应用PCR-DGGE技术研究锰污染农田土壤微生物群落遗传多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属在环境中的排放、迁移、富集能造成极大的危害。研究重金属污染土壤中微生物的群落结构组成和变化能揭示生物对重金属污染环境的适应进化策略,为保护环境提供有用的信息。
     聚合酶链式反应-变性梯度凝胶电泳技术(简称PCR-DGGE技术)是分子生物学方法的一种,用于检测DNA突变。它的分辨精度高,最高可以检测到一个核苷酸水平的差异。将PCR-DGGE技术应用于微生物研究,能较好地克服传统微生物培养方法的局限性,能获得更多微生物群落结构和遗传多样性的信息,结合克隆和序列分析,在环境诊断领域将有着广阔的应用前景。
     本文简介了重金属污染的危害和土壤微生物的国内外研究成果,综述了研究土壤微生物群落组成的分子生物学方法最新进展,指出了研究土壤微生物群落组成的意义,总结了目前研究中存在的问题,提出了以后进一步研究的方向。
     采集了湖南省湘潭市锰矿尾渣坝附近受不同程度锰污染的7个水稻田土壤样品,总锰浓度范围为114~4611 mg/kg,有效态锰浓度为61~1258 mg/kg。有效态锰浓度与总锰浓度随着距离污染源的远近有着一致的变化趋势。对土壤样品做理化分析,土壤pH值与锰浓度有正相关性。测得各样点有机碳、总氮、阳离子交换量,都不同程度的受到锰胁迫的影响。实验揭示锰在矿山周边农田土壤中的化学形态分布规律。同时根据培养细菌计数,锰污染对土壤微生物数量有明显的抑制。
     提取土壤细菌总DNA,用通用引物对其中的16S rDNA进行扩增,然后进行变性梯度凝胶电泳(Denaturing Gradient Gel Electrophoresis),根据电泳图谱分析长期受锰污染的水稻田土壤微生物群落结构和遗传多样性变化,存在于污染最严重样点中的细菌种群对锰有较高的耐受性,不同锰污染的样点群落结构发生变化并且有菌种的消亡和新菌种的产生,锰污染土壤微生物的组成产生了明显的影响。根据UPGMA结果显示,随着离锰矿尾渣坝距离的增加,锰污染的变化,土壤微生物群落结构有一个逐渐演替的过程。不同程度的锰污染不仅影响了组成微生物群落的细菌种群数目,还使微生物群落结构以及优势种群发生了改变。不同种类的微生物不仅是对锰的敏感性不同,对锰污染程度的敏感性也不同。锰污染直接和间接地改变了水稻田土壤微生物群落结构和遗传多样性。
Heavy metals in environment lead to great harm to organism and human being through discharging, transferring and gathering. Research on the effect of long-term exposure to heavy metals on structure and diversity of microbial community in soils could reveal the tolerance and adaptation of microbes and supply useful information for environment monitoring.
     Denaturing gradient gel electrophoresis (DGGE) is one kind of molecular biology methods for detecting mutation of DNA. Since traditional methods of cultivating require the use of media or substrates on which only 1.0-10% of soil microrganicsms can grow, applications of DGGE technique has been applied to soil ecosystem in recent years and has enabled the researchers to study microbial diversity at the molecular level.
     In this paper, the research findings and up-to-date research progress in here and abroad were introduced. It pointed out the importance of the microbial community structure and diversity in soil, and summarized the problems in the recent research. Furthermore, the developing trends of the technology were discussed in the end.
     Seven soil samples were collected from seven different sites near an abandoned manganese ore mine in Xiangtan. The contents of total manganese were 114~4611 mg/kg and the contents of extractable manganese were 61~1258 mg/kg. Manganese influenced the pH, organic C, total N and cation exchange capacity (CEC). The speciation of manganese in soil at different sites was studied. Bacteria were found being influenced negatively by manganese pollution.
     The profiles of amplified 16S rDNA sequences obtained from community DNA by denaturing gradient gel electrophoresis (DGGE) reflected the altered community structure and diversity along the manganese gradient as expressed in terms of the position and number of bands. Based on the profiles of DGGE, five bacterial populations were found in all of the soil-sampling sites. That observation may indicate that these five species are manganese resistant. Population and structure varied in bacterial richness among the low contamination sites, but with no sharp difference. The observed changes in the different soil microbial populations probably result from the combined direct and indirect effects of manganese contamination
引文
[1] 许嘉琳, 杨居荣. 陆地生态系统中的重金属. 中国环境科学出版社, 1995: 157-287
    [2] 黄圣彪, 王子健. 天然水体中铜的形态及其对 Q67 淡水发光菌的毒性作用. 环境科学研究, 2003, 16(2): 43-46
    [3] 刘春生, 孙百晔, 王正直, 郑永明, 叶优良, 张福锁. 铜对不同苹果砧木实生苗生长的影响差异研究. 植物营养与肥料学报, 2003, 9(3): 364-368
    [4] 刘慧, 王晓蓉, 王为木, 于海霞. 不同形态锌离子对鲫鱼谷胱甘肽系统的影响. 中国环境科学, 2005, 25(2): 169-173
    [5] 孙铁衍, 周启星, 李培军. 污染生态学. 科学出版社, 2001: 298-312
    [6] Kennydy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75-86
    [7] Elsas J D, Duarte G F, Rosado A S. Microbiological and molecular biological methods for monitoring microbial inoculants and their effects in the soil environment. Journal of Microbiological Methods, 1998, 32: 133-154
    [8] Horton T R, Bruns T D. The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 2001, 10: 1855-1871
    [9] 焦晓丹 , 吴凤芝 . 土壤微生物多样性研究方法的进展 . 土壤通报 , 2004, 35(6):789-792
    [10] 任天志. 持续农业中的土壤生物指标研究. 中国农业科学, 2000, 33(1): 68-75
    [11] 李社红. 北疆资源开发环境污染问题研究. 北京: 中国科学院研究生院, 2002. 9
    [12] 吴攀, 刘丛强, 杨元根. 矿山环境中(重)金属的释放迁移地球化学及其环境效应. 矿物学报, 2001, 21(2): 213-219
    [13] Hochella M F, White A F. Mineral-water interface geochemistry: An overview . Review in Mineralogy, 1990, 23(3): 1-16
    [14] Castrol-Larrgoitia J, Kramar U, Pucheh H. 200 years of mining activities at La Paz/San Luis Potosi/Moxico-consequences for environment and geochemical exploration. Journal of Geochemical Exploration, 1997, 58(5): 81-91
    [15] Merington G. The transfer and fate of Cd, Cu, Pb and Zn from two historic metallifercus mine in the U.K. Applied Geochemistry, 1994, 9(4): 677-687
    [16] Fridland, Jay A. Trace metal accumulation distribution fluxes in forests of thenortheastern United States. Doctoral Dissertation, 1990
    [17] Graney J R. Isotopic record of lead pollution in lake sediments from the northeastern United States. Geochemistry at Cosmochemistry Acta, 1995, 59 (9): 1751-1728
    [18] Stromberg B. Kinetic modeling of geochemical processes at the Aitik mining wate rock site in morthern Sweden. Applied Geochemisty, 1994, 9(3): 583-595
    [19] 余剑东, 倪吾钟, 杨肖娥. 土壤重金属污染评价指标的研究进展. 广东微量元素科学, 2002, 9(5): 11-16
    [20] 孙华, 孙波, 张桃林. 江西省贵溪冶炼厂周围蔬菜地重金属污染状况评价研究. 农业环境科学学报, 2003, 22(1): 70-72
    [21] 张超兰, 白厚义. 用模糊综合评判法评价土壤重金属污染程度. 广西农业生物科学, 2003,22(1): 54-57
    [22] Wu Chao. Fault tree analysis of spontaneous combustion of sulphide ores and its risk assessment. Journal of Central South University of Technology (English Edition), 1995, 2(2): 77-80
    [23] 王庆仁, 刘秀梅, 崔岩山, 董艺婷. 我国几个工矿与污灌区土壤重金属污染状况及原因探讨. 环境科学学报, 2002, 22(3): 354-359
    [24] 滕彦国, 倪师军, 庹先国, 张成江. 应用标准方法评价攀枝花地区表层土壤的重金属污染. 生态学报, 2003, 40(3): 374-379
    [25] Campbell P G C. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In : Tessier A, Turner D R, eds. Metal Speciation and Bioavailability in Aquatic Systems [C]. New York: Wiley, 1995, 45-102
    [26] Vangronsveld J, Cunningham S D. Introduction to the concepts. In Vangronsveld J, Cunningham S D, eds. Metal Contaminated Soils: in situ Inactivation and Phytorestoration. New York: Springer, 1998, 1-15
    [27] 刘玉荣, 党志, 尚爱安, 文震. 几种萃取剂对土壤重金属生物有效部分的萃取效果. 土壤与环境, 2002, 11: 245-247
    [28] 王美青, 章明奎. 杭州市城郊土壤重金属含量和形态的研究. 环境科学学报, 2002, 22(5): 603-609
    [29] 卢瑛, 龚子同, 张升霖. 南京城市土壤中重金属的化学形态分布. 环境化学,2003, 22(2): 132-138
    [30] 孟昭福, 张增强, 薛澄泽, 唐新保. 替代黑麦幼苗测定土壤中重金属生物有效性的研究. 农业环境保护, 2001, 20: 337-340
    [31] 薛澄泽, 刘俊华, 李宗利, 赵成义, 张天红. 用黑麦幼苗法测定土壤中污染元素生物有效性. 环境化学, 1995, 14(1): 32-37
    [32] 龙健, 黄昌勇, 滕应, 姚槐应.矿区重金属污染对土壤环境质量微生物指标的影响. 农业环境科学学报, 2003, 22(!): 60-63
    [33] 廖自基. 环境中微量重金属元素的污染危害与迁移转化. 北京:科学出版社, 1989
    [34] 奉若涛, 渠荣遴, 李德森, 杜荣骞. 水体重金属污染的植物修复研究(Ⅲ)一种苗过滤驱除水中重金属镉. 农业环境科学学报, 2003, 22(1): 28-30
    [35] 韦朝阳, 陈同斌. 重金属污染植物修复技术的研究与应用现状. 地球科学进展, 2002, 17(6): 833-835
    [36] 黄雪琴, 龙玉博. 镉对江蚬碱性磷酸酶的影响. 福建师范大学学报, 1995, 11(2): 74-78
    [37] 滕应, 黄昌勇, 龙健. 铅锌银尾矿污染区土壤酶火性研究. 中国环境科学, 2002, 22(6): 551-555
    [38] 李永进, 李培军, 杨桂芬. 重金属污染土壤毒性的大型蚤法诊断. 农业环境科学学报, 2003, 22(2): 159-162
    [39] Kwong Y T, Roots C F, Roach P. Post-mine metal transport and attenuation In the Kenno Hill Mining district, central Yukon, Canada. Environmental Geology, 1997, 30(1/2): 98-106
    [40] 侯克复. 环境系统工程. 北京: 北京理工大学出版社, 1991
    [41] Clairmont K B, Hagar W G, Davis E A. Manganese toxicity to chlorophyll synthesis in tobacco callus. Plant Physiology, 1998, 118: 493-504
    [42] Gonzalez A, Steffen K L, Lynch J P. Light and excess manganese. Plant Physiology, 1998, 118: 493-504
    [43] Bumell J N. The biolchemistry of manganese in plants In: Graham R D, Hannam R J, Uren N C, eds. Manganese in Soil and Plants. Dordrecht: Kluwer Academic, 1998, 125-137
    [44] Mukhopadhyay M J, Sharma A. Manganese in cell metabolism of higher plants. Botanical Review, 1991, 57(2): 117-149
    [45] Cao G, Liang M Z. Manganese-trace element necessary for plants at the balance growth system. Soil Fertility and Productivity, 2004, (1): 2-3
    [46] El-Jaoual T, Cox D A. Manganese toxicity in plants. Journal of Plant Nutrition, 1998, 21(2): 353-386
    [47] Santandrea G, Tani C, Bennici A. Cytological and ultrastructural response of Nicotiana tabacum L roots to manganese stress. Plant Biosystems, 1998, 132: 197-206
    [48] Hu L, Shi Y H, Liu P. Effect of manganese on membrane lipid , activities of POD and CAT of soybean. Journal of Jinhua College of Profession and Technology, 2003, (1): 29-32
    [49] Santandrea G, Schiff S, bennici A. Effects of manganese on Nicotiana species cultivated in vitro and characterization of regenerated Mn-tolerant tobacco plants. Plant Science, 1998, 132: 71-82
    [50] 周盛年, 刘黎青, 于呸先等. 老年脑血管病学. 北京: 中国科学技术出版社, 1995: 28
    [51] Doncheva S, Georgieva K, Vassileva V. Effects of succinate on manganese toxicity in pea plants. Journal of Plant Nutrition, 2005, 28(1): 47-62
    [52] Hauck M, Paul A, Gross S. Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environment and Expriment Botany, 2003, 49: 181-191
    [53] Macfie S M, Taylor G J. The effects of excess manganese on photosynthetic rate and concentration of chlorophyll in Triticum aestivum grown in solution culture. Plant Physiology, 1992, 85(3): 467-475
    [54] Xiao F J, Zhang X J. Recent advance of research on the interaction between trace element Al, Mg, Zn, Mn and Calmodulin. Journal of Hebei Academy Science, 2003, 20(3): 163-167
    [55] Mergler D, Huel G, Bowler H. Nerious system dvsfunction among worker with long-term exposure to manganese. Environmental Research, 1994, 64(2): 151-160
    [56] Lueehni R, Sells L, Foil D. Neurobehavioral effect of manganese in worker from a ferioalloy plant after temporary cessation of exposure. Scandinavian Journal of Work, Environment & Health, 1995, 21(2): 143-149
    [57] 高晓玲, 陈红英, 陈健. 锰对人体神经传导速度影响的研究. 劳动医学, 2000, 17(4): 198
    [58] Scrisuchart B. Alteration of humoral and cellular immunity in manganese chloride treated mice. Journal of Toxicology and Environmental Health, 1987, 22(1): 91-99
    [59] 郭建霞. 氯化锰对小鼠免疫毒性作用的研究. 职业医学, 1991, 18(3): 137
    [60] Ronald K. Augmentation of murine natural killer cell activity by manganese chloride. Toxicology and Applied Pharmacology, 1983, 70: 7-17
    [61] Smialoavicz R J. Enhancemence of natural killer cell activity and interferon production by manganese in young mice. Immunopharmacol Immunotoxicol, 1989, 10(1): 93-107
    [62] Smialowicz R J. Effects of manganese, calcium and zinc on nickel-inducedsuppression of murine natural killer cell activity. Journal of Toxicology and Environmenal Health, 1987, 20: 67-80
    [63] Smialowicz R J. Effects of nickel and manganese on natural killer cell activity. Gov Rep Annonuce Index (V.S) 1984, 84(26): 74
    [64] 陈小敏, 刘林飞, 骆公成, 邓鹤玉. 职业性锰暴露工人血清免疫蛋白水平观察 . 中国民康医学杂志, 2005, 17(7): 337-338
    [65] 塔娜, 闫素梅, 丁晓岚, 乔良, 康越, 周学军. 不同锰源与锰水平对肉仔鸡生长性能和免疫技能的影响. 饲料博览, 2005, 17(6): 4-7
    [66] 胡存丽, 邵文. 我国锰毒性研究现状. 卫生毒理学志, 2000, 14(3): 185-186
    [67] 伍东梅, 李兴升, 才秀莲, 李季蓉. 氯化锰对小鼠精子畸形率的影响. 遵义医学院学报, 2006, 29(1): 27-28
    [68] 李向东, 周涌江. 铅、锰污染后大鼠精子形态的改变. 职业健康, 2006, 22(19): 1571-1572
    [69] 张玉梅, 柏松. 氯化锰处理小鼠镜子质量的变化. 中国职业医学, 2004, 31(2): 23-25
    [70] 武英, 崔金山, 张玉梅, 王薛君, 马明月. 氯化锰对雄性大鼠亚急性生殖毒性机制的研究. 中国工业医学杂志, 2004, 17(3): 183-185
    [71] Zini A, Scbulsinger D. Localization of inducible nitric oxide synthaes in the normal postischemic rat testis. Fertility and Serility, 1996, 66: 205-209
    [72] Torsvik V L, Goksoyr J, Daae F L. High diversity of DNA of soil bacterial. Appl Environmental Microbiology, 1990, 56: 782-787
    [73] Collins H P, Rasmussen P E, Douglas C L. Crop rotation and residue management on soil carbon and bacterial dynamics. Soil Science Society of Ameriacan Journal, 1992, 56: 783-788
    [74] Loper J E. Population dynamics of soil Pseudomonads in the rhizosphere of potato. Applied Environmental Microbiology, 1985, 49: 416-422
    [75] Peer V R, Niemann G J, Schipers B. Induced resistance and phytoalexin in accumulation in biological control of fusarium wilt of camation by Psudomonas sp. Strain WCS417r. Phytopathology, 1991, 81:728-734
    [76] Alsrom S. Induction of disease resistance in common on bean susceptible to nalo blight bacterial pathogen after seed bacterization with rhizosphere Pseudomonas. Journal of General Applied microbiology, 1991, 37: 495-501
    [77] Wei G, Kloepper J W, Tuzun S. Induction of systemic resistance of cucumber to rhizobacteria. Phytopathology, 1991, 81:1508-1512
    [78] Emma F, Schnurer J. Chitinolytic properties of Bacillus pabuli. K. Journal ofApplied Bacteriology, 1994, 76: 361-367
    [79] 陈秀蓉, 南志标. 细菌多样性及其在农业生态系统中的作用. 草业科学, 2002, 19(9): 34-38
    [80] van Veen J A, van Overbeek L S, van Elsas J D. Fate and activity of microorgaisums introduced into soil. Microbiology and Molecular Biology Reviews, 1997, 61(2): 121-135.
    [81] 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义. 土壤, 1997, 29(2): 61-69
    [82] 蒋先军 , 骆永明 , 赵其国 . 重金属污染土壤的微生物学评价 . 土壤, 2000, (3):130-134
    [83] Macnaughton S J, Stephen J R, Venosa A D, Davis G A, Chang Y J, White D C. Mirobial population changes during bioremediation of an experiment oil spill. Applied Environmental Microbiology, 1999, 65: 3566-3574
    [84] Acosta-Matinez V, Tabatabai M A. Arylamidase activity in soils: effect of trace elements and relationships to soil properties and activities of amidohydroases. Soil Biology & Biochemistry, 2001, 33: 17-23
    [85] Macur R E, Wheeler J T, Mcdermott T R, Inskeep W P. Microbia populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environmental Science and Technology, 2001, 35, 3676-3682
    [86] 徐建民, 王秀丽. 重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响. 环境科学学报, 2003, 23(1): 22-27
    [87] 俞慎, 何振立, 黄昌勇. 重金属斜坡下土壤微生物和微生物过程研究进展. 应用生态学报, 2003, 14(6): 618-622
    [88] Brzezinaska M, Stepniewska Z, Stepniewski W. Soil Oxygen status and dehydrogenase activity. Soil Biology & Biochemistry, 1998, 30(13): 1783-1790
    [89] Brooke P C. The use of icrobial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 1995, 19: 269-279
    [90] Kunito T, Saeki K, Oyaizu H, Matsumoto S. Influences of copper forms on the toxicity to microorganisms in soils. Ecotoxicology and Environmental Safety, 1999, 44: 174-181
    [91] Aceves M B, Grace C, Ansorena J, Dendooven L, Brookes P C. Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mind spoil tip. Soil Biology & Biochemistry, 1999, 31: 867-876
    [92] Konopka A, Zakharova T, Bischoff M, Oliver L, Nakatsu C, Turco R F. Microbial biomass and activity in lead-contaminated soil. Applied and EnvironmentalMicrobiology, 1999, 65:2256-2259
    [93] Knight B P, Mcgrath S P, Chaudri A M. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper or zinc. Applied and Environmental Microbiology, 1997, 63: 39-43
    [94] Kumar R S, Peyton B M, Brown L T. Copper-induced inhibition of growth of desulfovibrio desulfuricans G20: Assessment of its toxicity and correlation with those of zinc and lead. Applied and Environmental Microbiology, 2001, 67: 4765-4772
    [95] Kandeler E, Luflenegger G, Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 1997, 23: 299-306
    [96] Kandeler E, Luxhoi J, Tscherko D, Magid J. Xylanase, invertase and protease at the soil-litter interface of a loamv sand. Soil Biology & Biochemistry, 1999, 31:1171-1179
    [97] Kandeler E, Tscherko D, Bruce K D, Stemmer M, Hobbs P J, Bardgett R D, Amelung W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 2000, 32: 390-400
    [98] Shi W, Becker J, Bischoff M, Turco R F, Konopka A E. Associtation of microbial community composition and activity with lead, chiromium, and hydrocarbon contamination. Applied and Environmental Microbiology, 2002, 68: 3859-3866
    [99] 杨元根. 用土壤微生物方法评价重金属 Cu 的毒性及其时间效应. 自然科学进展, 2001, 11(3): 243-249
    [100] Pennanen T, Frostegard A, Fritze H, B??th Erland. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Applied and Environmental Microbiology, 1996, 62: 420-428
    [101] 李永涛, Thierry B, Cecile Q, Marc B, Patric L, 戴军. 酸性矿山废水污染的水稻田土壤中重金属的微生物学效应. 生态学报, 2004, 24(11): 2430-2436
    [102] 龚平, 李培军. Cd、Zn、菲和多效唑复合污染土壤的微生物生态毒理效应. 中国环境科学, 1997, 17(1): 139-146
    [103] 顾宗濂, 谢思琴, 吴留松. 土壤中镉、砷、铅的微生物效应及其临界值. 土壤学报, 1987, 24(4): 327-334
    [104] Head I M, Sauders J R, Pickup R W. Microbial evolution, diversity and ecology: adecade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecology, 1998, 34: 11-21
    [105] 张晓君, 冯清平, 白玲. 分子生态学方法在微生物多样性研究中的应用. 微生物学通报, 1999, 26(1): 68-70
    [106] Hencker T, Friedrich M, Conrad R. Analyses of the methane-oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA, particulate methane monooxygenase and methanol deydrogenase. Applied and Environmental Microbiology, 65: 1980-1990
    [107] Godfrey S A C, Harrow S A, Marshaal J W, Klena J D. Characterization by 16S rRNA sequence analysis of pseudormonades causing blotch disease of cultivated agaricus bisporus. Applied and Environmental Microbiology, 2001, 67: 4316-4323
    [108] Amann R I. Molecular Microbial Ecology Manual: In situ identification of microorganisms by whole cell hybrization with rRNA targeted nucleic acid probes[M]. Dordrecht: Kluwer Academic, 1995: 11-15
    [109] Manz W, Amann R, Ludwig W, et al. Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria: Problems and solutions. Sysematic and Applied Microbiology, 1992, 15: 593-600
    [110] Muyzer G, De Waal E C, Uitterlinden A G. Profiling of microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified gene encoding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700
    [111] 罗海峰, 齐鸿雁, 薛凯. 在 PCR-DGGE 研究土壤微生物多样性中应用 GC 发夹结构的效应. 生态学报, 2003, 23(10): 2170-2175
    [112] Kozdroj J, van Elsas J D. Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE fingerprinting and FAME profiling. Applied Soil Ecology, 2001,17: 31-42
    [113] Ranjard L, Nazaret S, Gourbière F, Thioulouse J, Linet P, Richaume A. A soil microscale study to reveal the heterogeneity of Hg(II) impact on indigenous bacteria by quantification of adapted phenotypes and analysis of community DNA fingerprints. FEMS Microbiology Ecology, 2000, 31(2): 107-115
    [114] 张洪勋, 王晓谊, 齐鸿雁. 微生物生态学研究方法进展. 生态学报, 2003, 29(5): 988-995
    [115] 赵祥伟, 骆永明, 腾应, 李振高, 宋静, 吴龙华. 重金属符合污染农田土壤的微生物群落遗传多样性研究. 环境科学学报, 2005, 25(2): 186-191
    [116] 冯瑞华. 用 AFLP 技术 16S rDNA PCR-RFLP 分析毛苜蓿根瘤菌的遗传多样性.微生物学报, 2000, 40(4): 330-345
    [117] Dunbar J, Ticknor L O, Kuske C R. Assessment of microbial diversity in four southwestern united states soils by 16S rRNA gene terminal restriction fragment analysis. Applied and Environmental Microbiology, 2000, 66, 2943-2950
    [118] 张晶, 张惠文, 张成刚. 实时荧光定量 PCR 及其在微生物生态学中的应用. 生态学报, 2005, 25(6), 1445-1450
    [119] Feris K, Ramsey P, Frazar C, Moore J N, Gannon J E, Holben W E. Differences in hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Applied and Environmental Microbiology, 2003, 69, 5563-5573
    [120] Feris K P, Ramsey P W, Frazar C, Rillig M, Moore J N, Gannon J E, Holben W E. Seasonal dynamics of shallow-hyporheic-zone microbial community structure along a heavy-metal contamination gradient. Applied and Environmental Microbiology, 2004, 70: 2323-2331.
    [121] Tyson G W, Chapman J, Hugenholts P, Allen E E, Ram R J, Richardson P M, Solovyev V V, Rubin E M, Rokhsar D S, Banfield J F. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004, 428(4): 37-43
    [122] Venter J C, Remington K, Heidelberg J F, Halpern A L, Rusch, D, Eisen J A, Wu D Y, Paulsen I, Nelson K E, Nelson W, Fouts D E, Levy S, Knap A H, Lomas M W, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tilson, H, Pfannkoch, C, Rogers, Y H, Smith H O. Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004, 304(2): 66-74
    [123] 蓝崇钰, 束文圣, 孙庆亚. 采矿地的复垦. 见: 陈昌笃主编, 持续发展与生态学. 北京: 中国科技出版社, 1993: 132-138
    [124] Dudka S, Adriano D C. Environmental impacts of metal ore mining and processing: a review. J Environmental Quality, 1997, 26:590-602
    [125] Wong M H. Environmental impacts of iron ore retailing, the case of Tolo Harbour. Hong Kong Environtal Management, 1981, 5: 135-145
    [126] 束文圣, 叶志鸿, 张志权, 黄铭洪, 蓝崇钰. 华南铅锌尾矿生态恢复的理论与实践. 生态学报, 2003, 23(8): 1629-1639
    [127] 章家恩, 徐琪. 恢复生态学研究的一些基本问题探讨. 应用生态学报, 1999, 10(1): 109-113
    [128] 白中科, 赵景逵. 工矿土地复垦与生态重建[M]. 北京: 中国农业科学出版社, 2000: 68-71
    [129] 束文圣, 张志权, 蓝崇钰. 中国矿业废弃地的复垦对策研究(1). 生态科学,2000, 19(2): 25-29
    [130] Dobson A P, Bradshaw A D, Baker A J M. Hopes for further restoration ecology and conservation biology. Science, 1997, 277: 515-522\
    [131] Jordan W R, Gilpin M E, Aber J D. Restoration Ecology. A Synthetic Approach to Ecological Research. Canmbridge: Cambridge University Press, 1987
    [132] Bradshaw A D, Chadwick M J. The Restoration of Land, the Ecology and Reclamation of Derelicand Degraded Land. Berkeley: University of California Press, 1980
    [133] 陈怀满, 郑春荣, 周东美, 涂从, 高林. 德兴铜矿尾矿库植被重建后的土壤肥力状况和重金属污染初探. 土壤学报, 2005, 42(1): 29-36
    [134] 腾应, 黄昌永, 龙健, 姚槐应.铅锌银尾矿污染区土壤微生物区系及主要生理类群研究.. 农业环境科学学报, 2003, 22(4): 408-41
    [135] Valery B, Eugene K. Soil surface geochemical anomaly around the copper-nicekel metallurgical smelter. Water, Air, and Soil Pollution, 1998, 103:197-218
    [136] Mcgrath S P, Zhao F J, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil, 2001, 232: 207-214
    [137] Lasat M M. Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 2002, 31: 109-120
    [138] 池振明. 微生物生态学. 济南: 山东大学出版社, 1999: 9-10
    [139] Elsgaard L, Petersen, S O, Debosz K. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environmental Toxicology and Chemistry, 2001, 20(8):1656-1663
    [140] Filip Z. International approach to assessing soil quality by ecological-related biological parameters. Agr Ecosyst Environ, 2002, 88(2): 169-174
    [141] Renella G, Mench M, Landi L, Namnipieri P. Microbial activity and hydolase synthesis in long-term Cd –contaminated soils. Soil Biology & Biochemistry, 2002, 37: 133-139
    [142] Heuer H, Krsek M, Baker P, Smalla K W, Elizabeth M H. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 1997, 63(8): 3233-3241
    [143] 马悦欣, Holmstrm C, Webb J, Kjelleberg S. 变性梯度凝胶电泳(DGGE)在微生物生态学中的应用. 生态学报, 2003, 23(8): 1561-1569
    [144] Ascoli R D, Rao M A, Adamo P, Renella G, Landi L, Rutigliano F A, Terribile F, Gianfreda L. Impact of river overflowing on trace element contamination ofvolcanic soils in south Italy: Part II. Soil biological and biochemical properties in relation to trace element speciation. Environmental Pollution, 2006, 144: 317-326
    [145] Lorenz N, Hintemann T, Kramarewa T, Katayama A, Yasuta T, Marschner P, Kandeler E. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biology & Biochemistry, 2006, 38: 1430-1437
    [146] Renella G, Mench M, van der Lelie D, Pietramellara G, Ascher J, Ceccherini M T, Landi L, Nannipieri P. Hydrolase activity, microbial biomass and community structure in long-term Cd-congtaminated soils. Soil Biology & Biochemistry, 2004, 36: 443-451
    [147] Li Z J, Xu J M, Tang C X, Wu J J, Muhammad A, Wang H Z. Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils . Chemosphere 2006, 62: 1374-1380
    [148] Müller A K, Westergaard K, Christensen S, S?rensen S J. The effect of long-term mercury pollution on the soil on the microbial community . FEMS Microbiology Ecology, 2001, 36: 11-19
    [149] Grandlic C J, Geib I, Pilon R, Sandrin T R. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria. Environmental Pollution, 2006, 144: 119-126
    [150] Ball D F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science, 1964, 15: 84-92
    [151] 孙红专, 陈秋兰, 杨剑红. 棕漠土阳离子交换量测定方法对比研究. 现代农业科技, 2007, 3: 76-77
    [152] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytic Chemistry, 1979, 51: 844-851
    [153] Han F X, Banin A. Solid-phase manganese fractionation changes in saturated arid-zone soil: pathway and kinetics. Soil Science Society of America Journal, 1996, 60: 1072-1080
    [154] 张慧智, 刘云国, 黄宝荣, 李欣. 锰矿尾渣污染土壤上植物受重金属污染状况调查. 生态学杂志, 2004, 23(1): 111-113
    [155] 何鹏, 刘德华, 张工桥, 孙茂森. 高锰污水灌溉对儿童神经行为的影响. 中华预防医学杂志, 1994, 28(4): 216-218
    [156] Kot A, Namiesneik J. The role of speciation in analytical chemistry. Trac-Trend.Analytic Chemistry, 2000, 19: 69-79
    [157] Krishnamurti R, Naidu R. Solid-solution speciation and phytoavailability of copper and zinc in soils. Environmental Sciece & technology, 2002, 36: 2645-2651
    [158] Song J, Zhao F J, Luo Y M, Mcgrath S P, Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailablility in contaminated soils. Environmental Pollution, 2004, 128(3): 307-315
    [159] Muňoz-Meleňdez G, Korreb A, Parry S J. Influence of soil pH on the fractionation of Cr, Cu and Zn in solid phases from a landfill site. Environmental Pollution, 2000, 109, 497-504
    [160] 刘铮. 土壤与植物中锰的研究进展. 土壤学进展, 1991, 19(6): 1-10
    [161] Bürgmann H, Pesaro M, Widmer F, et al. A strategy for optimizing quality and quantity of DNA extracted from soil . Journal Microbiological Mehods, 2001, 45: 7-20
    [162] Howeler M, Ghiorse W C, Walker L P. A quantitative analysis of DNA extraction and purification from compost . Journal Microbiological Mehods, 2003, 54: 37-45
    [163] LaMontagne M G, Michel F C, Holden P A, et al. Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. Journal Microbiological Methods, 2002, 49: 255-264
    [164] Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied Environmental Microbiology, 1996, 62: 316-322
    [165] 张瑞福, 曹慧, 崔中利, 李顺鹏, 樊奔. 土壤微生物总 DNA 的提取和纯化. 微生物学报, 2003, 43(2): 276-282
    [166] 赵勇, 周志华, 李武, 刘彬彬, 潘迎捷, 赵立平. 土壤微生物生态学研究中总DNA 的提取. 农业环境科学学报, 2005, 24(5): 854-860
    [167] Blanc M, Marilley L, Beffa T, Aragno M. Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiology Ecology, 1999, 28: 141-149
    [168] Purdy K J, Embley T M, Takii S, Nedwell D B. Rapid extraction of DNA and rRNA from sediments by a novel hydroxyapatite spin-column method. Applied Environmental Microbiology, 1996, 62: 3905-3907
    [169] Muyzer G, Brinkhoff T, Nubel U. Denaturing gradient gel electrophoresis (DGGE) in microbial ecology [M]. In: Akkermans A D L, van Elsas J D, De Bruijn F J (Eds). Molecular Microbial Ecology Manual. Dordrecht: Kluwer Academics, 1-27
    [170] 陈红歌, 胡元森, 贾新成. 垃圾填埋场细菌中群空间分布及组成多样性研究.环境科学学报, 2005, 25(6): 809-815
    [171] B(?)th E. Effects of heavy metals in soil on microbial processes and population (a review) . Water, Air and Soil Pollution, 1989, 47: 335-379
    [172] Stephen J R, Chang Y, Macnaughton S J, et al. Effect of toxic metals on indigenous soil β -subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria . Applied and Environmental Microbiology, 1999, 65(1): 95-101
    [173] B(?)th E. Effects of heavy metals in soil on microbial processes and populations (a review) . Water Air and Soil Pollution, 1989, 47: 335-379
    [174] Farrelly V, Rainey F A, Stackebrandt E. Effect of genome size and copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environl Microbiol, 1995, 61: 2798-2801
    [175] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek, 1998, 73: 127-141
    [176] Polz M F, Cavanaugh C M. Bias in template-to-product ratios in multi-template PCR. Appl Environ Microbiol, 1998, 64: 3724-3730
    [177] Stamper D M, Walch M, Jacobs R N. Bacterial population changes in a membrane bioreactor for gray-water treatment monitored by denaturing gradient gel electrophoresis analysis of 16S rRNA gene fragments. Applied Environmental Microbiology, 2003, 69: 852-860
    [178] 孙华, 孙波, 张桃林. 江西省贵溪冶炼厂周围蔬菜地重金属污染状况评价研究. 农业环境科学学报, 2003, 22(1): 70-72
    [179] 金茜, 钟永科, 伍远辉. 锰矿冶炼中 Fe、Mn 对周边土壤的影响. 遵义师范学院学报, 2006, 8: 49-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700