A., Skreiberg,., Sandquist, J., S rum, L.2011. TGA and macro-TGA characterisation ofbiomass fuels and fuel mixtures. Fuel,90(6),2182-2197.
    Stanish, M.A., Schajer, G.S., Kayihan, F.1986. A mathematical model of drying for hygroscopic porousmedia. AIChE Journal,32(8),1301-1311.
    Stark, N.M., Rowlands, R.E.2003. Effects of wood fiber characteristics on mechanical properties of woodpolypropylene composites. Wood and Fiber Science,35(2),167-174.
    Steinhagen, H.P.1977. Thermal conductive properties of wood, green or dry, from-40°to+100°C: aliterature review, Gen. Tech. Rep. FPL-09. Madison, WI: U.S. Department of Agriculture, ForestService, Forest Products Laboratory.
    Suleiman, B.M., Larfeldt, J., Leckner, B., Gustavsson, M.1999. Thermal conductivity and diffusivity ofwood. Wood Science and Technology,33(6),465-473.
    Sun, L., Chen, J.Y., Negulescu, I.I., Moore, M.A., Collier, B.J.2011. Kinetics modeling of dynamicpyrolysis of bagasse fibers. Bioresource Technology,102(2),1951-1958.
    Tang, L., Zhang, Z.-g., Qi, J., Zhao, J.-r., Feng, Y.2011. The preparation and application of a newformaldehyde-free adhesive for plywood. International Journal of Adhesion and Adhesives,31(6),507-512.
    Tavman, I., Aydogdu, Y., K k, M., Turgut, A., Ezan, A.2011. Measurement of heat capacity and thermalconductivity of HDPE/expanded graphite nanocomposites by differential scanning calorimetry.Archives of Materials Science and Engineering,50(1),56-60.
    TenWolde, A., McNatt, J.D., Krahn, L.1988. Thermal Properties of wood and wood panel products for usein buildings, Oak Ridge National Laboratory.http://www.fpl.fs.fed.us/documnts/pdf1988/tenwo88a.pdf.
    Thamae, T., Marien, R., Chong, L., Wu, C., Baillie, C.2008. Developing and characterizing new materialsbased on waste plastic and agro-fibre. Journal of Materials Science,43(12),4057-4068.
    Thoemen, H., Humphrey, P.2003. Modeling the Continuous Pressing Process for Wood-Based Composites.Wood and Fiber Science,35(3),456-468.
    tiemann, H.1920. Effect of Different Methods of Drying on the Strength and Hygroscopicity of Wood.third ed. in: The Kiln Drying of Lumber, J.P. Lippincott Co.
    U ar, G., Meier, D., Faix, O., Wegener, G.2005. Analytical pyrolysis and FTIR spectroscopy of fossilSequoiadendron giganteum (Lindl.) wood and MWLs isolated hereof. European Journal of Wood andWood Products,63(1),57-63.
    USDA.2013.农作物产量.http://www.usda.gov/wps/portal/usda/usdahome?navid=DATA_STATISTICS[2013-04-13]
    Vyazovkin, S., Wight, C.A.1998. Isothermal and non-isothermal kinetics of thermally stimulated reactionsof solids. International Reviews in Physical Chemistry,17(3),407-433.
    White, J.E., Catallo, W.J., Legendre, B.L.2011. Biomass pyrolysis kinetics: A comparative critical reviewwith relevant agricultural residue case studies. Journal of Analytical and Applied Pyrolysis,91(1),1-33.
    Wikberg, H., Liisa Maunu, S.2004. Characterisation of thermally modified hard-and softwoods by13CCPMAS NMR. Carbohydrate Polymers,58(4),461-466.
    Wilkes, G.B., Wood, C.O.1942. The specific heat of thermal insulating materials. American Society ofHeating and Ventilating Engineers.
    Windeisen, E., Strobel, C., Wegener, G.2007. Chemical changes during the production of thermo-treatedbeech wood. Wood Science and Technology,41(6),523-536.
    Wolcott, M.P., Englund, K.1999. A technology review of wood-plastic composites. Proceedings of the33rdinternational particleboard and composite materials symposium, April, Pullman, WA. pp.103-111.
    Wu, Y., Dollimore, D.1998. Kinetic studies of thermal degradation of natural cellulosic materials.Thermochimica Acta,324(1–2),49-57.
    Yao, F., Wu, Q., Lei, Y., Guo, W., Xu, Y.2008. Thermal decomposition kinetics of natural fibers: Activationenergy with dynamic thermogravimetric analysis. Polymer Degradation and Stability,93(1),90-98.
    Youngquist, J.A., Krzysik, A.M., Muehl, J.H., Carll, C.1992. Mechanical and physical properties of air-formed wood-fiber-polymer-fiber composites. Forest Products Journal,42(6),42-48.
    Yu, J., Zhang, T., Zhong, J., Zhang, X., Tan, T.2012. Biorefinery of sweet sorghum stem. BiotechnologyAdvances,30(4),811-816.
    Zampaloni, M., Pourboghrat, F., Yankovich, S.A., Rodgers, B.N., Moore, J., Drzal, L.T., Mohanty, A.K.,Misra, M.2007. Kenaf natural fiber reinforced polypropylene composites: A discussion onmanufacturing problems and solutions. Composites Part A: Applied Science and Manufacturing,38(6),1569-1580.
    Zhang, X., Xu, M., Sun, R., Sun, L.2006. Study on biomass pyrolysis kinetics. American Society ofMechanical Engineers, New York, N, ETATS-UNIS.
    Zhong, J., Zhang, L., Yu, J., Tan, T., Zhang, X.2010. Studies of different kinds of fiber pretreating on theproperties of PLA/sweet sorghum fiber composites. Journal of Applied Polymer Science,117(3),1385-1393.
    Zhou, X.-y., Zheng, F., Li, H.-g., Lu, C.-l.2010. An environment-friendly thermal insulation material fromcotton stalk fibers. Energy and Buildings,42(7),1070-1074.
    Zombort, B., Kamke, F., Watson, L.2003. Simulation of the Internal Conditions During The Hot-PressingProcess. Wood and Fiber Science,35(1),2-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700