两亲性纤维素及其自组装纳米胶束的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物胶束在药物传递等领域具有重要的应用前景,然而,基于合成类聚合物纳米胶束存在成本高、潜在生物毒性等缺点。因此,发展基于天然材料的两亲性聚合物成为研究热点,但是由于纤维素的难溶解性,导致迄今为止基于纤维素的两亲性聚合物研究非常有限。本论文以纤维素的高值化转化利用为出发点,重点研究纤维素的两亲性改性与其自组装胶束的制备,并初步探讨了两亲性纤维素基纳米胶束在药物传递、生物成像以及传感等新兴高科技领域的应用,为发展绿色廉价的天然高分子聚合物胶束,实现生物质资源的高值化应用开辟新途径。本论文主要在如下几个方面开展创新性研究工作:
     1.在离子液体绿色溶剂反应介质中,分别以具有优良生物可降解性和生物相容性的聚乳酸、聚己内酯和聚对二氧环己酮作为侧链,对纤维素及其水溶性衍生物进行疏水化改性,制得三大类新型纤维素基两亲性聚合物衍生物。制备的纤维素基两亲性共聚物在水溶液中可自组装形成壳核结构的纳米胶束。通过调节衍生物中疏水基团的取代度可以有效控制其自组装行为和纳米胶束的粒径大小。MTT研究显示,此三类纤维素基两亲性聚合物对细胞无明显生物毒性。
     2.在DMSO体系中,羟乙基纤维素与高级脂肪酸经CDI活化催化后,室温下即可发生酯化反应。改性后的衍生物具有良好的自组装性能,临界胶束浓度低至0.0019mg/mL和0.0016mg/mL,具有很强的抗稀释稳定性。此类纳米胶束可高效负载疏水性抗氧化剂β-胡萝卜素,并表现出良好的缓释效果,有望在化妆品辅料或功能食品领域获得应用。
     3.采用长碳链酰氯对纤维素分子链直接进行疏水酯化改性,制得一系列具备不同碳链长度的纤维素疏水化衍生物。此类衍生物在水溶液中自组装形成单分散球形纳米粒子,且纳米粒子的粒径可通过改变疏水碳链长度进行调控。此外,通过HEC与溴代十二烷之间的醚化反应,合成了HEC的疏水改性衍生物,其可在水溶液中自组装形成20~30nm球形胶束。
     4.纤维素基纳米胶束包载毒性大、不溶解、生物利用率低的抗癌药物紫杉醇(PTX),具有高包埋效率(>90%)和良好的缓释效果,深入探讨纤维素基纳米胶束与药物传递之间的“构-效关系”。体外细胞实验结果表明,负载PTX的纳米胶束对肿瘤细胞Hepg2和Hela具有与商业化产品Taxol相近的抗肿瘤活性。而且,负载PTX纳米胶束的抗肿瘤活性随作用时间延长而明显增强,具有延长的治疗效果。细胞流式和DAPI染色结果表明纳米胶束中的PTX主要通过细胞凋亡作用来抑制肿瘤细胞生长。
     5.利用纤维素基纳米胶束包载共轭聚合物荧光染料和量子点,制备新型纤维素基高效荧光纳米材料,并考察其在生物成像领域的应用。实验发现,纤维素基纳米胶束可高效包载疏水性荧光染料和量子点,包载后染料未出现明显的荧光猝灭现象,荧光纳米胶束于室温下可稳定保存一周以上。荧光纳米胶束对小鼠干细胞无明显生物毒性,且可通过吞噬作用进入细胞内部,成功实现疏水性荧光染料于水相体系中的细胞成像。
     6.成功实现了纤维素基纳米胶束对商业化疏水性荧光共轭聚合物9,9-二辛基聚芴(PFO)的高效包载,为普通疏水性荧光共轭聚合物的水相应用开辟了一条新的途径。包载PFO的纤维素基荧光纳米胶束对水相中痕量硝基苯类爆炸物(DNT、苦味酸等)具有优异的荧光传感检测性能,传感系数比相同染料在有机相中的传感系数增强50~200倍。该现象的发现对于开发新型纳米胶束传感器和拓展荧光共轭聚合物的应用具有非常重要的意义。
The polymeric micelles, which are commonly composed by synthetic block amphiphliccopolymers, have been established great potential application in the field of drug or genedelivery. However, the large-scale application of many synthetic block copolymers is limitedby their high prices and potential biotoxicity. Therefore, there has been a growing interest indeveloping amphihilic copolymers from natural polysaccharies. It’s well known that celluloseis one of the most abundant natural polysaccharides in the world. However, thecellulose-based amphiphilic derivatives have not been efficiently exploited due to itsinsolubility in water and common organic solvents. In respond to the need of efficientlyconversing cellulose to value-added products, this thesis is mainly focused on the design andpreparation of amphiphilic cellulose polymers and their self-assembled nanomicelles.Additionally, the potential application of cellulose-based nanomicelles in the fields of drugdelivery, bioimaging and sensing was also investigated. This work would not only develop thegreen and cheap micelle-forming materials from natural resources, but also offer analternative way for the value-added conversion of agricultural and forest waste biomass. Aseries of innovative researches were carried out as follows:
     1. The amphiphilic cellulose copolymers with excellent biodegradable and biocompatibleproperties were homogeneously prepared in the green solvent of ionic liquids. Three kinds ofhydrophobic aliphatic polyesters, polylactide (PLA), polycaprolactone (PCL) andpolydioxanone (PPDO) were grafted onto the backbone of cellulose and cellulose’swater-soluble derivatives through the ring opening polymerization, respectively. It was foundthat the cellulose-based amphiphilic copolymers could self-assemble into core-shell structuredmicelles in aqueous water. The hydrophobic core was formed by the biodegradable sidechains such as PLA, PCL and PPDO, while the outer shells were formed by the main-chain ofcellulose. The self-assembly behavior of these amphiphilic cellulose derivatives in aqueouswater was found to be affected by their molecular structure, especailly the degree ofsubstitution of hydrophobic groups. The MTT assay showed that these amphphilic cellulosemicelles were safe to be applied in biological system.
     2. Through activation of carbonyldiimidazole, the acylation between hydroxyethylcellulose and long-chain fatty acid were successfully carried out in the solvent of DMSO atroom temperature. The obtained derivatives have excellent self-assembly behavior and theircritical micelle concentrations were as low as0.0019mg/mL and0.0016mg/mL, respectively, indicating that these kinds of micelles have good anti-dilution stability. It was also found thatthe cellulose-based micelles could efficiently encapsulate the hydrophobic functional moietiesof β-carotene and make them slowly released in the aqueous medium, which means thenanocarriers may be used as cosmetics or food additives.
     3. A series of cellulose-based hydrophobic associating polymers with different DS valuesand chain lengths were successfully prepared by homogeneous acylation of microcrystallinecellulose with long-chain acyl chloride. It was found that these cellulose derivatives couldself-assemble into monodispersed nanoparticles with spherical shapes in aqueous solution andtheir diameters can be controlled by adjusting the chain length of hydrophobic groups.Additionally, the hydrophobic modified hydroxyethyl cellulose derivatives (HMHEC) wereeasily synthesized by introducing hydrophobic moieties (long-chain alkyl groups) into thebackbone of HEC. The HMHEC could form near spherical particles with diameters in therange of20-30nm.
     4. The novel and biodegradable cellulose-based nanomicelles were used to encapsulatethe hydrophobic anticancer drug of paclitaxel (PTX) to overcome its drawbacks such astoxicity, insolubility in aqueous water, and low biological availability. It was found that thecellulose-based nanomicelles can uptake PTX with high encapsulation efficiency up to90%,and the release behavior of PTX was in a steady and slowly pattern. The in vitro anti-tumoractivity was assessed using the Human Cervix Carcinoma cells (Hela) and hepatoma cell(Hepg2) by MTT test and was compared to the commercial formulation Taxol. ThePTX-loaded nanomicelles have a similar cell inhibition rate to that of Taxol. Furthermore, cellinhibition of PTX-loaded nanomicelles was dependent on the treated time, increasing withprolonging of the treated time. The results from flow cytometry and DAPI staining indicatedthat PTX from nanomicelles could induce cell apoptosis to achieve tumor inhibition.
     5. The novel fluorescent amphiphilic cellulose nanoaggregates were successfullyprepared by encapsulation of hydrophobic fluorescent conjugated polymers (CPs) or quantumdots (QD) in the amphiphilic cellulose nanomicelles and their application in the field ofbioimaging was also evaluated. It was found that CPs or QD can be encapsulated into thecores of micelles with high efficiency and no obvious fluorescence quenching was observed.This fluorescent cellulose-based nanomicelles were kept stable after stored for7days at roomtemperature. The fluorescent nanomicelles were observed to be non-toxicity, and can beinternalized and imaging in live cells via cell endocytosis. Potentially, this method proposedin this part may be applied in biological cells imaging in aqueous solution.
     6. The common commercially available light-emitting conjugated polymers of poly(9,9-dioctylfluorene (PFO) were easily dispersed into water by efficiently encapsulatedthem in the amphiphilic cellulose nanomicelles, which could offer an alternative way to usethose common hydrophobic CPs in aqueous solution. The PFO-containing cellulose-basedmicelles were successfully used to detect trace amounts of nitroaromatics (2,4-dinitrotoluene,picric acid) in aqueous solution and the sensitivity of PFO in nanomielles was50~200higherthan that of the chromophores in organic solvent, which means the cellulose nanomicelles canbe used to develop the novel nanocarriers for sensoring and extending the application regionof CPs.
引文
[1] Hans A. Cellulose: Structure, accessibility and reactivity, in Taylor&Francis: London,1993
    [2] Sdrobis A.; Darie R.N.; Totolin M.; et al. Low density polyethylene composites containingcellulose pulp fibers [J]. Composites Part B: Engineering,2012,43(4):1873-1880
    [3] Rose M.; Palkovits R. Cellulose-based sustainable polymers: State of the art and futuretrends [J]. Macromolecular Rapid Communications,2011,32(17):1299-1311
    [4] Alexandridis P. Amphiphilic copolymers and their applications [J]. Current Opinion inColloid&Interface Science,1996,1(4):490-501
    [5] F rster S.; Antonietti M. Amphiphilic block copolymers in structure-controllednanomaterial hybrids [J]. Advanced Materials,1998,10(3):195-217
    [6] Liu Z.; Jiao Y.; Wang Y.; et al. Polysaccharides-based nanoparticles as drug deliverysystems [J]. Advanced Drug Delivery Reviews,2008,60(15):1650-1662
    [7] Choisnard L.; Gèze A.; Putaux J.L.; et al. Nanoparticles of β-cyclodextrin esters obtainedby self-assembling of biotransesterified β-cyclodextrins [J]. Biomacromolecules,2006,7(2):515-520
    [8] Chen X.G.; Lee C.M.; Park H.J. OM emulsification for the self-aggregation andnanoparticle formation of linoleic acid-modified chitosan in the aqueous system [J].Journal of Agricultural and Food Chemistry,2003,51(10):3135-3139
    [9] Liu C.; Fan W.; Chen X.; et al. Self-assembled nanoparticles based on linoleic-acidmodified carboxymethyl-chitosan as carrier of adriamycin (ADR)[J]. Current AppliedPhysics,2007,7(1):125-129
    [10] Liu C.G.; Desai K.G.H.; Chen X.G.; et al. Linolenic acid-modified chitosan for formationof self-assembled nanoparticles [J]. Journal of Agricultural and Food Chemistry,2005,53(2):437-441
    [11] Liu C.G.; Desai K.G.H.; Chen X.G.; et al. Preparation and characterization ofnanoparticles containing trypsin based on hydrophobically modified chitosan [J]. Journalof Agricultural and Food Chemistry,2005,53(5):1728-1733
    [12] Jiang G.B.; Quan D.; Liao K.; et al. Novel polymer micelles prepared from chitosangrafted hydrophobic palmitoyl groups for drug delivery [J]. Molecular Pharmaceutics,2006,3(2):152-160
    [13] Hu F.Q.; Ren G.F.; Yuan H.; et al. Shell cross-linked stearic acid grafted chitosanoligosaccharide self-aggregated micelles for controlled release of paclitaxel [J]. Colloidsand Surfaces B: Biointerfaces,2006,50(2):97-103
    [14] Wu Y.; Zheng Y.L.; Yang W.L.; et al. Synthesis and characterization of a novelamphiphilic chitosan-polylactide graft copolymer [J]. Carbohydrate Polymers,2005,59(2):165-171
    [15] Zhang J.; Chen X.G.; Li Y.Y.; et al. Self-assembled nanoparticles based onhydrophobically modified chitosan as carriers for doxorubicin [J]. Nanomedicine:Nanotechnology Biology and Medicine,2007,3(4):258-265
    [16] Du Y.Z.; Wang L.; Yuan H.; et al. Preparation and characteristics of linoleic acid-graftedchitosan oligosaccharide micelles as a carrier for doxorubicin [J]. Colloids and SurfacesB: Biointerfaces,2009,69(2):257-263
    [17] Gref R.; Rodrigues J.; Couvreur P. Polysaccharides grafted with polyesters: Novelamphiphilic copolymers for biomedical applications [J]. Macromolecules,2002,35(27):9861-9867
    [18] Lemarchand C.; Couvreur P.; Besnard M.; et al. Novel polyester-polysaccharidenanoparticles [J]. Pharmaceutical Research,2003,20(8):1284-1292
    [19] Rodrigues J.S.; Santos-Magalhaes N.S.; Coelho L.; et al. Novel core(polyester)-shell(polysaccharide) nanoparticles: Protein loading and surface modificationwith lectins [J]. Journal of Controlled Release,2003,92(1-2):103-112
    [20] Lemarchand C.; Gref R.; Passirani C.; et al. Influence of polysaccharide coating on theinteractions of nanoparticles with biological systems [J]. Biomaterials,2006,27(1):108-118
    [21] Yu H.J.; Wang W.S.; Chen X.S.; et al. Synthesis and characterization of thebiodegradable polycaprolactone-graft-chitosan amphiphilic copolymers [J]. Biopolymers,2006,83(3):233-242
    [22] Wang Y.S.; Liu L.R.; Jiang Q.; et al. Self-aggregated nanoparticles ofcholesterol-modified chitosan conjugate as a novel carrier of epirubicin [J]. EuropeanPolymer Journal,2007,43(1):43-51
    [23] Wang Y.S.; Jiang Q.; Liu L.R.; et al. The interaction between bovine serum albumin andthe self-aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan [J].Polymer,2007,48(14):4135-4142
    [24] Nishikawa T.; Akiyoshi K.; Sunamoto J. Macromolecular complexation between bovineserum albumin and the self-assembled hydrogel nanoparticle of hydrophobizedpolysaccharides [J]. Journal of the American Chemical Society,1996,118(26):6110-6115
    [25] Akiyoshi K.; Kobayashi S.; Shichibe S.; et al. Self-assembled hydrogel nanoparticle ofcholesterol-bearing pullulan as a carrier of protein drugs: Complexation and stabilizationof insulin [J]. Journal of Controlled Release,1998,54(3):313-320
    [26] Akiyoshi K.; Sasaki Y.; Sunamoto J. Molecular chaperone-like activity of hydrogelnanoparticles of hydrophobized pullulan: Thermal stabilization with refolding ofcarbonic anhydrase B [J]. Bioconjugate Chemistry,1999,10(3):321-324
    [27] Akiyoshi K.; Kang E.C.; Kurumada S.; et al. Controlled association of amphiphilicpolymers in water: Thermosensitive nanoparticles formed by self-assembly ofhydrophobically modified pullulans and poly(N-isopropylacrylamides)[J].Macromolecules,2000,33(9):3244-3249
    [28] Lee K.Y.; Jo W.H.; Kwon I.C.; et al. Structural determination and interior polarity ofself-aggregates prepared from deoxycholic acid-modified chitosan in water [J].Macromolecules,1998,31(2):378-383
    [29] Lee K.Y.; Kwon I.C.; Kim Y.H.; et al. Preparation of chitosan self-aggregates as a genedelivery system [J]. Journal of Controlled Release,1998,51(2-3):213-220
    [30] Lee K.Y.; Kim J.H.; Kwon I.C.; et al. Self-aggregates of deoxycholic acid modifiedchitosan as a novel carrier of adriamycin [J]. Colloid and Polymer Science,2000,278(12):1216-1219
    [31] Chae S.Y.; Son S.; Lee M.; et al. Deoxycholic acid-conjugated chitosan oligosaccharidenanoparticles for efficient gene carrier [J]. Journal of Controlled Release,2005,109(1-3):330-344
    [32] Passirani C.; Barratt G.; Devissaguet J.P.; et al. Long-circulating nanopartides bearingheparin or dextran covalently bound to poly (methyl methacrylate)[J]. PharmaceuticalResearch,1998,15(7):1046-1050
    [33] Chen J.; Zeng F.; Wu S.Z.; et al. A facile approach for cupric ion detection in aqueousmedia using polyethyleneimine/PMMA core-shell fluorescent nanoparticles [J].Nanotechnology,2009,20(36): doi:10.1088/0957-4484/20/36/365502
    [34] Ma B.; Wu S.; Zeng F.; et al. Nanosized diblock copolymer micelles as a scaffold forconstructing a ratiometric fluorescent sensor for metal ion detection in aqueous media [J].Nanotechnology,2010,21(19): doi:10.1088/0957-4484/21/19/195501
    [35] Ma B.; Xu M.; Zeng F.; et al. Micelle nanoparticles for FRET-based ratiometric sensingof mercury ions in water, biological fluids and living cells [J]. Nanotechnology,2011,22(6): doi:10.1088/0957-4484/22/6/065501
    [36] Liu B.; Zeng F.; Wu G.; et al. Nanoparticles as scaffolds for FRET-based ratiometricdetection of mercury ions in water with QDs as donors [J]. Analyst,2012,137(16):3717-3724
    [37] Wu W.C.; Chen C.Y.; Tian Y.; et al. Enhancement of aggregation-induced emission indye-encapsulating polymeric micelles for bioimaging [J]. Advanced Functional Materials,2010,20(9):1413-1423
    [38] Landoll L.M. Nonionic polymer surfactants [J]. Journal of Polymer Science: PolymerChemistry Edition,1982,20(6):1649-1649
    [39] Tanaka R.; Meadows J.; Williams P.A.; et al. Interaction of hydrophobically modifiedhydroxyethyl cellulose with various added surfactants [J]. Macromolecules,1992,25(4):1304-1310
    [40] Srokova I.; Talaba P.; Hodul P.; et al. Emulsifying agents based onO-(carboxymethyl)cellulose [J]. Tenside Surfactants Detergents,1998,35(5):342-344
    [41] Srokova I.; Tomanova V.; Ebringerova A.; et al. Water-soluble amphiphilicO-(carboxymethyl)cellulose derivatives-synthesis and properties [J]. MacromolecularMaterials and Engineering,2004,289(1):63-69
    [42] Rosilio V.; Albrecht G.; Baszkin A.; et al. Surface properties of hydrophobically modifiedcarboxymethylcellulose derivatives. Effect of salt and proteins [J]. Colloids and SurfacesB: Biointerfaces,2000,19(2):163-172
    [43] Talaba P.; Srokova I.; Ebringerova A.; et al. Cellulose-based biodegradable polymericsurfactants [J]. Journal of Carbohydrate Chemistry,1997,16(4-5):573-582
    [44]蒋刚彪,周枝凤.羧甲基纤维素接枝长链季铵盐合成两性高分子表面活性剂[J].精细石油化工,2000,1:19-21
    [45] Song Y.B.; Zhang L.Z.; Gan W.P.; et al. Self-assembled micelles based onhydrophobically modified quaternized cellulose for drug delivery [J]. Colloids andSurfaces B: Biointerfaces,2011,83(2):313-320
    [46] Dai S.S.; Ye L.; Huang R.H. A study on the solution behavior ofIPBC-hydrophobically-modified hydroxyethyl cellulose [J]. Journal of Applied PolymerScience,2006,100(4):2824-2831
    [47] Li Q.; Ye L.; Cai Y.; et al. Study of rheological behavior of hydrophobically modifiedhydroxyethyl cellulose [J]. Journal of Applied Polymer Science,2006,100(4):3346-3352
    [48] Zou S.; Zhang W.K.; Zhang X.; et al. Study on polymer micelles of hydrophobicallymodified ethyl hydroxyethyl cellulose using single-molecule force spectroscopy [J].Langmuir,2001,17(16):4799-4808
    [49] Ye L.; Li Q.; Huang R.H. Study on the rheological behavior of the hydrophobicallymodified hydroxyethyl cellulose with1,2-epoxyhexadecane [J]. Journal of AppliedPolymer Science,2006,101(5):2953-2959
    [50] Hwang F.S.; Hogen-Esch T.E. Fluorocarbon-modified water-soluble cellulose derivatives[J]. Macromolecules,1993,26(12):3156-3160
    [51] Jiang C.; Wang X.; Sun P.; et al. Synthesis and solution behavior of poly(ε-caprolactone)grafted hydroxyethyl cellulose copolymers [J]. International Journal of BiologicalMacromolecules,2011,48(1):210-214
    [52] Dou H.J.; Jiang M.; Peng H.S.; et al. pH-dependent self-assembly: Micellization andmicelle-hollow-sphere transition of cellulose-based copolymers [J]. AngewandteChemie-International Edition,2003,42(13):1516-1519
    [53] Ma L.; Kang H.; Liu R.; et al. Smart assembly behaviors ofhydroxypropylcellulose-graft-poly(4-vinyl pyridine) copolymers in aqueous solution bythermo and pH stimuli [J]. Langmuir,2010,26(23):18519-18525
    [54] Ma L.; Liu R.G.; Tan J.J.; et al. Self-assembly and dual-stimuli sensitivities ofhydroxypropylcellulose-graft-poly(N,N-dimethyl aminoethyl methacrylate) copolymersin aqueous solution [J]. Langmuir,2010,26(11):8697-8703
    [55] stmark E.; Harrisson S.; Wooley K.L.; et al. Comb polymers prepared by ATRP fromhydroxypropyl cellulose [J]. Biomacromolecules,2007,8(4):1138-1148.
    [56] Wan S.; Jiang M.; Zhang G. Dual temperature-and pH-dependent self-assembly ofcellulose-based copolymer with a pair of complementary grafts [J]. Macromolecules,2007,40(15):5552-5558
    [57] stmark E.; Nystr m D.; Malmstr m E. Unimolecular nanocontainers prepared by ROPand subsequent ATRP from hydroxypropylcellulose [J]. Macromolecules,2008,41(12):4405-4415
    [58] Berthier D.L.; Herrmann A.; Ouali L. Synthesis of hydroxypropyl cellulose derivativesmodified with amphiphilic diblock copolymer side-chains for the slow release of volatilemolecules [J]. Polymer Chemistry,2011,2(9):2093-2101
    [59] Yang L.Q.; Kuang J.L.; Li Z.Q.; et al. Amphiphilic cholesteryl-bearingcarboxymethylcellulose derivatives: Self-assembly and rheological behaviour in aqueoussolution [J]. Cellulose,2008,15(5):659-669
    [60] Vidal R.R.L.; Balaban R.; Borsali R. Amphiphilic derivatives of carboxymethylcellulose:Evidence for intra-and intermolecular hydrophobic associations in aqueous solutions [J].Polymer Engineering and Science,2008,48(10):2011-2026
    [61] Bagheri M.; Shateri S. Thermosensitive nanosized micelles from cholesteryl-modifiedhydroxypropyl cellulose as a novel carrier of hydrophobic drugs [J]. Iranian PolymerJournal,2012,21(6):365-373
    [62] Shen D.W.; Yu H.; Huang Y. Densely grafting copolymers of ethyl cellulose throughatom transfer radical polymerization [J]. Journal of Polymer Science Part A: PolymerChemistry,2005,43(18):4099-4108
    [63] Shen D.; Yu H.; Huang Y. Synthesis of graft copolymer of ethyl cellulose through livingpolymerization and its self-assembly [J]. Cellulose,2006,13(3):235-244
    [64] Kang H.; Liu W.; He B.; et al. Synthesis of amphiphilic ethyl cellulose graftingpoly(acrylic acid) copolymers and their self-assembly morphologies in water [J].Polymer,2006,47(23):7927-7934
    [65] Kang H.; Liu W.; Liu R.; et al. A novel, amphiphilic ethyl cellulose grafting copolymerwith poly(2-hydroxyethyl methacrylate) side chains and its micellization [J].Macromolecular Chemistry and Physics,2008,209(4):424-430
    [66] Li Y.X.; Liu R.G.; Liu W.Y.; et al. Synthesis, self-assembly, and thermosensitiveproperties of ethyl cellulose-g-P(PEGMA) amphiphilic copolymers [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2008,46(20):6907-6915
    [67] Tan J.J.; Li Y.X.; Liu R.G.; et al. Micellization and sustained drug release behavior ofEC-g-PPEGMA amphiphilic copolymers [J]. Carbohydrate Polymers,2010,81(2):213-218
    [68] Wang D.; Tan J.; Kang H.; et al. Synthesis, self-assembly and drug release behaviors ofpH-responsive copolymers ethyl cellulose-graft-PDAEMA through ATRP [J].Carbohydrate Polymers,2011,84(1):195-202
    [69] Yan Q.; Yuan J.; Zhang F.; et al. Cellulose-based dual graft molecular brushes as potentialdrug nanocarriers: Stimulus-responsive micelles, self-assembled phase transitionbehavior, and tunable crystalline morphologies [J]. Biomacromolecules,2009,10(8):2033-2042
    [70] Yuan W.; Zhang J.; Zou H.; et al. Amphiphilic ethyl cellulose brush polymers with monoand dual side chains: Facile synthesis, self-assembly, and tunable temperature-pHresponsivities [J]. Polymer,2012,53(4):956-966
    [71] Carlmark A.; Malmstr m E. Atom transfer radical polymerization from cellulose fibers atambient temperature [J]. Journal of the American Chemical Society,2002,124(6):900-901
    [72] Carlmark A.; Malmstr m E.E. ATRP grafting from cellulose fibers to createblock-copolymer grafts [J]. Biomacromolecules,2003,4(6):1740-1745
    [73] Liu Z.T.; Sun C.; Liu Z.W.; et al. Adjustable wettability of methyl methacrylate modifiedramie fiber [J]. Journal of Applied Polymer Science,2008,109(5):2888-2894
    [74] Roy D.; Guthrie J.T.; Perrier S. Synthesis of natural-synthetic hybrid materials fromcellulose via the RAFT process [J]. Soft Matterials,2008,4(1):145-155
    [75] Roy D.; Knapp J.S.; Guthrie J.T.; et al. Antibacterial cellulose fiber via RAFT surfacegraft polymerization [J]. Biomacromolecules,2008,9(1):91-99
    [76] Lindqvist J.; Nystrom D.; Ostmark E.; et al. Intelligent dual-responsive cellulose surfacesvia surface-initiated ATRP [J]. Biomacromolecules,2008,9(8):2139-2145
    [77] Nishimura H.; Donkai N.; Miyamoto T. Preparation and properties of a new type ofcomb-shaped, amphiphilic cellulose derivative [J]. Cellulose,1997,4(2):89-98.
    [78]宋强杨益琴.纤维素月桂酸酯的制备及其结构和性能表征[J].南京林业大学学报(自然科学版),2011,35(4):91-95
    [79] Wei Y.; Cheng F.; Hou G.; et al. Amphiphilic cellulose: Surface activity and aqueousself-assembly into nano-sized polymeric micelles [J]. Reactive and Functional Polymers,2008,68(5):981-989
    [80] Dong H.; Xu Q.; Li Y.; et al. The synthesis of biodegradable graft copolymercellulose-graft-poly(L-lactide) and the study of its controlled drug release [J]. Colloidsand Surfaces B: Biointerfaces,2008,66(1):26-33
    [81] Sui X.; Yuan J.; Zhou M.; et al. Synthesis of cellulose-graft-poly(N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and theiraggregates in aqueous media [J]. Biomacromolecules,2008,9(10):2615-2620
    [82] Meng T.; Gao X.; Zhang J.; et al. Graft copolymers prepared by atom transfer radicalpolymerization (ATRP) from cellulose [J]. Polymer,2009,50(2):447-454
    [83] Ifuku S.; Kadla J.F. Preparation of a thermosensitive highly regioselectivecellulose/N-isopropylacrylamide copolymer through atom transfer radicalpolymerization [J]. Biomacromolecules,2008,9(11):3308-3313
    [84] Enomoto-Rogers Y.; Kamitakahara H.; Takano T.; et al. Synthesis of diblock copolymerswith cellulose derivatives.3. Cellulose derivatives carrying a single pyrene group at thereducing-end and fluorescent studies of their self-assembly systems in aqueous solutions[J]. Cellulose,2006,13(4):437-448
    [85] Enomoto-Rogers Y.; Kamitakahara H.; Yoshinaga A.; et al. Synthesis of diblockcopolymers with cellulose derivatives4. Self-assembled nanoparticles of amphiphiliccellulose derivatives carrying a single pyrene group at the reducing-end [J]. Cellulose,2011,18(4):1005-1014
    [86] Whitesides G.M.; Grzybowski B. Self-assembly at all scales [J]. Science,2002,295(5564):2418-2421
    [87] Merle L.; Charpentier D.; Mocanu G.; et al. Comparison of the distribution pattern ofassociative carboxymethylcellulose derivatives [J]. European Polymer Journal,1999,35(1):1-7
    [88] Whitesides G.M.; Mathias J.P.; Seto C.T. Molecular self-assembly and nanochemistry: Achemical strategy for the synthesis of nanostructures [J]. Science,1991,254(5036):1312-1319
    [89] Leventis N.; Mulik S.; Wang X.J.; et al. Polymer nano-encapsulation of templatedmesoporous silica monoliths with improved mechanical properties [J]. Journal ofNon-Crystalline Solids,2008,354(2-9):632-644
    [90] Liu L.; Guo K.; Lu J.; et al. Biologically active core/shell nanoparticles self-assembledfrom cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier [J].Biomaterials,2008,29(10):1509-1517
    [91] Kim J.H.; Emoto K.; Iijima M.; et al. Core-stabilized polymeric micelle as potential drugcarrier: Increased solubilization of taxol [J]. Polymers for Advanced Technologies,1999,10(11):647-654
    [92] Liu J.; Lee H.; Allen C. Formulation of drugs in block copolymer micelles: Drug loadingand release [J]. Current Pharmaceutical Design,2006,12(36):4685-4701
    [93] Zambaux M.F.; Bonneaux F.; Gref R.; et al. Influence of experimental parameters on thecharacteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method[J]. Journal of Controlled Release,1998,50(1-3):31-40
    [94] Butun V.; Billingham N.C.; Armes S.P. Synthesis of shell cross-linked micelles withtunable hydrophilic/hydrophobic cores [J]. Journal of the American Chemical Society,1998,120(46):12135-12136
    [95] Martin T.J.; Procházka K.; Munk P.; et al. pH-dependent micellization ofpoly(2-vinylpyridine)-block-poly(ethylene oxide)[J]. Macromolecules,1996,29(18):6071-6073
    [96]嵇培军,徐坚,叶美玲,施良和.嵌段聚合物胶束的研究进展[J].高分子通报,1999,(4):11-16
    [97] Kalyanasundaram K.; Thomas J.K. Environmental effects on vibronic band intensities inpyrene monomer fluorescence and their application in studies of micellar systems [J].Journal of the American Chemical Society,1977,99(7):2039-2044
    [98] Hu F.Q.; Liu L.N.; Du Y.Z.; et al. Synthesis and antitumor activity of doxorubicinconjugated stearic acid-g-chitosan oligosaccharide polymeric micelles [J]. Biomaterials,2009,30(36):6955-6963
    [99] Yuan H.Y.; Lu L.J.; Du Y.Z.; et al. Stearic acid-g-chitosan polymeric micelle for oral drugdelivery: In vitro transport and in vivo absorption [J]. Molecular Pharmaceutics,2011,8:225-238
    [100] Yao Z.; Zhang C.; Ping Q.; et al. A series of novel chitosan derivatives: Synthesis,characterization and micellar solubilization of paclitaxel [J]. Carbohydrate Polymers,2007,68(4):781-792
    [101] Wang H.; Zhao Y.; Wu Y.; et al. Enhanced anti-tumor efficacy by co-delivery ofdoxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymernanoparticles [J]. Biomaterials,2011,32(32):8281-8290
    [102] Song N.; Liu W.; Tu Q.; et al. Preparation and in vitro properties of redox-responsivepolymeric nanoparticles for paclitaxel delivery [J]. Colloids and Surfaces B:Biointerfaces,2011,87(2):454-463
    [103] Zhang Y.; Huo M.; Zhou J.; et al. Potential of amphiphilically modified low molecularweight chitosan as a novel carrier for hydrophobic anticancer drug: Synthesis,characterization, micellization and cytotoxicity evaluation [J]. Carbohydrate Polymers,2009,77(2):231-238
    [104] Topp M.D.C.; Dijkstra P.J.; Talsma H.; et al. Thermosensitive micelle-forming blockcopolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide)[J].Macromolecules,1997,30(26):8518-8520
    [105] Benahmed A.; Ranger M.; Leroux J.C. Novel polymeric micelles based on theamphiphilic diblock copolymer poly(N-vinyl-2-pyrrolidone)-block-poly(D,L-lactide)[J].Pharmaceutical Research,2001,18(3):323-328
    [106] Saito R.; Okamura S.I.; Ishizu K. Synthesis of poly (vinyl alcohol) core-polystyreneshell type microspheres [J]. Polymer,1995,36(23):4515-4520
    [107] Calderara F.; Riess G. Characterization of polystyrene-block-poly(4-vinyl-pyridine)block copolymer micelles in toluene solution [J]. Macromolecular Chemistry andPhysics,1996,197(7):2115-2132
    [108] Yasugi K.; Nagasaki Y.; Kato M.; et al. Preparation and characterization of polymermicelles from poly(ethylene glycol)-poly(D,L-lactide) block copolymers as potentialdrug carrier [J]. Journal of Controlled Release,1999,62(1-2):89-100
    [109] Park E.K.; Kim S.Y.; Lee S.B.; et al. Folate-conjugated methoxy poly(ethyleneglycol)/poly(ε-caprolactone) amphiphilic block copolymeric micelles for tumor-targeteddrug delivery [J]. Journal of Controlled Release,2005,109(1-3):158-168
    [110] Akagi T.; Kaneko T.; Kida T.; et al. Preparation and characterization of biodegradablenanoparticles based on poly(γ-glutamic acid) with l-phenylalanine as a protein carrier [J].Journal of Controlled Release,2005,108(2-3):226-236
    [111] Chen W.; Chen H.; Hu J.; et al. Synthesis and characterization of polyion complexmicelles between poly(ethylene glycol)-grafted poly(aspartic acid) and cetyltrimethylammonium bromide [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2006,278(1-3):60-66
    [112] Eccleston M.E.; Williams S.L.; Yue Z.; et al. Design and in-vitro testing of effectivepoly(l-lysine iso-phthalamide) based drug targeting systems for solid tumours [J]. Foodand Bioproducts Processing,2005,83(2):141-146
    [113] Brown M.D.; Sch tzlein A.; Brownlie A.; et al. Preliminary characterization of novelamino acid based polymeric vesicles as gene and drug delivery agents [J]. BioconjugateChemistry,2000,11(6):880-891
    [114] Aouada F.A.; De Moura M.r.R.; Orts W.J.; et al. Preparation and characterization ofnovel micro-and nanocomposite hydrogels containing cellulosic fibrils [J]. Journal ofAgricultural and Food Chemistry,2011,59(17):9433-9442
    [115] Murray B.S.; Durga K.; De Groot P.W.N.; et al. Preparation and characterization of thefoam-stabilizing properties of cellulose-ethyl cellulose complexes for use in foods [J].Journal of Agricultural and Food Chemistry,2011,59(24):13277-13288
    [116] Gupta K.C.; Khandekar K. Temperature-responsive cellulose by ceric(IV) ion-initiatedgraft copolymerization of N-isopropylacrylamide [J]. Biomacromolecules,2003,4(3):758-765
    [117] Shen D.; Huang Y. The synthesis of CDA-g-PMMA copolymers through atom transferradical polymerization [J]. Polymer,2004,45(21):7091-7097
    [118] Teramoto Y.; Nishio Y. Biodegradable cellulose diacetate-graft-poly(L-lactide)s:Thermal treatment effect on the development of supramolecular structures [J].Biomacromolecules,2003,5(2):397-406
    [119] Zhu J.; Wang W.T.; Wang X.L.; et al. Green synthesis of a novel biodegradablecopolymer base on cellulose and poly(p-dioxanone) in ionic liquid [J]. CarbohydratePolymers,2009,76(1):139-144
    [120] Yuan W.; Yuan J.; Zhang F.; et al. Syntheses, characterization, and in vitro degradationof ethyl cellulose-graft-poly(ε-caprolactone)-block-poly(L-lactide) copolymers bysequential ring-opening polymerization [J]. Biomacromolecules,2007,8(4):1101-1108
    [121] Chen D.P.; Sun B.Q. New tissue engineering material copolymers of derivatives ofcellulose and lactide: Their synthesis and characterization [J]. Materials Science&Engineering C: Biomimetic and Supramolecular Systems,2000,11(1):57-60
    [122] Buchanan C.; Dorschel D.; Gardner R.; et al. The influence of degree of substitution onblend miscibility and biodegradation of cellulose acetate blends [J]. Journal ofEnvironmental Polymer Degradation,1996,4(3):179-195
    [123] Hao Y.; Peng J.; Li J.Q.; et al. An ionic liquid as reaction media for radiation-inducedgrafting of thermosensitive poly (N-isopropylacrylamide) onto microcrystalline cellulose[J]. Carbohydrate Polymers,2009,77(4):779-784
    [124] Xu Q.; Kennedy J.F.; Liu L. An ionic liquid as reaction media in the ring opening graftpolymerization of ε-caprolactone onto starch granules [J]. Carbohydrate Polymers,2008,72(1):113-121
    [125] Heinze T.; Schwikal K.; Barthel S. Ionic liquids as reaction medium in cellulosefunctionalization [J]. Macromolecular Bioscience,2005,5(6):520-525
    [126] Zhang H.; Wu J.; Zhang J.; et al.1-allyl-3-methylimidazolium chloride roomtemperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose [J].Macromolecules,2005,38(20):8272-8277
    [127] Yan C.; Zhang J.; Lv Y.; et al. Thermoplastic cellulose-graft-poly (L-lactide)copolymers homogeneously synthesized in an ionic liquid with4-dimethylaminopyridinecatalyst [J]. Biomacromolecules,2009,10(8):2013-2018
    [128] Wang F.H.; Zhang D.R.; Zhang Q.; et al. Synergistic effect of folate-mediated targetingand verapamil-mediated p-gp inhibition with paclitaxel-polymer micelles to overcomemulti-drug resistance [J]. Biomaterials,2011,32(35):9444-9456
    [129] Wang Y.S.; Jiang Q.; Li R.S.; et al. Self-assembled nanoparticles ofcholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel [J].Nanotechnology,2008,19(14) doi:10.1088/0957-4484/19/14/145101
    [130] Pinkert A.; Marsh K.N.; Pang S.; et al. Ionic liquids and their interaction with cellulose[J]. Chemical Reviews,2009,109(12):6712-6728
    [131] Qiu L.Y.; Bae Y.H. Polymer architecture and drug delivery [J]. Pharmaceutical Research,2006,23(1):1-30
    [132] Zhu J.; Dong X.T.; Wang X.L.; et al. Preparation and properties of a novelbiodegradable ethyl cellulose grafting copolymer with poly(p-dioxanone) side-chains [J].Carbohydrate Polymers,2010,80(2):350-359
    [133] Yu C.; Huimin T. Structural characterization of cellulose with enzymatic treatment [J].Journal of Molecular Structure,2004,705(1-3):189-193193
    [134] Gaucher G.; Dufresne M.H.; Sant V.P.; et al. Block copolymer micelles: Preparation,characterization and application in drug delivery [J]. Journal of Controlled Release,2005,109(1-3):169-188
    [135] Mo R.; Jin X.; Li N.; et al. The mechanism of enhancement on oral absorption ofpaclitaxel by N-octyl-O-sulfate chitosan micelles [J]. Biomaterials,2011,32(20):4609-4620
    [136] Lee J.W.; Lee S.C.; Acharya G.; et al. Hydrotropic solubilization of paclitaxel: Analysisof chemical structures for hydrotropic property [J]. Pharmaceutical Research,2003,20(7):1022-1030
    [137] Shan L.L.; Cui S.S.; Du C.L.; et al. A paclitaxel-conjugated adenovirus vector fortargeted drug delivery for tumor therapy [J]. Biomaterials,2012,33(1):146-162
    [138] Gong Q.X.; Wang L.Q.; Tu K.H. In situ polymerization of starch with lactic acid inaqueous solution and the microstructure characterization [J]. Carbohydrate Polymers,2006,64(4):501-509
    [139] Hiltunen K.; H rk nen M.; Sepp l J.V.; et al. Synthesis and characterization of lacticacid based telechelic prepolymers [J]. Macromolecules,1996,29(27):8677-8682
    [140] Gindl W.; Keckes J. All-cellulose nanocomposite [J]. Polymer,2005,46(23):10221-10225
    [141] Winnik F.M.; Regismond S.T.A. Fluorescence methods in the study of the interactionsof surfactants with polymers [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,1996,118(1-2):1-39
    [142] Zhang C.Y.; Yang Y.Q.; Huang T.X.; et al. Self-assembled pH-responsivePFG-b-(PLA-co-PAE) block copolymer micelles for anticancer drug delivery [J].Biomaterials,2012,33(26):6273-6283
    [143] Bajgai M.P.; Parajuli D.C.; Ko J.A.; et al. Synthesis, characterization and aqueousdispersion of dextran-g-poly(1,4-dioxan-2-one) copolymers [J]. Carbohydrate Polymers,2009,78(4):833-840
    [144] Dai J.; Lin S.; Cheng D.; et al. Interlayer-crosslinked micelle with partially hydratedcore showing reduction and pH dual sensitivity for pinpointed intracellular drug release[J]. Angewandte Chemie International Edition,2011,50(40):9404-9408
    [145] Chang C.; Peng J.; Zhang L.; et al. Strongly fluorescent hydrogels with quantum dotsembedded in cellulose matrices [J]. Journal of Materials Chemistry,2009,19(41):7771-7776
    [146] Chen C.H.; Cuong N.V.; Chen Y.T.; et al. Overcoming multidrug resistance of breastcancer cells by the micellar doxorubicin nanoparticles of MPEG-PCL-graft-cellulose [J].Journal of Nanoscience and Nanotechnology,2011,11(1):53-60
    [147] Hassani L.N.; Hendra F.; Bouchemal K. Auto-associative amphiphilic polysaccharidesas drug delivery systems [J]. Drug Discovery Today,2012,17(11–12):608-614
    [148] Wang X.; Sun R. Self-assembled lignocellulose micelles: A new generation ofvalue-added functional nanostructures [J]. Bioresources,2011,6(3):2288-2290
    [149] Wang X.; Guo Y.; Li D.; et al. Fluorescent amphiphilic cellulose nanoaggregates forsensing trace explosives in aqueous solution [J]. Chemical. Communications,2012,48(45):5569-5571
    [150] Hsieh M.F.; Van Cuong N.; Chen C.H.; et al. Nano-sized micelles of block copolymersof methoxy poly (ethylene glycol)-poly(ε-caprolactone)-g-2-hydroxyethyl cellulose fordoxorubicin delivery [J]. Journal of Nanoscience and Nanotechnology,2008,8(5):2362-2368
    [151] Liu W.Y.; Liu Y.J.; Hao X.H.; et al. Backbone-collapsed intra-and inter-molecularself-assembly of cellulose-based dense graft copolymer [J]. Carbohydrate Polymers,2012,88(1):290-298
    [152] Roy D.; Semsarilar M.; Guthrie J.T.; et al. Cellulose modification by polymer grafting:A review [J]. Chemical Society Reviews,2009,38(7):2046-2064
    [153] Habibi Y.; Dufresne A. Highly filled bionanocomposites from functionalizedpolysaccharide nanocrystals [J]. Biomacromolecules,2008,9(7):1974-1980
    [154] Labet M.; Thielemans W. Improving the reproducibility of chemical reactions on thesurface of cellulose nanocrystals: ROP of ε-caprolactone as a case study [J]. Cellulose,2011,18(3):607-617
    [155] L nnberg H.; Fogelstr m L.; Berglund L.; et al. Surface grafting of microfibrillatedcellulose with poly(ε-caprolactone)-synthesis and characterization [J]. European PolymerJournal,2008,44(9):2991-2997
    [156] Paquet O.; Krouit M.; Bras J.; et al. Surface modification of cellulose by PCL grafts [J].Acta materialia,2010,58(3):792-801
    [157] Cai S.; Vijayan K.; Cheng D.; et al. Micelles of different morphologies-advantages ofworm-like filomicelles of PEO-PCL in paclitaxel delivery [J]. Pharmaceutical Research,2007,24(11):2099-2109
    [158] Chang C.; Wei H.; Quan C.Y.; et al. Fabrication of thermosensitivePCL-PNIPAAM-PCL triblock copolymeric micelles for drug delivery [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2008,46(9):3048-3057
    [159] Kim M.S.; Hyun H.; Seo K.S.; et al. Preparation and characterization of MPEG-PCLdiblock copolymers with thermo-responsive sol-gel-sol phase transition [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2006,44(18):5413-5423
    [160] Li X.; Kong X.; Shi S.; et al. Preparation, characterization, and self-assembly behaviorof a novel MPEG/PCL-g-chitosan copolymer [J]. Soft Materials,2010,8(4):320-337
    [161] Habibi Y.; Goffin A.L.; Schiltz N.; et al. Bionanocomposites based onpoly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization [J].Journal of Materials Chemistry,2008,18(41):5002-5010
    [162] Coulembier O.; Degée P.; Hedrick J.L.; et al. From controlled ring-openingpolymerization to biodegradable aliphatic polyester: Especially poly (β-malic acid)derivatives [J]. Progress in Polymer Science,2006,31(8):723-747
    [163] Labet M.; Thielemans W. Citric acid as a benign alternative to metal catalysts for theproduction of cellulose-grafted-polycaprolactone copolymers [J]. Polymer Chemistry,2012,3(3):679-684
    [164] Park S.; Baker J.O.; Himmel M.E.; et al. Cellulose crystallinity index: Measurementtechniques and their impact on interpreting cellulase performance [J]. Biotechnology forBiofuels,2010,3(10) DOI:10.1186/1754-6834-3-10
    [165] Aguiar J.; Carpena P.; Molina-Bol var J.; et al. On the determination of the criticalmicelle concentration by the pyrene1:3ratio method [J]. Journal of Colloid and InterfaceScience,2003,258(1):116-122
    [166] Yokoyama M.; Kwon G.S.; Okano T.; et al. Preparation of micelle-formingpolymer-drug conjugates [J]. Bioconjugate Chemistry,1992,3(4):295-301
    [167] Tian J.; Chen H.; Zhuo L.; et al. A highly selective, cell-permeable fluorescentnanoprobe for ratiometric detection and imaging of peroxynitrite in living cells [J].Chemistry A: European Journal,2011,17(24):6626-6634
    [168] Li K.; Pan J.; Feng S.S.; et al. Generic strategy of preparing fluorescentconjugated-polymer-loaded poly(D, L-lactide-co-glycolide) nanoparticles for targetedcell imaging [J]. Advanced Functional Materials,2009,19(22):3535-3542
    [169] Yang K.K.; Wang X.L.; Wang Y.Z. Poly(p-dioxanone) and its copolymers [J]. Journal ofMacromolecular Science, Part C,2002,42(3):373-398
    [170] Smith M.J.; White K.L.; Smith D.C.; et al. In vitro evaluations of innate and acquiredimmune responses to electrospun polydioxanone-elastin blends [J]. Biomaterials,2009,30(2):149-159
    [171] Sell S.A.; McClure M.J.; Barnes C.P.; et al. Electrospun polydioxanone-elastin blends:Potential for bioresorbable vascular grafts [J]. Biomedical Materials,2006,1(2):72-80
    [172] Thomas V.; Zhang X.; Vohra Y.K. A biomimetic tubular scaffold with spatially designednanofibers of protein/PDS (R) bio-blends [J]. Biotechnology and Bioengineering,2009,104(5):1025-1033
    [173] Lu F.; Wang X.L.; Chen S.C.; et al. An efficient approach to synthesizepolysaccharides-graft-poly(p-dioxanone) copolymers as potential drug carriers [J].Journal of Polymer Science Part A: Polymer Chemistry,2009,47(20):5344-5353
    [174] Wang X.L.; Yang K.K.; Wang Y.Z.; et al. Crystallization and morphology ofstarch-g-poly(1,4-dioxan-2-one) copolymers [J]. Polymer,2004,45(23):7961-7968
    [175] Rui H.; Wang X.L.; Wang Y.Z.; et al. A study on grafting poly(1,4-dioxan-2-one) ontostarch via2,4-tolylene diisocyanate [J]. Carbohydrate Polymers,2006,65(1):28-34
    [176] Wang X.L.; Huang Y.; Zhu J.; et al. Chitosan-graft poly(p-dioxanone) copolymers:Preparation, characterization, and properties [J]. Carbohydrate Research,2009,344(6):801-807
    [177] Bruchez M.; Moronne M.; Gin P.; et al. Semiconductor nanocrystals as fluorescentbiological labels [J]. Science,1998,281(5385):2013-2016
    [178] Han M.Y.; Gao X.H.; Su J.Z.; et al. Quantum-dot-tagged microbeads for multiplexedoptical coding of biomolecules [J]. Nature Biotechnology,2001,19(7):631-635
    [179] Chan W.C.W.; Nie S.M. Quantum dot bioconjugates for ultrasensitive nonisotopicdetection [J]. Science,1998,281(5385):2016-2018
    [180] Tao Y.; Han J.; Dou H. Paclitaxel-loaded tocopheryl succinate-conjugated chitosanoligosaccharide nanoparticles for synergistic chemotherapy [J]. Journal of MaterialsChemistry,2012,22(18):8930-8937
    [181] Fariss M.W.; Fortuna M.B.; Everett C.K.; et al. The selective antiproliferative effects ofα-tocopheryl hemisuccinate and cholesteryl hemisuccinate on murine leukemia cellsresult from the action of the intact compounds [J]. Cancer Research,1994,54(13):3346-3351
    [182] Prasad K.N.; Kumar B.; Yan X.D.; et al. Alpha-tocopheryl succinate, the most effectiveform of vitamin E for adjuvant cancer treatment: A review [J]. Journal of the AmericanCollege Nutrition,2003,22(2):108-117
    [183] Bule M.V.; Singhal R.S.; Kennedy J.F. Microencapsulation of ubiquinone-10incarbohydrate matrices for improved stability [J]. Carbohydrate Polymers,2010,82(4):1290-1296
    [184] Müller R.H.; Petersen R.D.; Hommoss A.; et al. Nanostructured lipid carriers (NLC) incosmetic dermal products [J]. Advanced Drug Delivery Reviews,2007,59(6):522-530
    [185] Luo Y.C.; Zhang B.C.; Whent M.; et al. Preparation and characterization ofzein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlledrelease study [J]. Colloids and Surfaces B: Biointerfaces,2011,85(2):145-152
    [186] Matalanis A.; Jones O.G.; McClements D.J. Structured biopolymer-based deliverysystems for encapsulation, protection, and release of lipophilic compounds [J]. FoodHydrocolloids,2011,25(8):1865-1880
    [187] Giudetti A.M.; Beynen A.C.; Lemmens A.G.; et al. Hepatic lipid and carbohydratemetabolism in rats fed a commercial mixture of conjugated linoleic acids (Clarinol G-80TM)[J]. European Journal of Nutrition,2005,44(1):33-39
    [188] Ferramosca A.; Savy V.; Conte L.; et al. Conjugated linoleic acid and hepaticlipogenesis in mouse: Role of the mitochondrial citrate carrier [J]. Journal of LipidResearch,2006,47(9):1994-2003
    [189] Pandey N.R.; Renwick J.; Misquith A.; et al. Linoleic acid-enriched phospholipids actthrough peroxisome proliferator-activated receptors alpha to stimulate hepaticapolipoprotein A-I secretion [J]. Biochemistry,2008,47(6):1579-1587
    [190] Hasani M.M.; Westman G. New coupling reagents for homogeneous esterification ofcellulose [J]. Cellulose,2007,14(4):347-356
    [191] Liang N.; Sun S.; Li X.; et al. Α-tocopherol succinate-modified chitosan as a micellardelivery system for paclitaxel: Preparation, characterization and in vitro/in vivoevaluations [J]. International Journal of Pharmaceutics,2012,423(2):480-488
    [192] Du Y.Z.; Wang L.; Yuan H.; et al. Linoleic acid-grafted chitosan oligosaccharidemicelles for intracellular drug delivery and reverse drug resistance of tumor cells [J].International Journal of Biological Macromolecules,2011,48(1):215-222
    [193] Kim J.; Yun S.; Ounaies Z. Discovery of cellulose as a smart material [J].Macromolecules,2006,39(12):4202-4206
    [194] Hon D.N.S.; Yan H. Cellulose furoate. I. Synthesis in homogeneous and heterogeneoussystems [J]. Journal of Applied Polymer Science,2001,81(11):2649-2655
    [195] Edgar K.J.; Buchanan C.M.; Debenham J.S.; et al. Advances in cellulose esterperformance and application [J]. Progress in Polymer Science,2001,26(9):1605-1688
    [196] Tan S.B.; Zhang L.M.; Li Z.M. Synthesis and characterization of new amphoteric graftcopolymer of sodium carboxymethyl cellulose with acrylamide and dimethylaminoethylmethylacrylate [J]. Journal of Applied Polymer Science,1998,69(5):879-885
    [197] Koschella A.; Heinze T. Novel regioselectively6-functionalized cationic cellulosepolyelectrolytes prepared via cellulose sulfonates [J]. Macromolecular Bioscience,2001,1(5):178-184
    [198] Marson G.A.; El Seoud O.A. A novel, efficient procedure for acylation of celluloseunder homogeneous solution conditions [J]. Journal of Applied Polymer Science,1999,74(6):1355-1360
    [199] Barthel S.; Heinze T. Acylation and carbanilation of cellulose in ionic liquids [J]. GreenChemistry,2006,8(3):301-306
    [200] Blasutto M.; Delben F.; Milost R.; et al. Novel cellulosic ethers with low degrees ofsubstitution-I. Preparation and analysis of long-chain alkyl ethers [J]. CarbohydratePolymers,1995,27(1):53-62
    [201] Vaca-Garcia C.; Thiebaud S.; Borredon M.E.; et al. Cellulose esterification with fattyacids and acetic anhydride in lithium chloride N, N-dimethylacetamide medium [J].Journal of the American Oil Chemists Society,1998,75(2):315-319
    [202] Torri G.; Cosentino C.; Delben F.; et al. Novel cellulosic ethers with low degrees ofsubstitution-II. Magic angle spinning NMR study [J]. Carbohydrate Polymers,1999,40(2):125-135
    [203] Yue Z.L.; Cowie J.M.G. Preparation and chiroptical properties of a regioselectivelysubstituted cellulose ether with PEO side chains [J]. Macromolecules,2002,35(17):6572-6577
    [204] Heinze T. New ionic polymers by cellulose functionalization [J]. MacromolecularChemistry and Physics,1998,199(11):2341-2364
    [205] Charpentier-Valenza D.; Merle L.; Mocanu G.; et al. Rheological properties ofhydrophobically modified carboxymethylcelluloses [J]. Carbohydrate Polymers,2005,60(1):87-94
    [206] Wang C.; Tan H.; Dong Y.; et al. Trimethylsilyl hydroxypropyl cellulose: Preparation,properties and as precursors to graft copolymerization of ε-caprolactone [J]. Reactiveand Functional Polymers,2006,66(10):1165-1173
    [207] Wei Y.P.; Cheng F. Synthesis and aggregates of cellulose-based hydrophobicallyassociating polymer [J]. Carbohydrate Polymers,2007,68(4):734-739
    [208] Danilevicius A.; Dobiliene J.; Wutz C.; et al. Phenoxyhydroxypropylhydroxyethylcellulose-new amphiphilic cellulose derivative [J]. Cellulose,2007,14(4):321-329
    [209] Shi R.; Burt H.M. Synthesis and characterization of amphiphilichydroxypropylcellulose-graft-poly(ε-caprolactone)[J]. Journal of Applied PolymerScience,2003,89(3):718-727
    [210] Freire C.S.R.; Silvestre A.J.D.; Neto C.P.; et al. Controlled heterogeneous modificationof cellulose fibers with fatty acids: Effect of reaction conditions on the extent ofesterification and fiber properties [J]. Journal of Applied Polymer Science,2006,100(2):1093-1102
    [211] Cunha A.G.; Gandini A. Turning polysaccharides into hydrophobic materials: A criticalreview. Part I. Cellulose [J]. Cellulose,2010,17(5):875-889
    [212] Photos P.J.; Bacakova L.; Discher B.; et al. Polymer vesicles in vivo: Correlations withPEG molecular weight [J]. Journal of Controlled Release,2003,90(3):323-334
    [213] Huang Y.P.; Yu H.L.; Guo L.A.; et al. Structure and self-assembly properties of a newchitosan-based amphiphile [J]. Journal of Physical Chemistry B,2010,114(23):7719-7726
    [214] Liu K.H.; Chen B.R.; Chen S.Y.; et al. Self-assembly behavior and doxorubicin-loadingcapacity of acylated carboxymethyl chitosans [J]. Journal of Physical Chemistry B,2009,113(35):11800-11807
    [215] Jiang G.B.; Quan D.; Liao K.; et al. Preparation of polymeric micelles based on chitosanbearing a small amount of highly hydrophobic groups [J]. Carbohydrate Polymers,2006,66(4):514-520
    [216] Chauvelon G.; Saulnier L.; Buleon A.; et al. Acidic activation of cellulose and itsesterification by long-chain fatty acid [J]. Journal of Applied Polymer Science,1999,74(8):1933-1940
    [217] Wang P.; Tao B.Y. Synthesis and characterization of long-chain fatty acid cellulose ester(FACE)[J]. Journal of Applied Polymer Science,1994,52(6):755-761
    [218] R der T.; Morgenstern B. The influence of activation on the solution state of cellulosedissolved in N-methylmorpholine-N-oxide-monohydrate [J]. Polymer,1999,40(14):4143-4147
    [219] Song Q.; Yang Y. Preparation of cellulose laurate and characterization of its structureand performance [J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2011,35(4):92-95
    [220] Sealey J.E.; Samaranayake G.; Todd J.G.; et al. Novel cellulose derivatives. IV.Preparation and thermal analysis of waxy esters of cellulose [J]. Journal of PolymerScience Part B: Polymer Physics,1996,34(9):1613-1620
    [221] Liu C.F.; Sun R.C.; Zhang A.P.; et al. Preparation of sugarcane bagasse cellulosicphthalate using an ionic liquid as reaction medium [J]. Carbohydrate Polymers,2007,68(1):17-25
    [222] Ilayaraja N.; Manivel A.; Velayutham D.; et al. Effect of alkyl chain length on theelectrochemical perfluorination of N-alkane (C6-C10) carboxylic acid chlorides [J].Journal of Applied Electrochemistry,2008,38(2):175-186
    [223] Sun X.F.; Sun R.C.; Tomkinson J.; et al. Degradation of wheat straw lignin andhemicellulosic polymers by a totally chlorine-free method [J]. Polymer Degradation andStability,2004,83(1):47-57
    [224] Jandura P.; Kokta B.V.; Riedl B. Fibrous long-chain organic acid cellulose esters andtheir characterization by diffuse reflectance FT-IR spectroscopy, solid-state CP/MAS13C-NMR, and X-ray diffraction [J]. Journal of Applied Polymer Science,2000,78(7):1354-1365
    [225] Nada A.M.A.; Hassan M.L. Thermal behavior of cellulose and some cellulosederivatives [J]. Polymer Degradation and Stability,2000,67(1):111-115
    [226] Heinze T.; Schaller J. New water soluble cellulose esters synthesized by an effectiveacylation procedure [J]. Macromolecular Chemistry and Physics,2000,201(12):1214-1218
    [227] Heinze T.; Liebert T.F.; Pfeiffer K.S.; et al. Unconventional cellulose esters: Synthesis,characterization and structure-property relations [J]. Cellulose,2003,10(3):283-296
    [228] Thomas S.W.; Joly G.D.; Swager T.M. Chemical sensors based on amplifyingfluorescent conjugated polymers [J]. Chemical Reviews,2007,107(4):1339-1386
    [229] Liu B.; Bazan G.C. Homogeneous fluorescence-based DNA detection withwater-soluble conjugated polymers [J]. Chemistry of Materials,2004,16(23):4467-4476
    [230] Fernando L.P.; Kandel P.K.; Yu J.; et al. Mechanism of cellular uptake of highlyfluorescent conjugated polymer nanoparticles [J]. Biomacromolecules,2010,11(10):2675-2682
    [231] Sun B.; Sun M.J.; Gu Z.; et al. Conjugated polymer fluorescence probe for intracellularimaging of magnetic nanoparticles [J]. Macromolecules,2010,43(24):10348-10354
    [232] Liu B.; Bazan G.C. Optimization of the molecular orbital energies of conjugatedpolymers for optical amplification of fluorescent sensors [J]. Journal of the AmericanChemical Society,2006,128(4):1188-1196
    [233] Huang F.; Wu H.; Cao Y. Water/alcohol soluble conjugated polymers as highly efficientelectron transporting/injection layer in optoelectronic devices [J]. Chemical SocietyReviews,2010,39(7):2500-2521
    [234] Yang J.S.; Swager T.M. Fluorescent porous polymer films as TNT chemosensors:Electronic and structural effects [J]. Journal of the American Chemical Society,1998,120(46):11864-11873
    [235] Xu B.; Wu X.; Li H.; et al. Selective detection of TNT and picric acid by conjugatedpolymer film sensors with donor–acceptor architecture [J]. Macromolecules,2011,44(13):5089-5092
    [236] He G.; Yan N.; Yang J.; et al. Pyrene-containing conjugated polymer-based fluorescentfilms for highly sensitive and selective sensing of TNT in aqueous medium [J].Macromolecules,2011,44(12):4759-4766
    [237] Wu C.; Szymanski C.; McNeill J. Preparation and encapsulation of highly fluorescentconjugated polymer nanoparticles [J]. Langmuir,2006,22(7):2956-2960
    [238] Wu C.; Szymanski C.; Cain Z.; et al. Conjugated polymer dots for multiphotonfluorescence imaging [J]. Journal of the American Chemical Society,2007,129(43):12904-12905
    [239] Pecher J.; Mecking S. Nanoparticles of conjugated polymers [J]. Chemical Reviews,2010,110(10):6260-6279
    [240] Habibi Y.; Lucia L.A.; Rojas O.J. Cellulose nanocrystals: Chemistry, self-assembly, andapplications [J]. Chemical Reviews,2010,110(6):3479-3500
    [241] Dong S.; Roman M. Fluorescently labeled cellulose nanocrystals for bioimagingapplications [J]. Journal of the American Chemical Society,2007,129(45):13810-13811
    [242] Nogi M.; Iwamoto S.; Nakagaito A.N.; et al. Optically transparent nanofiber paper [J].Advanced Materials,2009,21(16):1595-1598
    [243] Siró I.; Plackett D. Microfibrillated cellulose and new nanocomposite materials: Areview [J]. Cellulose,2010,17(3):459-494
    [244] Francis M.F.; Piredda M.; Winnik F.M. Solubilization of poorly water soluble drugs inmicelles of hydrophobically modified hydroxypropylcellulose copolymers [J]. Journal ofControlled Release,2003,93(1):59-68
    [245] Dias F.B.; Morgado J.; Ma anita A.L.; et al. Kinetics and thermodynamics ofpoly(9,9-dioctylfluorene) β-phase formation in dilute solution [J]. Macromolecules,2006,39(17):5854-5864
    [246] Wu C.; McNeill J. Swelling-controlled polymer phase and fluorescence properties ofpolyfluorene nanoparticles [J]. Langmuir,2008,24(11):5855-5861
    [247] Zhou Q.; Swager T.M. Fluorescent chemosensors based on energy migration inconjugated polymers: The molecular wire approach to increased sensitivity [J]. Journalof the American Chemical Society,1995,117(50):12593-12602
    [248] Sohn H.; Sailor M.J.; Magde D.; et al. Detection of nitroaromatic explosives based onphotoluminescent polymers containing metalloles [J]. Journal of the American ChemicalSociety,2003,125(13):3821-3830
    [249] Zhao D.; Swager T.M. Sensory responses in solution vs solid state: A fluorescencequenching study of poly(iptycenebutadiynylene)s [J]. Macromolecules,2005,38(22):9377-9384

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700