深地震反射与深地震测深联合探测及其在地壳结构研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳内部结构差异、物理化学变化以及与地幔的相互作用深刻影响着地球表层地质构造、地貌过程以及人类的生活。对地壳内部构造和演化的研究一直是全球地学界关注的焦点。利用人工源地震的两种方法:深地震测深和深地震反射对地壳及上地幔顶部精细结构进行探测是勘查地球深部油藏、矿藏资源,认识地球内部地震、火山活动和地球动力学过程的重要途径。其中,前者能够提供壳内精细“构造形态”,而后者则能得到可靠的地壳“速度结构”。在回顾国内外研究现状基础上,论文围绕“构造形态”及“速度结构”探讨了深地震反射与深地震测深联合探测及其在地壳结构研究中的应用相关的问题,其主要研究内容包括以下三个部分:
     1、深地震反射剖面构造信息识别
     受长距离传播能量吸收衰减和深部复杂地质体等因素影响,深地震反射剖面中下地壳的地震波组经常表现为能量弱、不连续、带状或交织状,给资料解释带来了困难。为了提取剖面中的构造信息辅助解释,论文第二部分在总结前人模式识别、人工神经网络、χ2分布等方法基础上,开发了两种深地震反射剖面信息进行识别技术。第一种方法以数字图像处理理论为基础,使用一阶微分Sobel边缘检测算子提取剖面中的主要反射特征,并根据剖面的振幅直方图分布,用密度分割方法形成假彩色图像改善剖面效果。第二种方法借鉴Skeletonization方法的思想,通过数据预处理、振幅提取、对象识别、连续性计算和连续性滤波快速实现地震反射剖面构造格架识别,并将对象编号、元素个数、元素的位置、对象长度、对象倾角等信息存入关系数据库。通过对复杂区域对象进行倾角计算从而实现定量分析。该方法识别效果较图像处理方法有显著改善,由于去除了波形特征描述和迭代等复杂步骤,较模式识别法更为高效。
     2、深地震测深地壳结构成像及其与深地震反射联合探测方法
     论文第一部分回顾了深地震测深资料初至波层析成像、全地壳射线追踪反演的基本原理,探讨了处理解释中几个值得注意的问题及其成像策略。认为根据走时误差的收敛情况采用由粗至细的变参数策略能够有效避免层析成像出现局部极小。射线反演计算首先对模型进行正演模拟修正,当误差达到一定标准时,再反演可防止阻尼最小二乘反演产生虚假信息。
     地震测深与深地震反射沿同一剖面联合探测,一方面两种资料可以通过互相约束、联合反演减小结果的非唯一性,另一方面可节约成本、提高效率。论文第三章阐述了同测线宽角反射与折射与近垂直反射地震联合探测的两种方法。当二者资料精度相当时,将反射速度分析结果与宽角反射与折射速度结构融合,可改善反射深层速度分析上的局限性,进而优化深度偏移剖面成像效果。另外,拾取反射叠加时间剖面零偏移距反射走时和宽角反射并与折射走时进行联合射线追踪反演,可获得更可靠的速度结构。对于数据分辨能力及各向异性等方面存在差异的深地震反射与深地震测深资料,可利用深地震反射剖面提供的界面形态、浅层速度等作为先验信息指导和约束深地震测深资料成像。
     3、在华北克拉通北缘和鄂尔多斯西南缘地壳结构研究中的应用
     遵循约束成像的思路,论文第三部分对华北克拉通北缘怀来-苏尼特右旗和青藏高原东北缘-六盘山-鄂尔多斯西南缘深地震测深剖面资料通过初至层析成像和射线追踪反演获得了研究区二维P波地壳速度结构的一些重要认识:
     中亚造山带地壳厚度~40km,变化平缓,低于全球平均造山带地壳平均厚度,可能为造山后区域伸展的结果。阴山-燕山带附近莫霍明显加深,推测其为侏罗纪造山过程中形成的山根,但该山根很可能在后期被改造。测线中部地壳上部速度较高对应地表大面积花岗岩出露,而下地壳速度较低速度梯度低,呈通道状,推测其可能曾为古亚洲洋向南俯冲消亡的主动陆缘,并在碰撞后演变为伸展环境下岩浆侵入的通道。华北克拉通北缘与中亚造山带显示出不同速度变化特征,前者变化相对缓而后者则变化剧烈,二者的分界出现在赤峰-白云鄂博断裂附近。
     鄂尔多斯盆地地壳上部速度低,速度等值钱呈近水平状,显示了沉积盆地的特征;六盘山以西浅层速度相对较高,横向变化剧烈,呈褶皱状,为新生代青藏高原向东北方向挤压的结果。挤压褶皱区与稳定沉积区的边界出现在六盘山东侧,推测其为海原-六盘山逆冲走滑断裂。鄂尔多斯地壳速度梯度较大,下地壳速度高,组成为铁镁质,反映了稳定古老克拉通的特征;祁连造山带一侧地壳速度总体较低,具有典型造山带的特征。研究区莫霍面自西至东抬升,六盘山以西地壳厚度~50km,以东-42km,六盘山下方莫霍面出现叠置。这一现象揭示新生代在青藏高原物质向东北方向流动挤压作用下,该区地壳上部主要以逆冲、褶皱作用为主,而地壳中下部刚性的鄂尔多斯下地壳挤入到较软的祁连地壳中。横向挤入作用产生的纵向效应导致六盘山上层莫霍面及上部壳内界面发生不同程度地向上弯曲,我们推测该区地震活动可能与挤压弯曲的刚性地壳发生弹性回跳、应力释放有关。
Structural difference, chemical and physical changes of the crust and interaction with mantle profoundly affect surface geology, geomorphologic processes and human life. Thus, research on crustal structure and evolution always focus geoscientists'attention. Two active seismic methods:deep seismic sounding and deep seismic reflection, which provided detail structure information of crust and uppermost mantle, are important channels for explorating of reservoir, mineral resources and understanding of the earthquakes, volcanic activity and geodynamic processes. The former could provide reliable crustal velocity structure, and the latter could provide fine crustal structural configuration. Based on a summary of research progress of domestic and international, this thesis investigates some problems about joint exploration of deep seismic sounding and deep seismic reflection with its application in crust structure research. And its research contents could be departed into3portions below:
     1、 Structure information recognition of deep seismic reflection profiles
     Because of the attenuation effect of long distance propagation and complex geologic body in deep crust, the seismic events from the middle and lower crust in deep seismic reflection section are always displayed as energy weak, discontinuous, zonary or interlaced. These make the interpretation became difficult. In the second portion, we summarized pattern recognition method, artificial neural network method and x2distribution method, and developed two new methods to recognize structure information from deep seismic reflection profiles. With considering the character of deep seismic reflection data and problems encountered in interpretation, the first method is based on digital image processing theory. First order differential Sobel edge detection operator was employed to extract the reflected framework of the section. According to the histogram of amplitude distribution, density slicing algorithm was used to acquire false color image which improved the sections'display effect. The second method based on skeletonization technique and digital image processing theory is composed of the following module:data pretreatment, amplitude analysis, median filtering, object recognition, continuity calculating and continuity filtering. We save the objects'identification number, number of elements, elements'position, object length, angle and other information in a relational database. Besides to recognize structure information from deep seismic profiles, this method is also used to analyze the seismic events angle distribution of structure complex area. This method gets better recognized effect than the image processing method. Because we removed waveform characterization and iterative steps, this method is more efficient than the pattern recognition method.
     2、 Crustal structure imaging of deep seismic sounding and joint exploration methods with deep seismic reflection data.
     The first portion reviewed basic theory of first arrivals finite difference tomography and seismic travel time inversion methods. Several noticeable problems and modeling strategies during processing and interpretation were discussed. We considered that:according to the convergence of travel time RMS error, variable parameters utilised from coarse to fine will effectively avoid appearance of local minima during topographic inversion. Forward modeling with the traditional "trial-and-error" way is necessary. When travel time RMS error reaches a certain standard, then inversion using damped least squares method could prevents generation of artificial information.
     If the deep seismic sounding data was collected along the same profile with deep seismic reflection, their non-uniqueness will be constrained by two different kinds of data through reciprocal constraint processing or joint inversion. The third Chapter introduces two joint exploration methods with wide angle reflection\refraction data and near vertical reflection data. In case both data precision are close, merging the reflection velocity analysis result and wide angle reflection\refraction velocity structure will improve the limitation of near vertical reflection velocity analysis, and optimize the depth migrated section. In addition, picking zero-offset travel time from two way travel time stacked reflection profile and joint ray tracing inversion with wide-angle reflection and refraction data will obtain more reliable velocity structure. If both data's precision and anisotropy are different, we can use information provided by coincident deep seismic reflection section profiles, such as interface morphology, surface velocity etc., as priori information to constrain the deep seismic sounding modeling.
     3、 Application in crustal structure research of the northern margin of the north China craton and the southwestern margin of the Ordos block.
     Following the constraint modeling approach, Hole's first arrival tomography program was used to obtain the upper crustal velocity structure and Zelt's2D travel time ray tracing and inversion program was used to obtain the full crustal structure of the northern margin of the north China craton Huailai-Sonid Youqi profile and the northeastern margin of the Tibet plateau Ordos-Liupanshan profile.2D P-wave velocity modeling was done layer by layer using the top to bottom approach. The velocity model was altered by trial and error, and the forward model was updated by damped least-squares inversion. Finally, we draw the following conclusions respectively:
     The flat and relatively shallow Moho (-40km) of the central Asian orogenic belt may be attributed to the extension; thicker crust appears beneath the Yinshan-Yanshan belt and was probably generated by compression in the Jurassic-Cretaceous and modified during the latter extension. Relatively high Velocities in the upper crust of the middle port of the profile may represent the outcrop of large area granites. Strong velocity variations beneath the Bainaimiao arc and Ondor Sum subduction accretion complex indicate that multiple pulses of magmatism occurred during the complex tectonic evolution of this area. The velocity structure varies significantly from the north China craton to the central Asian orogenic belt, and the boundary between them appears at the Chifeng-Bayan Obo fault.
     The upper crust of the Ordos basin has relatively lower velocities, and the velocity contour is sub-horizontal which represents stable sediments. The upper crust of the Qilian orogen has strong velocity variation. It should be a result of northeastward compression of the Tibet plateau during the Cenozoic. Different characteristics in the first arrival topographic model indicated that the Haiyuan-Liupanshan fault is the boundary between the Ordos basin and the Qilian orogen. The Qilian orogen has relatively lower velocity in the middle and lower crust, while the Ordos block has higher velocity and relatively simple crust which indicated it is a stable old craton. The crustal thickness varies from~50km in the west to~42km in the east, and double Moho appears beneath the Liupanshan area. It suggests that the thin and rigid Ordos crust was pushed into the thick and soft Qilian crust with the far field effect of the collision between the Indian plate and the Eurasian plate. Transverse compression leads to all layers above Moho upswept in this region. We inferred that strong earthquake activity should be related with the upswept rigid crust's elastic rebound and release of stress.
引文
AGUDELO W., RIBODETTI A., COLLOT J Y et al.2009. Joint Inversion Of Multichannel Seismic Reflection And Wide-Angle Seismic Data:Improved Imaging And Refined Velocity Model Of The Crustal Structure Of The North Ecuador-South Colombia Convergent Margin[J]. Journal of Geophysical Research, doi:10.1029/2008JB005690.
    AL-YAHYA.1989. Velocity Analysis By Iterative Profile Migration[J]. Geophysics,54:718-729.
    BONDAR I.1992. Seismic Horizon Detection Using Image Processing Algorithms[J]. Geophysical prospecting,40:785-800.
    BRIAN F., WINDLEY., DMITRIY A et al.2001. Tectonic Models For Accretion Of The Central Asian Orogenic Belt[J]. Journal of the Geological Society,164:31-47.
    BRUN J P., GUSTCHER M A., DEKORP-ECORS team.1992. Deep Crustal Structure Of The Rhine Grohen From DECORP-ECORS Seismic Reflection Data:a summary[J]. Tectonophysics,208: 139-147.
    CERVENY V., MOLOTKOV I A., PSENCIK I.1977. RAY METHOD IN SEISMOLOGY[M]. Prague Univerzita Karlova,1-214.
    CERVENY V, PROPOV M M., PSENCIK I.1982. Computation Of Wave Fields In Inhomogeneous Media-Gaussian Beam Approach[J]. Geophys J R Astr So,70:109-128.
    CERVENY V., PSENCIK I.1984. SEIS83-Numerical Modeling Of Seismic Wavefield In 2-D Laterally Varying Layered Structures By The Ray Method, In:E.R. Engdahl [R], Documentation Of Earthquake Algorithm, World Data Center for Solid Earth Geophysics, Boulder, Colo., Rep. SE-35:36-40.
    CHANG L J., WANG C Y., DING Z F et al.2008. Seismic Anisotropy Of Upper Mantle In The Northeastern Margin Of The Tibetan Plateau[J]. Chinese Journal of Geophysics,51 (2):298-306.
    CHEN B., JAHN B M., SIMON W et al.2000. Two Contrasting Paleozoic Magmatic Belts In Northern Inner Mongolia, China:Petrogenesis And Tectonic Implications[J].Tectonophysics,328:157-182.
    CHEN C H.1978. Seismic pattern recognition[J].Geoexploration,16:133-146.
    CHEN L., Al Y S.2009. Discontinuity Structure Of The Mantle Transition Zone Beneath The North China Craton From Receiver Function Migration[J]. Journal of Geophysical Research,114, doi:10.1029/2008JB006221.
    CHENG Y C, LU S Y.1989. The Binary Consistency Checking Scheme And Its Applications To Seismic Horizon Detection[J]. IEEE Trans Pattern Analysis,11:439-447.
    CHRISTENSEN N I., MOONEY W D.1995. Seismic Velocity Structure And Composition Of The Continental Crust:A Global View[J]. Journal of Geophysical Research,100:9761-9788.
    CLAERBOUT J F.1985. Imaging The Earth's Interior[M]. Blackwell Scientific Publications, Amsterdam.
    COOK F A., DONALD J W., ALAN G J et al.2009. How The Crust Meets The Mantle:Lithoprobe Perspectives On The Mohorovicic Discontinuity And Crust-Mantle Transition[J]. Can. J. Earth Sci,37: 315-351.
    DEKOOL M., RAWLINSON N., SAMBRIDGE M.2006. A Practical Grid Based Methodfor Tracking Multiple Refraction And Reflection Phases In 3D Heterogeneous Media[J]. Geophys J Int,167: 253-270.
    DESSA J X., OPERTO S S., KODAIRA et al.2004. Deep Seismic Imaging Of The Eastern Nankai Trough Japan From Multifold Ocean Bottom Seismometer Data By Combined Travel Time Tomography And Prestack Depth Migration[J]. J Geophys Res,109, doi:10.1029/2003JB002689.
    DONG S W, LI T D, GAO R.et al.2011. A Multidisciplinary Earth Science Research Program in China[J] EOS 92:313-314,
    DONG S W, GAO R, YIN A et al.2013. What Drove Continued Continent-Continent Convergence after Ocean Closure? Insights from High-Resolution Seismic-Reflection Profiling Across the Daba Shan in Central China[J]. Geology, doi:10.1130/G34161.1.
    FOMIN T., GOLEBY B R.2006. Lessons From A Joint Interpretation Of Vibroseis Wide-Angle And Near-Vertical Reflection Data In The Northeastern Yilgarn Western Australia[J]. Tectonophysics,420: 201-316.
    GAO R., LU Z W., LI Q S et al.2005. Geophysical Probe And Geodynamic Study Of The Crust And Upper Mantle In The Qinghai-Tibet Plateau, China[J]. Episodes,28(4):263-273.
    GAO R.., LI P W., LI Q S et al.2001. Deep Process Of The Collision And Deformation On The Northern Margin Of The Tibetan Plateau:Revelation From Investigation Of The Deep Seismic Profiles[J]. Science in China (Series D),44:71-78.
    GONZALEZ R C, WOODS R E.2002. Digital Image Processing (Second Edition)[M]. Publishing house of electronics industry, Beijing.14-19.
    HOLE J A.1992. Nonlinear High-Resolution Three-Dimensional Seismic Travel Time Tomography [J]. J Geophys Res,97:6553-6562.
    HOLE J A., ZELT B C.1995.3-D Finite-Difference Reflection Traveltimes[J]. Geophys J Int,121: 427-434.
    HSU K J., WANG Q., LI J et al.1991. Geologic Evolution Of The Neimonides:A Working Hypothesis. Eclogae Geol Helv,84:1-31.
    HUANG J J., ZHAO D P.2006. High-Resolution Mantle Tomography Of China And Surrounding Regions[J]. Journal of Geophysical Research,111, doi:10.1029/2005 JB004066.
    HUANG Z C, XU M J., WANG L S et al.2008. Shear Wave Splitting In The Southern Margin Of The Ordos Block North China[J]. Geophysical Research Letters, doi:10.1029/2008GL035188.
    HUANG Z X., LI H Y., ZHENG Y J et al.2009. The Lithosphere Of North China Craton From Surface Wave Tomography[J]. Earth and Planetary Science Letters,288:164-173.
    JAHN B M.2000. Continental Growth In The Phanerozoic:Evidence From Central Asia[J]. Tectonophysics,328:vii-x.
    JAHN B M.2004. Phanerozoic Continental Growth In Central Asia[J]. Journal of Asian Earth Sciences,23: 599-603.
    JIAN P., LIU D Y., KRONER A et al.2008. Time Scale Of An Early To Mid-Paleozoic Orogenic Cycle Of The Long-Lived Central Asian Orogenic Belt, Inner Mongolia Of China:Implications For Continental Growth[J]. Lithos,101:233-259.
    KALSTROM K E., KELLER G R., SNELSON C M et al.2013. Regional Crustal Structure Derived From The CD-ROM 99 Seismic Refraction/Wide-Angle Reflection Profile:The Lower Crust And Upper Mantle[J]. doi:10.1029/154GM21.
    KELLY C, LU Z W., KLEMPERER S L et al.2012. Sinoprobe Seismic Reflection Imaging Of An Upper-Crustal "Bright Spot" Beneath The Karakoram Fault West Tibet[R]. AGU 2012 fall meeting abstract.
    KHAIN E V.2002. The Most Ancient Ophiolite Of The Central Asian Fold Belt, U-Pb Andpb-Pb Zircon Ages For The Dunzhugur Complex, Eastern Sayan, Siberia, And Geodynamic Implications[J]. Earth and Planetary Science Letters,199:311-325.
    LE L., NYALND E.1990. Pattern Analysis Of Seismic Records. Geophysics,55:20-28.
    LI Q., VASUDEVAN K., Cook F A.1997. Sesimic Skeletonization:A New Approach To Interpretation Of Seismic Reflection Data[J].Journal of Geophysical Research (Solid Earth),102(B4):8427-8445.
    LI S L., MOONEY W D., FAN J C.2006. Crustal Structure Of Mainland China From Deep Seismic Sounding Data[J]. Tectonophysics,420:239-252.
    LI W H., KELLER G R., GAO R et al.2013. Crustal Structure Of The Northern Margin Of The North China Craton And Adjacent Region From Sinoprobe02 North China Seismic WAR/R Experiment[J]. Tectonophysics,2013, DOI:10.1016/j.tecto.2013.04.007.
    LINES L.1993. Ambiguity In Analysis Of Velocity And Depth[J]. Geophysics,58:596-597.
    LIU C S., JIA S X.1986. Structure Property Of The Crust And The Upper Mantle In The Tangshan Earthquake-A Method Of Computing Body Wave Theoretical Seismogram And The Result Of Analysis Of 2-D Inhomogeneous Media[J]. Acta Seismologica Sinica,8:341-353.
    LIU D Y., NUTMAN A P., COMPSTON W et al.1992. Remnants Of>=3800 Ma Crust In The Chinese Part Of Sino-Korean Craton[J]. Geology,20:339-342.
    LIU H H., FU K S.1982. A Syntactic Pattern Recognition Approach To Seismic Discrimination[J]. Geoexploration,20:183-196.
    LIU J., ZHAO Y., LIU X et al.2012. Rapid Exhumation Of Basement Rocks Along The Northern Margin Of The North China Craton In The Early Jurassic:Evidence From The Xiabancheng Basin, Yanshan Tectonic BeIt[J]. Basin Research,24:544-558.
    LIU M J., MOONEY W D., LI S L.2006. Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganziterrane to the Ordos basin. Tectonophysics,420:253-266.
    LU S Y, CHENG Y C.1990. An Iterative Approach To Seismic Skeletonization[J]. Geophysics, 55:1312-1320.
    LU S Y.1982. A String-To-String Correlation Algorithm For Image Skeletonization[C]. Proclnternational Conference on Pattern Recognition,6:178-190.
    LUO Y.1997.利用三维地震资料进行边缘检测和地层分析[J].地球物理学进展,4:7-10.
    LYNN H B., DEREGOWSKI S.1981. Dip Limitations On Migrated Sections as a Function of Line Length And Recording Time[J]. Geophysics,46:1392-1397.
    MAREK G., JENSEN S L., KELLER G R.2003. Crustal Structure Of The Trans-European Suture Zone Region Along POLONAISE'97 Seismic Profile[J]. Jounral of Geophysical Research, doi:10.1029/2003 JB002426.
    MCCAUGHEY M., BARTON P J., SINGH S C.2000. Joint Traveltime Inversion Of Wide-Angle Seismic Data And Deep Reflection Profile From The Central North Sea[J]. Geophys J Int,141:100-114.
    MCMECHAN G A.1983. Application of image enhancement and pattern recognition algorithms to seismic reflection data [J]. Bulletin of the Seismological Society of America,73(1):307-314.
    MIAO L C, FAN W M., LIU D Y et al.2008. Geochronology And Geochemistry Of The Hegenshan Ophiolitic Complex:Implications For Late-Stage Tectonic Evolution Of The Inner Mongolia Daxinganling Orogenic Belt[J]. Journal of Asian Earth Sciences,32:348-370.
    MOONEY W D., BROCHER T M.1987. Coincident Seismic Reflection/Refraction Studies Of The Continental Lithosphere:A Global View. Review of Geophysics,25(4):723-742.
    MOREWOOD N C, SHANNON P M., MACKENZIE G D.2004. Seismic Stratigraphy Of The Southern Rockall Basin:A Comparison Between Wide-Angle Seismic And Normal Incidence Reflection Data[J]. Marine and Petroleum Geology,21:1149-1163.
    OSYPOV K S., YAO Z S., ROBERTS R G.1996. Phase Migration:An Approach To Inversion Of Wide-Angle Seismic Data[J]. Lecture Notes in Earth Sciences,63:151-160.
    PAULSON K V., MERDLER S C.1968. Automatic Seismic Reflection Picking[J]. Geophysics,33: 431-440.
    RATHOR B.1997. Velocity-Depth Ambiguity In The Dipping Reflector Case[J]. Geophysics,62: 1583-1585.
    ROSS W S.1994. The Velocity Depth Ambiguity In Seismic Travel-Time Data[J]. Geophysics,59: 830-843.
    ROYDEN L H., BURCHFIEL B C, KING R W et al.1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science,276:788-790.
    ROYDEN L.H., BURCHFIEL B.C., VANDERHILST, R.D.2008. The Geological Evolution Of The Tibetan Plateau[J]. Science,321:1054-1058.
    SCHNEIDER W A.1971. Development in seismic data processing and analysis (1968-1970)[J]. Geophysics,36:1034-1073.
    SENGOR A M C, NATAL'IN B A., BURTMAN V S.1993. Evolution Of The Altaid Tectonic Collage And Paleozoic Crustal Growth In Eurasia[J]. Nature,364:299-307.
    SIMON M., GEBRANDE. H., BOPP M.1996. Pre-Stack Migration And True Amplitude Processing Of Dekopp Near-Normal Incidence And Wide-Angle Reflection Measurements[J]. Tectonophysics,264: 381-392.
    STERNBACH L R.2002. Unsolved Mysteries Of Seismic Interpretation:A Retrospective Of 20 Years Of TLE [J]. The Leading Edge,21(10):952-954.
    TANG K D.1990. Tectonic Development Of The Paleozoic Fold Belts On The Northern Margin Of The Sino-Korean Craton[J]. Tectonics,9:249-260.
    TAPPONNIER P., MERCIER J L, PROUST F et al.1981. The Tibetan Side Of The India-Eurasia Collision[J]. Nature,294:405-410.
    TAPPONNIER P., MOLNAR P.1976. Slip-Line Field Theory And Large-Scale Continental Tectonics[J]. Nature,264 (5584):319-324.
    TAPPONNIER P., MOLNAR P.1977. Active Faulting And Tectonics In China[J]. Journal of Geophysical Research,82 (20):2905-2930.
    TAPPONNIER P., XU Z.Q., ROGER F et al.2001. Oblique Stepwise Rise And Growth Of The Tibetan Plateau[J]. Science,294:671-1677.
    TORNE M., PASCAL P B., WATTS A B et al.1992. Crustal And Velocity Structure Of The Valencia Trough (Western Mediterranean), Part I. A Combined Refraction/Wide-Angle Reflection And Near-Vertical Reflection Study[J]. Tectonophysics,203:1-20.
    TΦDSTHEIM D.1978. Improved Seismic Discrimination Using Pattern Recognition[J]. Physics of the Earth and Planetary Interiors,16:85-108.
    VASUDEVAN K., EATON D., COOK F A.2008. Skeleton Migration, A Seismic Interpretation Tool[C].CSPG CSEG CWLS Convention, Calgary:650-653.
    VIDALE J E.1988. Finite-Difference Travel Time Calculation[J]. Bulletin of the Seismological Society of America,78(6):2062-2076.
    VIDALE J.1990. Finite-Difference Calculation Of Travel times In Three Dimensions[J]. Geophysics, 55(5):521-526.
    WANG B., BRAILE L W.1996. Simultaneous Inversion Of Reflection And Refraction Seismic Data And Application To Field Data From The Northern Rio Grande Rift[J]. Geophys J Int,125:443-458.
    XIAO W J., WINDLEY B F., HAO J et al.2003. Accretion Leading To Collision And The Permian Solonker Suture, Inner Mongolia, China:Termination Of The Central Asian Orogenic Belt[J]. Tectonics,22, doi:10.1029/2002TC001484.
    XIAO W J., WINDLEY B F., BADARCH G et al.2004. Paleozoic Accretionary And Convergent Tectonics Of The Southern Altaids:Implications For The Growth Of Central Asia[J]. Journal of the Geological Society,161:339-342.
    XIAO W J., WINDLEY B F., HUANG B C et al.2009. End-Permian To Mid-Triassic Termination Of The Accretionary Processes Of The Southern Altaids:Implications For The Geodynamic Evolution, Phanerozoic Continental Growth, And Metallogeny Of Central Asia[J]. International Journal of Earth Sciences,98:1189-1217.
    XIONG X S., GAO R., LI Q S et al.2010. The Moho Depth And Variation Character Of The Continent In China And Its Geodynamic Implications[P]. AGU Fall meeting Poster, T43A-21.54.
    YAKUBCHUK A.2004. Architecture And Mineral Deposit Settings Of The Altaid Orogenic Collage:A Revised Model[J]. Journal of Asian Earth Sciences,23:761-779.
    YILMAZ O., CHAMBER R.1984. Migration Velocity Analysis By Wave-Field Extrapolation[J]. Geophysics,49:1664-1674.
    ZELT B.2004. Vmed:A Program For Analyzing And Interactively Editing A Rayinvr Velocity Model[OL]. http://www.soest.hawaii.edu/users/bzelt/vmed/vmed.html.
    ZELT B., TALWANI M.,ZELT C.1998. Prestack Depth Migration Of Dense Wide-Angle Seismic Data[J]. Tectonophysics,286:193-208.
    ZELT C A.1994. ZPLOT:An Interactive Plotting And Picking Program For Seismic Data[R]. Bullard Lab, University of Cambridge.
    ZELT C A.1998. Three-Dimensional Seismic Refraction Tomography:A Comparison Of Two Methods Applied To Data From The Faeroe Basin[J], J Geophys Res,1-17.
    ZELT C A.1999. Modeling Strategies And Model Assessment For Wide-Angle Seismic Traveltime Data[J]. Geophysical Journal International,139:183-204.
    ZELT C A., ELLIS R M.1988. Practical And Efficient Ray Tracing In Two-Dimensional Media For Rapid Travel Time And Amplitude Forward Modeling[J]. Canadian Journal of Exploration Geophysics,24: 16-31.
    ZELT C A., SMITH R B.1992. Seismic Traveltime Inversion For 2-D Crustal Velocity Structure[J]. Geophysical Journal International,108:16-34.
    ZHANG P Z., BURCHFIEL B C., MOLNAR P et al.1991. Amount And Style Of Late Cenozoic Deformation In The Liupan Shan Area, Ningxia Autonomous Region, China[J]. Tectonics,10 (6): 1111-1129.
    ZHANG P Z., SHEN Z K., WANG M et al.2004. Continuous Deformation Of The Tibetan Plateau From Global Positioning System Data[J]. Geology,32 (9):809-812.
    ZHANG S H., GAO R., LI H Y.2013. Crustal Structures Revealed From A Deep Seismic Reflection Profile Across The Solonker Suture Zone Of Central Asian Orogenic Belt, North China:An Integrated Interpretation. Tectonophysics, In Pressing.
    ZHANG S H., ZHAO Y., SONG B.2007a. Carboniferous Granitic Plutons From The Northern Margin Of The North China Block Implications For A Late Paleozoic Active Continental Margin. Journal of the Geological Society,164:451-463.
    ZHANG S H., ZHAO Y., SONG B., Liu D Y.2007b. Petrogenesis Of The Middle Devonian Gushan Diorite Pluton[J]. Geological Magazine,144:553-568.
    ZHANG Z J., YANG L Q., TENG J W et al.2011. An Overview Of The Earth Crust Under China[J]. Earth Science Reviews,104(1-3):143-166.
    ZHAO W J., NELSON K D.,1NDEPTH Project Team.1993. Deep Seismic Reflection Evidence For Continental Underthrusting Beneath Southern Tibet[J]. Nature,366:557-559.
    ZHENG D W., ZHANG P Z., WAN J L et al.2006. Rapid Exhumation At 8 Ma On The Liupan Shan Thrust Fault From Apatite Fission-Track Thermochronology:Implications For Growth Of The Northeastern Tibetan Plateau Margin[J]. Earth and Planetary Science Letters,248:198-208.
    安鸿伟,纪大庆.2008.混沌优化神经网络方法及其在地震多属性研究中的应用[J].中国海上油气,20(4):233-235.
    白志明.2002.深地震测深剖面的层析成像研究及其应用[D].1-128.
    曹从周,杨芳林,田昌烈.1986.内蒙古贺根山地区蛇绿岩及中朝板块和西伯利亚板块之间的缝合带位置[C].中国北方板块构造论文集-第一集,地质出版社,北京.164-186.
    曹令敏,赖晓.2012.甘肃天水地区地壳上部二维速度结构成像研究[J].地球物理学报,55(10):3318-3326.
    曾融生,阐荣举,何传大.1961.柴达木盆地地震探测的基岩首波和大角度反射[J].地球物理学报,10:54-66.
    曾融生,阐荣举.1961.柴达木盆地西部地壳深界面反射波[J].地球物理学报,10:120-125.
    陈沪生.1988.下扬子地区HQ-13线的综合地球物理调查及其地质意义[J].石油与天然气地质,9(3):211-222.
    陈九辉,刘启元,李顺成等.2005.青藏高原东北缘-鄂尔多斯地块地壳上地幔S波速度结构[J].地球物理学报,48(2):333-342.
    陈小斌,臧绍先,刘永岗等.2005.鄂尔多斯地块的现今水平运动状态及其与周缘地块的相互作用[J].中国科学院研究生院学报,22(3):309-314.
    陈小斌,臧绍先,魏荣强.2011.稳定的鄂尔多斯地块在整体运动吗?[J].地球物理学报,54(7):1750-1757.
    陈学华,贺振华,黄德济.2008.地震资料的高阶伪希尔伯特变换边缘检测[J].地球物理学进展,23(4):1106-1110.
    陈志德,杨文采,李玲等.2003.松辽盆地北部深反射地震χ2分布处理及其深部地质特征[J].石油地 球物理勘探,38(6):654-660.
    崔盛芹.1999.论全球性中-新生代陆内造山作用与造山带[J].地学前缘,6:283-293.
    邓攻.2010.青藏高原羌塘地体深地震反射剖面采集与处理技术初步实验研究[D],1-8.
    邓晋福,莫宣学,赵海玲等.1994.中国东部岩石圈根去根作用与大陆“活化”-东亚型大陆动力学模式研究计划[J].现代地质,8(3):349-356.
    邓晋福,苏尚国,赵海玲等.2003.华北地区燕山期岩石圈减薄的深部过程.地学前缘,10(3):41-50.
    邓启东.2002.中国活动构造研究的进展与展望[J].地质评论,48(2):168-177.
    董恩清,朱光明,吴文奎.1998.应用模式识别自动追踪地震剖面同相轴[J].西安石油学院学报,13(2):12-16.
    董树文,高锐,李秋生等.2005.大别山造山带前陆深地震反射剖面[J].地质学报,79(5):595-602.
    董树文,项怀顺,高锐等.2010.长江中下游庐江-枞阳火山岩矿集区深部结构与成矿作用[J].岩石学报,26(9):2529-2542.
    段俊.2008.关于地震属性的认识与研究[J].科技信息(科学教研),25:360,395-396.
    范俊喜,马瑾,甘卫军.2003.鄂尔多斯地块运动的整体性与不同边界活动的交替性[J].中国科学(D辑),33:119-128.
    酆少英,高锐,龙长兴等.2011.银川地堑地壳挤压应力场深地震反射剖面[J].地球物理学报,54(3):692-697.
    高美娟,田景文,高兴友等.2000.利用边缘检测法检测地震反射同相轴[J].大庆石油学院学报,24(3):8-11.
    高锐,黄东定,卢德源等.2001.横过西昆仑-塔里木结合带的深地震反射剖面[J].科学通报,45(17):1874-1879.
    高锐,王椿镛.固体地球物理学科的发展现状与展望-地球物理学科发展报告[M].中国科技出版社,北京:70-79.
    高锐,肖序常,高弘.200.西昆仑—塔里木—天山岩石圈深地震探测综述[j].地质通报,22(1):11-18.
    郭飚,刘启元,陈九辉等.2004.青藏高原东北缘—鄂尔多斯地壳上地幔地震层析成像研究[J].地球物理学报,47(5):790-797.
    郭良辉,孟小红,薛爱民.2007.地震剖面线条化的一种简单算法[J].地球科学—中国地质大学学报,32(4):545-548.
    洪大卫,黄怀曾,肖宜君等.1994.内蒙中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,68(3):219-230.
    嵇少丞,许志琴,王茜等.2008.亚洲大陆逃逸构造与现今中国地震活动[J].地质学报,82(12):1643-1667.
    敬荣中,鲍光淑,陈绍裘.2003.地球物理联合反演研究综述[J].地球物理学进展,18(3):535-540.
    李红星,刘财,陶春辉.2007.图像边缘检测方法在地震剖面同相轴自动检测中的应用研究[J].地球物理学进展,22(5):1607-1610.
    李锦轶,高立明,孙桂华等.2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,23(3):565-572.
    李锦轶,张进,杨天南等.2009.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报(地球科学版),39(4):584-600.
    李克勤.2002.鄂尔多斯盆地大地构造发展对油气的控制作用[M].中国含油气盆地构造,石油工业出版社,北京.426-439.
    李清河,郭建康,周民都.1991.成县-西吉剖面地亮速度结构[J].西北地震学报,13:37-42.
    李秋生,高锐,张成科等.2008.残余壳根与“三明治”结构-燕山造山带中段地壳结构的主要特征[J].地球学报,29:129-136.
    李松林,张先康,任青芳等.西吉一中卫地震测深剖而及其解释[J].西北地质,23(1):86-92.
    李松林,张先康,张成科等.2001.海原8.5级大震区地壳结构探测研究[J].中国地震,17(1):16-23.
    李文辉,高锐,王海燕.2010.Skeletonization技术及其在深地震反射剖面解释中的应用[J].地球物理学进展,25(4):1161-1167.
    李文辉,高锐,王海燕等.2012.深地震反射剖面构造信息识别研究[J].地球物理学报,55(12):41384146.
    李文辉,高锐,KELLER G R et al.2013.华北克拉通北缘(怀来-苏尼特右旗)地壳结构[J].地球物理学报,待刊.
    梁慧云,张先康.1996.各国地壳上地幔深地震反射研究计划与进展[J].地球物理学进展,11(1):26-28.
    刘财,杨宝俊,王兆国等.2011.松辽盆地西边界带深部构造:地电学证据[J].地球物理学报,2011,54(2):401-406.
    刘清林.1993.地震初至波射线路径的追踪[J].石油物探,32(2):14-20.
    刘清林.1995.程函方程差分法层析成像[J].石油物探,34(4):14-26.
    刘永前,方小敏,宋春晖等.2009.青藏高原东北缘六盘山地区新生代构造旋转及其意义[J].大地构造与成矿学,33(2):189-198.
    卢造勋,夏怀宽.1993.内蒙古东乌珠穆沁旗至辽宁东沟地学断面[J].地震学报,36:765-772.
    卢占武,高锐,李秋生等.2009.横过青藏高原羌墉地体中央隆起区的深反射地震试验剖面[J].地球物理学报,52(8):2008-2014.
    陆基孟.2011.地震勘探原理[M].石油工业出版社,北京.
    陆文凯,牟永光.1998.用自组织神经网络实现地震同相轴自动追踪[J].石油物探,37(1):77-83.
    陆一锋,徐鸣洁,王良书等.2012.鄂尔多斯东南缘地区的地壳结构[J].科学通报,57(1):59-64.
    马杏垣,刘昌铨,刘国栋.1991.江苏响水至内蒙古满都拉地学断面[M].地质出版社,北京.1-68.
    闵祥仪,向民都,郭建康.1991.灵台一阿木去乎剖面地壳速度结构[J].地球物理学报,13:29-36.
    莫宣学,赵志丹,邓晋福等.2003.印度-亚洲大陆主彭转过程的火山作用响应[J].地学前缘,10(3):135-147.
    帕尔默.1989.折射地震学[M].地质出版社.北京,1-2.
    潘纪顺.2007.二维变尺度非线性地震速度成像及阿尼玛卿缝合带东段地壳结构研究[D].1-137.
    任纪舜,牛宝贵,刘志刚.1999.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,6(3):85-93.
    任隽,彭建兵,王夫运等.2012.渭河盆地及邻区地壳深部结构特征研究[J].地球物理学报,55(9):2939-2947.
    邵济安,张履桥,牟保磊.1998.大兴安岭中南段中生代的构造热演化[J].中国科学,28(3):193-200.
    邵济安,张履桥,肖庆辉等.2007.中生代大兴安岭的隆起一种可能的陆内造山机制[J].岩石学报,21(3):789-794.
    邵济安.1991.中朝板块北缘中段地壳演化[M].北京大学出版社,北京.136.
    宋鸿林.1999.燕山式板内造山带基本特征与动力学探讨[J].地学前缘,6:309-316.
    宋友桂,李吉均,方小敏.2001.黄土高原最老红粘土的发现及其地质意义[J].山地学报,19(2):104-108.
    孙鹏远,赵文津.2001.广角反射地震资料处理软件[J].物探与化探,2:110-116.
    滕吉文.1974.柴达木东盆地的深层地震反射波和地壳结构[J].地球物理学报,17:122-134.
    童蔚蔚,王良书,米宁等.2007.利用接收函数研究六盘山地区地壳上地幔结构特征[J].中国科学D辑(地球科学),37:193-198.
    童英,洪大为,王涛等.2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义[J].地球学报,31(3):395-412.
    王宝军.2009.基于标准差椭圆法SEM图像颗粒定向研究原理与方法[J].岩土工程学报,31(7):1082-1087.
    王椿庸,张先康,吴庆举等.1994.华北盆地滑脱构造的地震学证据[J].地球物理学报,37:613-620.
    王椿镛,韩渭宾,吴建平等.2003.松潘-甘孜造山带地壳速度结构[J].地震学报,35(3):229-241.
    王海燕,高锐,卢占武等.2010.深地震反射剖面揭露大陆岩石圈精细结构[J].地质学报,84(6):818-838.
    王海燕,高锐,马永生等.2007.若尔盖盆地-西秦岭造山带结合部位深反射资料的静校正和去噪技术[J].地球物理学进展,22(3):743-749.
    王海燕,高锐,薛爱民等.2006.适用于造山带深地震反射资料的动校正方法[J].吉林大学学报(地球科学版),36(4):622-626.
    王家映.1998.地球物理反演理论[M].中国地质大学出版社,武汉.1-5.
    王玉静,樊志永.1997.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报,36:58-69.
    向宏发,虢顺民,张秉良等.1998.六盘山东麓活动逆断裂构造带晚第四纪以来的活动特征[J].地震地质,20(4):321-327.
    肖骏,陈汉林,林秀斌等.2011.海原-六盘山地区活动构造的活动时间厘定:来自光释光测年的限定[J].地球科学-中国地质大学学报,36(6):993-998.
    肖文交.2008.中亚造山带大陆动力学过程与成矿作用[J].新疆地质,2:4-8.
    徐备,陈斌.1997.内蒙古北部华北板块与西伯利亚板块之间中古生代造山带的结构和演化[J].中国科学(D辑),27(3):227-232.
    徐朝繁,张先康,刘宝金等.2005.高分辨折射地震资料处理方法及其应用[J].地球物理学进展,20(4):1052-1058.
    徐明才,高景华.1999.深部地震资料的处理和解释方法[J].物探化探计算技术,21(2):151-158.
    徐锡伟,程国良,马杏垣等.1994.华北及其邻区地体转动模式和动力来源[J].地球科学,19(2):129-138.
    许建华,王世库,赵廷寿.1990.用链匹配方法自动拾取同相轴[J].石油物探,29(2):13-23.
    杨宝俊,穆石敏,金旭等.1996.中国满洲里-缓芬河地学地球物理综合研究[J].地球物理学报,39:772-782.
    杨福忠,胡社荣.2001.六盘山盆地中、新生代构造演化和油气勘探[J].新疆石油地质,22(3):192-195.
    杨立强,郝天珧,宋海斌,江为为.2004.应用小波变换和C3相干算法检测地震剖面同相轴[J].物探化探计算技术,26(4):302-305.
    杨天水,杨振宇,孙知等.2001.东祁连造山带陆相盆地早白至世古地磁新结果及其构造意义[J].中国科学D辑,31(9):735-744.
    姚姚.1994.用人工神经网络实现同相轴自动拾取[J].石油地球物理勘探,29(1):111-116.
    姚姚.2007.地震波场与地震勘探[M].地质出版社,北京.190-192.
    于常青,赵殿栋,杨文采.2012.塔里木盆地结晶基底的反射地震调查[J].地球物理学报,55(9):2925-2938.
    张丽莉,吴健生,王家林.2003.图像处理在地球物理学中的应用[J].石油地球物理勘探,38(3):317-323.
    张培震,王敏,甘卫军等.2003.GPS观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J].地学前缘,10:81-92.
    张少泉,武利均,郭建明等.1985.中国西部地区门源—平凉—渭南地震测深剖面资料的分析解释[J].地球物理学报,28(5):460-472.
    张先康,李松林,王夫运等.2003.青藏高原东北缘、鄂尔多斯和华北唐山震区的地壳结构差异-深地震测深的结果[J].地震地质,23:52-60.
    张先康,杨卓欣,徐朝繁等.2007.阿尼玛卿缝合带东段上地壳结构-马尔康-碌曲-古浪深地震测深剖面结果[J].地震学报,29(6):592-604.
    张晓亮,师昭梦,蒋锋云等.2011.海原-六盘山弧形断裂带及其附近最新构造变形演化分析[J].大地测量与地球动力学,31(3):20-24.
    张岳桥,廖昌珍,施炜等.2006.鄂尔多斯盆地周边地带新构造演化及其区域动力学背景[J].高校地质学报,12(3):285-297.
    张岳桥,廖昌珍,施炜等.2007.论鄂尔多斯盆地及其周缘侏罗纪变形[J].地学前缘,14(2):182-196.
    张长厚.1999.初论板内造山带[J].地学前缘,6:296-308.
    张中杰,白志明,王椿镛等.2005.冈瓦纳型和扬子型地块地壳结构:以滇西孟连-马龙宽角反射剖面为例[J].中国科学D辑,34(5):387-392.
    赵雪平,李月,杨宝俊.2006.用于检测同相轴的Duffing型系统恢复力项的讨论[J].地球物理学进展,21(1):61-69.
    赵越,陈斌,张栓宏等.2010.华北克拉通北缘及邻区前燕山期主要地质事件[J].中国地质,34:900-915.
    郑德文,万景林,张培震等.2005.碎屑颗粒裂变径迹热年代学[A].第八届全国同位素地质年代学、同位素地球化学学术讨论会资料集.
    郑德文,熊秋菊,杨慕升.2009.数字图像处理中边缘检测算法的对比研究[J].机械工程与自动化,4:43-47.
    钟大赉,丁林.1996.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑),26(4):289-295.
    周冠雄,胡志成.1991.地震剖面同相轴的AR自动追踪方法[J].自动化学报,17(3):359-362.
    周华伟.2002.地震成像-多尺度层析与全波偏移-地球的结构、演化和动力学[M].高等教育出版社,北京:2-25.
    周民都,吕太乙,张元生等.2000.青藏高原东北缘地质构造背景及地壳结构研究[J].地震学报,22(6):645-653.
    朱弟成,潘桂堂,莫宣学等.2004.印度大陆和欧亚大陆的碰撞时代[J].地球科学进展,19(4):564-571.
    朱日祥,陈凌,吴福元.2011.华北克拉通破坏的时间、范围与机制[J].中国科学(地球科学版),41(5):538-592.
    朱日祥.2007.地球内部结构探测研究-以华北克拉通为例[J].地球物理学进展,22(4):1090-1100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700