隧道围岩塌落机理与锚杆支护结构的上限分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隧道稳定性问题是隧道工程中的基础性问题之一,如何在支护条件已知情况下对隧道的稳定性进行安全评估和如何确定临界状态下隧道围岩潜在破坏面,对从事隧道理论研究的学者和工程技术人员尤为重要。传统的研究方法主要是经典土力学方法和有限元法,但在解决上述问题时这两种方法均存在一定的局限性。极限分析上限定理,不但能够计算出接近实际情况的破坏荷载,而且可以获得相应的临界破坏面。因此,极限分析上限法是解决上述隧道工程稳定性问题的有效途径之一。本论文主要以极限分析上限定理为基础,结合数值方法和解析方法,对复杂条件下深埋和浅埋隧道的稳定性进行研究,主要研究内容如下:
     (1)结合强度折减法和极限分析上限定理,通过对土体原始的抗剪强度指标进行折减,并利用内外能耗功率相等推导出浅埋隧道整体安全系数的目标函数。采用序列二次优化迭代方法对此目标函数进行优化,得到了浅埋隧道能量耗散最小意义下的安全系数,从而对浅埋隧道稳定性做出评价。
     (2)根据浅埋隧道开挖面的主动和被动破坏模式,采用强度折减法和上限定理,构建了浅埋隧道开挖面安全系数的目标函数,并通过优化计算得到了隧道开挖面的最小安全系数。考虑实际工程中遇到的各种影响因素后,得到了各个因素作用下隧道开挖面安全系数的上限解,并就各个参数对安全系数的影响进行了详细的讨论。
     (3)针对浅埋岩质隧道顶部围岩的破坏特征,构建了一种二维曲线型破坏机制。根据上限定理,利用Hoek-Brown破坏准则和变分法推导出了隧道顶部围岩塌落面的解析表达式。在此基础上,将孔隙水压力功率引入上限定理的虚功率方程中,研究了孔隙水压力作用下深埋隧道顶部围岩塌落面的形状。
     (4)构建了深埋隧道顶部围岩的三维破坏机制,通过计算隧道顶部三维塌落体的内能耗散功率和外力功率获得了隧道围岩塌落面方程的目标函数。利用变分法求出了此目标函数能量耗散最优意义下的塌落面解析方程,根据此方程绘制了不同参数下深埋隧道顶部围岩三维塌落体的形状。
     (5)将三维旋转体型破坏机制引入浅埋矩形隧道的上限分析中,采用变分法和数值软件绘制了浅埋矩形隧道顶部围岩塌落体的形状。考虑不同围岩参数、地表荷载和支护力对浅埋隧道顶部塌落体形状的影响,得到了隧道塌落体形状随各参数变化的规律。
     (6)在前述研究的基础上,根据内外能耗计算和变分原理,推导出锚杆作用下深埋隧道顶部围岩塌落面形状的显示解。通过对参数分析,得到了深埋隧道围岩塌落面形状和塌落范围随锚杆支护参数变化的规律。
     (7)基于南京地铁三号线星火路站~高新路站区间隧道工程,采用数值模拟方法和极限分析上限定理分别计算了隧道拱顶围岩塌落面的形状,将研究成果应用于实际工程。
The issue of tunnel stability is one of the essential problems in tunnel engineering. The assessment of tunnel stability when the supporting condition is known and the determination of potential failure surface for tunnel surrounding rock at critical state are especially important for scholars and engineers in their theoretical tunnel studies. There are limitations when the conventional soil mechanics and finite element method are employed to solve these problems. However, the application of the upper bound theorem of limit analysis in geotechnical stability analysis can not only derive the actual collapse load but also obtain the critical failure surface. Therefore, the upper bound theorem of limit analysis is one of the effective methods to solve the problems in tunnel engineering as mentioned above. Based on the upper bound theorem of limit analysis, using analytical and numerical methods, this dissertation studies the stability problems of deep and shallow tunnel for various complex factors. The main content of research is as follows:
     (1) By combining the strength reduction method with the upper bound theorem, the objective function of factor of safety for shallow tunnel is derived from reducing the original soil strength parameters and virtual work equation. Using the sequential quadratic programming to optimize the objective function, the upper bound solution of factor of safety for shallow tunnel is obtained and the assessment of tunnel stability is conducted.
     (2) Based on the collapse and blow-out failure mechanisms, the objective function of factor of safety for tunnel face is constructed by using the strength reduction method and the upper bound theorem. By introducing the influence factor of actual project into the upper bound analysis, the upper bound solution of factor of safety for tunnel face under each factor is obtained with the help of optimization calculation and the effect of parameters on the factor of safety is studied.
     (3) To illustrate the collapsing feature of surrounding rock for shallow tunnel roof, a two-dimensional curved failure mechanism is constructed. Using the Hoek-Brown failure criterion and the variational approach, the analytical solution of collapsing surface for surrounding rock over shallow tunnel roof is derived in the framework of upper bound theorem. Furthermore, by introducing the power of pore pressure as a power of external force in the virtual work equation, the upper solution for the shape of collapsing surface over deep tunnel roof subjected to pore pressure is obtained.
     (4) To achieve three-dimensional stability analysis for collapse block of a deep tunnel roof, a three-dimensional rotational failure mechanism is constructed. By calculating the rate of energy dissipation and the external rate of work in the failure mechanism, an objective function which includes the equation of collapsing surface is obtained. With the help of variational approach, the analytic expression of surface equation for the three-dimensional collapsing block is derived, and the shapes of three-dimensional collapsing surface for deep tunnel under different rock parameters are drawn.
     (5) By extending the three-dimensional stability analysis method for deep tunnel to shallow tunnel, the shapes of three-dimensional collapsing surface of shallow tunnel are derived. Considering the influence of different rock parameters, surcharge load, and supporting pressure on the shape of collapsing surface, the change law of each parameter for the shape of collapsing surface is obtained.
     (6) On the basis of the research results mentioned above, the analytical solution of collapsing surface for deep tunnel with the effect of rockbolt are derived from energy dissipation calculation and variational approach. By analyzing the size of collapsing block for deep tunnel under different rockbolt parameters, the change laws of each parameter for rockbolt are obtained.
     (7) Based on the observed geological data of running tunnel in Nanjing Metro, using numerical simulation and the analytical method mentioned above, the shape of collapsing surface for surrounding rock over tunnel roof is calculated, and the research results are thus applied to practical projects.
引文
[1]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [2]陈祖煜.土质边坡稳定分析一原理、方法、程序[M].北京:中国水利水电出版社,2003.
    [3]Chen R H, Chameau J L. Three-dimensional limit equilibrium analysis of slopes[J]. Geotechnique,1983,33(1):31-40.
    [4]Jiang G L, Magnan J P. Stability analysis of embankments:comparison of limit analysis with methods of slices[J]. Geotechnique,1997,47(4):857-872.
    [5]Bishop A W. The use of the slip circle in the stability analysis of earth slopes[J]. Geotechnique,1955,5(1):7-17.
    [6]Wei W B, Cheng Y M, Li L. Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods[J]. Computers and Geotechnics,2009, 36(1-2):70-80.
    [7]Zhu DY, Lee CF, Qian QH, et al. A new procedure for computing the factor of safety using the Morgenstern-Price's method[J]. Canadian Geotechnical Journal,2001,38(4): 882-888.
    [8]Hungr O, Amann F. Limit equilibrium of asymmetric laterally constrained rockslides[J]. International Journal of Rock Mechanics and Mining Sciences,2011, 48(5):748-758.
    [9]Li A J, Lyamin A V, Merifield R S. Seismic rock slope stability charts based on limit analysis methods[J]. Computers and Geotechnics,2009,36(1-2):135-148.
    [10]吕玺琳,王浩然,黄茂松.盾构隧道开挖面稳定极限理论研究[J].岩土工程学报,2011,33(1):57-62.
    [11]Nomikos P P, Sofianos A I, Tsoutrelis C E. Symmetric wedge in the roof of a tunnel excavated in an inclined stress field[J]. International Journal of Rock Mechanics and Mining Sciences.2002,39(1):59-67.
    [12]Anagnostou G, Kovari K. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology,1994,9(2):165-174.
    [13]Anagnostou G, Kovari K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling and Underground Space Technology,1996,11(2):165-173.
    [14]David M P, Zdravkovid L. Finite element ana-lysis in geotechnical engineering: theory[M]. London:Thomas Telford Publishing, Thomas Telford Ltd,1999.
    [15]Zienkiewicz O C, Valliappan S, King I P. Stress Analysis of Rock as a'No Tension' Material[J]. Geotechnique,1968,18(1):56-66.
    [16]Koutsabeloulis N C, Griffiths D V. Numerical modelling of the trap door problem[J]. Geotechnique,1989,39(1):77-89.
    [17]Sloan S W, Assadi A, Purushothaman N. Undrained stability of a trapdoor[J]. Geotechnique,1990,40(1):45-62.
    [18]Shin J H, Potts D M, Zdravkovic L. Three-dimensional modelling of NATM tunnelling in decomposed granite soil[J]. Geotechnique,2002,52(3):187-200.
    [19]Karakus M, Fowellb R J. Effects of different tunnel face advance excavation on the settlement by FEM[J]. Tunnelling and Underground Space Technology,2003,18(5): 513-523.
    [20]Mroueh H, Shahrour I. A simplified 3D model for tunnel construction using tunnel boring machines[J]. Tunnelling and Underground Space Technology,2008,23(1): 38-45.
    [21]Chen J S, Moa H H. Numerical study on crack problems in segments of shield tunnel using finite element method[J]. Tunnelling and Underground Space Technology,2009, 24(1):91-102.
    [22]Peng F L, Wang H L, Tan Y, et al. Field Measurements and Finite-Element Method Simulation of a Tunnel Shaft Constructed by Pneumatic Caisson Method in Shanghai Soft Ground[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011, 137(5):516-524.
    [23]Masin D.3D Modeling of an NATM Tunnel in High K0 Clay Using Two Different Constitutive Models[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009,135(9):1326-1335.
    [24]Contini A, Cividini A, Gioda G. Numerical Evaluation of the Surface Displacements due to Soil Grouting and to Tunnel Excavation[J]. International Journal of Geomechanics,2007,7(3):217-226.
    [25]龚建伍,雷学文.大断面小净距隧道围岩稳定性数值分析[J].岩土力学,2010,31(2):412-417.
    [26]周维祥,黄茂松,吕玺琳.非均质黏土地基中平面应变隧道最小支护压力数值模拟[J].岩土力学,2010,31(2):418-421.
    [27]贾剑青,王宏图,李晶等.复杂条件下隧道支护结构稳定性分析[J].岩土力学,2010,31(11):3599-3603.
    [28]熊炜,范文,彭建兵等.正断层活动对公路山岭隧道工程影响的数值分析[J].岩石力学与工程学报,2010,29(1):2845-2852.
    [29]覃卫民,赵荣生,王浩等.浅埋大跨隧道下穿建筑物的安全影响研究[J].岩石力学与工程学报,2010,29(2):3762-3768.
    [30]罗彦斌,陈建勋,王梦恕.隧道斜交横通道施工对主隧道衬砌结构的影响研究[J].岩石力学与工程学报,2010,29(2):3792-3798.
    [31]魏纲,郭志威,魏新江等.软土隧道盾构出洞灾害的渗流应力耦合分析[J].岩土 力学,2010,31(1):383-387.
    [32]许崇帮,夏才初,王华牢.特大断面连拱隧道中墙偏压机制及施工影响分析[J].岩石力学与工程学报,2010,29(1):2819-2826.
    [33]唐春安,李连崇,李常文等.岩土工程稳定性分析RFPA强度折减法[J].岩石力学与工程学报,2006,25(8):1522-1530.
    [34]程选生,郑颖人,田瑞瑞.隧道围岩结构地震动稳定性分析的动力有限元强度折减法[J].岩土力学,2011,32(4):1241-1248.
    [35]程选生,田瑞瑞,王俊岭等.大跨度无衬砌蛋形黄土隧道围岩结构的静力和地震动稳定分析[J].土木工程学报,2010,43(增):582-587.
    [36]张红,郑颖人,杨臻等.黄土隧洞支护结构设计方法探讨[J].岩土力学,2009,30(2):473-478.
    [37]Zienkiewicz O C, Taylor R L. The finite element method[M]. New York: McGraw-Hill,1989.
    [38]Griffiths D V, Lane P A. Slope stability analysis by finite elements[J]. Geotechnique, 1999,49(3):387-403.
    [39]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [40]黄秋枫,胡海浪.基于强度折减有限元法的边坡失稳判据研究[J].灾害与防治工程,2007,6(2):38-43.
    [41]Laas J J. The value of long tendons in design of tunnel layout and support[J]. Tunnelling and Underground Space Technology,1998,13(1):23-33.
    [42]Grillo L, Alessandrini F, Meriggi R. A new system for the construction of large shallow tunnels by microtunnelling technology [J]. Tunnelling and Underground Space Technology,2000,15(1):43-58.
    [43]Nicolini E, Nova R. Modelling of a tunnel excavation in a non-cohesive soil improved with cement mix injections [J]. Computers and Geotechnics,2000,27(4):249-272.
    [44]Oreste P. Distinct analysis of fully grouted bolts around a circular tunnel considering the congruence of displacements between the bar and the rock[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1052-1067.
    [45]Lee J S. An application of three-dimensional analysis around a tunnel portal under construction[J]. Tunnelling and Underground Space Technology,2009,24(6): 731-738.
    [46]Gonzalez-Nicieza C, Alvarez-Vigil A E, Menendez-Diaz A, et al. Influence of the depth and shape of a tunnel in the application of the convergence-confinement method[J]. Tunnelling and Underground Space Technology,2008,23(1):25-37.
    [47]Genis M. Assessment of the dynamic stability of the portals of the Dorukhan tunnel using numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(8):1231-1241.
    [48]Liu H L, Li P, Liu J Y. Numerical investigation of underlying tunnel heave during a new tunnel construction [J]. Tunnelling and Underground Space Technology,2011, 26(2):276-283.
    [49]杨小礼,眭志荣.应力剪胀对浅埋隧道稳定性系数的影响[J].中南大学学报(自然科学版),2008,39(1):190-195.
    [50]杨小礼,眭志荣.软弱围岩中偏压隧道的剪胀特性研究[J].岩土力学,2007,28(增):501-504.
    [51]戴宏伟,陈仁朋,陈云敏.地面新施工荷载对临近地铁隧道纵向变形的影响分析研究[J].岩土工程学报,2006,28(3):312-316.
    [52]郑颖人,肖强,叶海林等.地震隧洞稳定性分析探讨[J].岩石力学与工程学报,2010,29(6):1081-1088.
    [53]赵瑜,李晓红,顾义磊等.高应力区隧道围岩变形破坏的数值模拟及物理模拟研究[J].岩土力学,2007,28(增):393-397.
    [54]王明年,崔光耀,喻波.广州地铁西村站近接高架桥桩基影响分区及应用研究[J].岩石力学与工程学报,2009,28(7):1396-1404.
    [55]许文锋.海底隧道围岩位移全曲线研究[J].岩土力学,2009,30(增):220-224.
    [56]江权,冯夏庭,向天兵.基于强度折减原理的地下洞室群整体安全系数计算方法探讨[J].岩土力学,2009,30(8):2483-2488.
    [57]华渊,朱赞成,周太全等.基于有限差分法的隧道新型支护结构稳定性分析[J].岩石力学与工程学报,2005,24(15):2718-2722.
    [58]郑俊杰,章荣军,杨庆年.浅埋隧道变基床系数下管棚的力学机制分析[J].岩土工程学报,2009,31(8):1165-1171.
    [59]李地元,李夕兵,张伟等.基于流固耦合理论的连拱隧道围岩稳定性分析[J].岩石力学与工程学报,2007,26(5):1056-1064.
    [60]Yang X L, Huang F. Stability analysis of shallow tunnels subjected to seepage with strength reduction theory [J]. Journal of Central South University of Technology,2009, 16(6):1001-1005.
    [61]Yang X L, Huang Fu. Influences of material dilatancy and pore water pressure on stability factor of shallow tunnels [J]. Transactions of Nonferrous Metals Society of China,2009,19(3):819-823.
    [62]Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29(1):47-65.
    [63]武力.基于离散元仿真的盾构密封舱压力平衡机理研究[D].大连:大连理工大学博士学位论文,2009.
    [64]Vardakos S S, Gutierrez M S, Barton N R. Back-analysis of Shimizu Tunnel No.3 by distinct element modeling[J]. Tunnelling and Underground Space Technology,2007, 22(4):401-413.
    [65]Melis Maynar M J, Medina Rodriguez L E. Discrete Numerical Model for Analysis of Earth Pressure Balance Tunnel Excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10):1234-1242.
    [66]Funatsu T, Hoshino T, Sawae H et al. Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the distinct element method[J]. Tunnelling and Underground Space Technology,2008,23(5):561-573.
    [67]Konietzky H, Kamp L, Hammer H et al. Numerical modelling of in situ stress conditions as an aid in route selection for rail tunnelsin complex geological formations in South Germany[J]. Computers and Geotechnics,2001,28(6-7): 495-516.
    [68]Idris J, Al-Heib M, Verdel T. Numerical modelling of masonry joints degradation in built tunnels[J]. Tunnelling and Underground Space Technology,2009,24(6): 617-626.
    [69]Chryssanthakis P, Barton N, Lorig L et al. Numerical simulation of fiber reinforced shotcrete in a tunnel using the discrete element method[J]. International Journal of Rock Mechanics and Mining Sciences.1997,34(3-4):54.e1-54.e14.
    [70]任松,姜德义,杨春和等.共和隧道开裂段页岩蠕变本构试验及离散元数值模拟研究[J].岩土力学,2010,31(2):416-421.
    [71]武力,屈福政,孙伟等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报.2010,32(1):18-23.
    [72]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析[J].岩石力学与工程学报,2004,23(7):1154-1157.
    [73]王吉亮,陈剑平,苏生瑞等.节理岩体隧道塌方机理离散元研究[J].中国矿业大学学报.2008,37(3):316-319.
    [74]魏龙海,王明年.碎石土隧道自稳性的三维离散元分析[J].岩土力学,2008,29(7):1853-1860.
    [75]汪成兵,朱合华.隧道塌方机制及其影响因素离散元模拟[J].岩土工程学报,2008,30(1):450-456.
    [76]倪小东,王媛,陆宇光.隧洞开挖过程中渗透破坏细观机制研究[J].岩土工程学报,2010,29(增2):4195-4201.
    [77]Schofield A N. Cambridge geotechnical centrifuge operations [J]. Geotechnique,1980, 30(3):227-268.
    [78]Loganathan N, Poulos H G, Stewart D P. Centrifuge model testing of tunnelling-induced ground and pile deformations [J]. Geotechnique,2000,50(3): 283-294.
    [79]Bilotta E, Taylor R N. Centrifuge modelling of tunnelling close to a diaphragm Wall[J]. International Journal of Physical Modelling in Geotechnics,2005,5(1):27-41.
    [80]Lee S W, Bolton M D, Mair R J et al. Centrifuge modelling of injection near tunnel lining[J]. International Journal of Physical Modelling in Geotechnics,2001,1(1):9-24.
    [81]Adalier K, Abdoun T, Dobry R et al. Centrifuge modelling for seismic retrofit design of an immersed tube tunnel [J]. International Journal of Physical Modelling in Geotechnics,2003,3(2):23-35.
    [82]Tsuno K, Morimoto W, Itoh K et al. Centrifugal modelling of subway-induced vibration[J]. International Journal of Physical Modelling in Geotechnics,2005,5(4): 15-26.
    [83]Wu B R, Lee C J. Ground Movements and Collapse Mechanisms Induced by Tunneling in Clayey Soil[J]. International Journal of Physical Modelling in Geotechnics,2003,3(4):15-29.
    [84]Lee K M, Rowe R K. Deformations caused by surface loading and tunnelling:the role of elastic anisotropy[J]. Geotechnique,1989,39(1):125-140.
    [85]吴波,高波,索晓明等.城市地铁隧道施工对管线的影响研究[J].岩土力学,2004,25(4):658-662.
    [86]漆泰岳,高波,马亮.富水软土地层地铁开挖地表沉降离心模型试验[J].西南交通大学学报,2006,41(2):184-189.
    [87]章慧健,仇文革,冯冀蒙等.近距离重叠隧道盾构施工的纵向效应及对策研究[J].岩土力学,2010,31(11):3569-3573.
    [88]凌昊,仇文革,孙兵等.双孔盾构隧道近接施工离心模型试验研究[J].岩土力学,2010,31(9):2849-2853.
    [89]曹杰,黄茂松,余行.硬质土层中隧道结构动力离心模型试验[J].岩土工程学报,2010,32(7):1101-1108.
    [90]蒋树屏,黄伦海,宋从军.利用相似模拟方法研究公路隧道施工力学形态[J].岩石力学与工程学报,2002,21(5):662-666.
    [91]吴梦军,黄伦海.四车道公路隧道动态施工力学研究[J].岩石力学与工程学报,2006,25(增1):3057-3062.
    [92]林刚,何川.双连拱公路隧道支护结构体系试验研究[J].西南交通大学学报,2004,39(3):362-365.
    [93]来弘鹏,谢永利,杨晓华.公路隧道衬砌断面型式模型试验研究[J].岩土工程学报,2006,28(6):740-744.
    [94]赵明阶,敖建华,刘绪华等.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2):213-217.
    [95]李围,何川,张志刚.大型地下结构下修建盾构隧道模型试验[J].西南交通大学 学报,2005,40(4):478-483.
    [96]曾亚武,赵震英.地下洞室模型试验研究[J].岩石力学与工程学报,2001,20(增1):1745-1749.
    [97]汪洋,何川,曾东洋等.盾构隧道正交下穿施工对既有隧道影响的模型试验与数值模拟[J].铁道学报,2010,32(2):79-85.
    [98]姚燕明,周顺华,李尧臣.离心模型试验边界效应分析[J].力学季刊,2004,25(2):291-296.
    [99]Chen W F, Liu X L. Limit analysis in soil mechannics[M]. Amsterdam:Elsevier Science,1990.
    [100]Chen W F. Limit analysis and soil plasticity[M]. Amsterdam:Elsevier Science,1975.
    [101]Atkinson J H, Potts D M. Stability of a shallow circular tunnel in cohesionless soil[J].Geotechnique,1977,27(2):203-215.
    [102]Davis E H, Dunn M J, Mair R J, et al. The Stability of Shallow Tunnels and Underground Openings in Cohesive Material [J]. Geotechnique,1980,30(4): 397-416.
    [103]Takemura J, Kimura T, Wong S F. Undrained stability of two-dimensional unlined tunnels in soft soil[C]. Proceedings, JSCE, No.418/Ⅲ-12 (Geotechnical Eng.), PP.267-277(1990).
    [104]杨峰,阳军生.浅埋隧道围岩压力确定的极限分析方法[J].工程力学,2008,2(7):179-184.
    [105]Leca E, Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J].Geotechnique,1990,40(4):581-606.
    [106]Li Y, Emeriault F, Kastner R, et al. Stability analysis of large slurry shield-driven tunnel in soft clay[J]. Tunnelling and Underground Space Technology,2009,24(4): 472-481.
    [107]Lee I M, Nam S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunneling and Underground Space Technology, 2001,16(1):31-40.
    [108]Lee I M, Nam S W. Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face[J]. Tunneling and Underground Space Technology,2004, 19(3):273-281.
    [109]Lee I M, Lee J S, Nam S W. Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J]. Tunnelling and Underground Space Technology,2004,19(6):551-565.
    [110]Wang H T, Jia J Q. Face Stability Analysis of tunnel with pipe roof reinforcement based on limit analysis[J]. Electronic Journal of Geotechnical Engineering,2009, 14(G):1-15.
    [111]Dias D, Janin J P, Soubra A H. Three-dimensional face stability analysis of circular tunnels by numerical simulations[C]. GeoCongress 2008:Characterization, Monitoring, and Modeling of GeoSystems,886-893. March 9,2008, New Orleans, LA, United states
    [112]Huang F, Yang X L. Upper Bound Solutions for the Face Stability of Shallow Circular Tunnels Subjected to Nonlinear Failure Criterion[C]. GeoShanghai International Conference,251-256. June 2,2010, China, Shanghai.
    [113]DE Buhan P, Cuvillier A, Dormieux L. Face stability of shallow circular tunnels driven under the water table:a numerical analysis [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(1):79-95.
    [114]Park J K, J. Tanner B, Ahn J H. Upper bound solutions for tunnel face stability considering seepage and strength increase with depth[C]. Proceedings of the 33rd ITA-AITES World Tunnel Congress-Underground Space-The 4th Dimension of Metropolises,1217-1222. May 5,2007, Prague, Czech republic
    [115]Soubra A H. Three-dimensional face stability analysis of shallow circular tunnels[C]. International Conference on Geotechnical and Geological Engineering,19-24. November 2000. Melbourne, Australia.
    [116]Soubra A H, Dias D, Emeriault F, et al. Three-dimensional face stability analysis of circular tunnels by a kinematical approach[C]. Proceedings of the GeoCongress, Characterization, Monitoring, and Modelling of Geosystems,9-12.2008, USA New Orleans.
    [117]Soubra A H. Kinematical approach to the face stability analysis of shallow circular tunnels[C].8th International Symposium on Plasticity,443-445.2002, Canada, British Columbia.
    [118]Mollon G, Dias D, Soubra A H. Probabilistic analysis of the face stability of circular tunnels[C]. Proceedings of Selected Sessions of the 2009 International Foundation Congress and Equipment Expo, Contemporary Topics in In Situ Testing, Analysis, and Reliability of Foundations,348-355,2009.
    [119]Mollon G, Dias D, Soubra A H. Probabilistic analysis and design of circular tunnels against face stability [J]. International Journal of Geomechanics,2009,9(6): 237-249.
    [120]Mollon G, Dias D, Soubra A H. Probabilistic analysis of circular tunnels in homogeneous soil using response surface methodology [J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(9):1314-1325.
    [121]Mollon G, Dias D, Soubra A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010,136(1):215-229.
    [122]Mollon G, Phoon K K, Dias D, et al. A new 2D failure mechanism for face stability analysis of a pressurized tunnel in spatially variable sands[C]. Proceedings of the GeoFlorida 2010 Conference, Advances in Analysis, Modeling and Design, 2052-2061,2010, US A Florida.
    [123]Mollon G, Dias D, Soubra A H. Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(12):1363-1388.
    [124]Chambon P, Corte J F. Shallow tunnels in cohesionless soil:Stability of tunnel face [J]. Journal of Geotechnical Engineering,1994,120(7):1148-1165.
    [125]Takano D, Otani J, Nagatani H, et al. Application of X-ray CT on Boundary Value Problems in Geotechnical Engineering:Research on Tunnel Face Failure[C]. Proceedings of GeoCongress 2006, Geotechnical Engineering in the Information Technology Age,1-6,2006, USA, Atlanta.
    [126]Sloan S W, Kleeman P W. Upper bou:nd limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering,1995, 127(1-4):293-314.
    [127]Lyaminb A V, Sloan S W. Upper bound limit analysis using linear finite elements and non-linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(2):181-216.
    [128]Krabbenhoft K, Lyamin A V, Hjiaj M, et al. A new discontinuous upper bound limit analysis formulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2005,26(7):1069-1088.
    [129]Sloan S W, Assadi A. Undrained stability of a square tunnel in a soil whose strength increases linearly with depth[J]. Computer and Geotechnics,1991,12 (4):321-346.
    [130]姜功良.浅埋软土隧道稳定性极限分析[J].土木工程学报,1998,31(5):65-72.
    [131]Assadi A, Sloan S W. Undrained stability of shallow square tunnel[J]. Journal of Geotechnical Engineering,1991,117(8):1152-1173.
    [132]Augardea C E, Lyaminb A V, Sloan S W. Stability of an undrained plane strain heading revisited[J]. Computer and Geotechnics,2003,30 (5):419-430.
    [133]杨峰,阳军生,赵炼恒.浅埋隧道工作面破坏模式与支护反力研究[J].岩土工程学报,2010,32(2):279-284.
    [134]杨峰,阳军生,张学民等.黏土不排水条件下浅埋隧道稳定性上限有限元分析[J].岩石力学与工程学报,2010,29(增2):3952-3959.
    [135]杨峰.浅埋隧道围岩稳定性的极限分析上限法研究[D].长沙:中南大学博士学位论文,2009.
    [136]Fraldi M,Guarracino F.Limit analysis of collapse mechanisms in cavities andtunnels according to the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):665-673.
    [137]Fraldi M, Guarracino F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections[J]. International Journal of Solids and Structures,2010, 47(2):216-223.
    [138]Fraldi M, Guarracino F. Evaluation of impending collapse in circular tunnels by analytical and numerical approaches[J]. Tunnelling and Underground Space Technology,2011,26(4):507-516.
    [139]Huang F, Yang X L. Upper bound limit analysis of collapse shape for circular tunnel subjected to pore pressure based on the Hoek-Brown failure criterion[J]. Tunneling and Underground Space Technology,2011,26(5):614-618.
    [140]Huang F, Yang X L. Influence of pore pressure effect on upper bound solution of collapse shape for square tunnel in Hoek-Brown media[J]. Journal of Central South University of Technology,2011,18(2):530-535.
    [141]Maksimovic M. Nonlinear failure envelope for soils[J]. Journal of Geotechnical Engineering,1989,115(4):581-586.
    [142]Bake R. Nonlinear Mohr envelopes based on triaxial data[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(5):498-506.
    [143]Agar J G, Morgenstern N R, Scott J. Shear strength and stress-strain behavior of Athabasca oil sand at elevated temperatures and pressure [J]. Canadian Geotechnical Journal,1985,24(1):1-10.
    [144]Zhang X J, Chen W F. Stability analysis of slopes with general nonlinear failure criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1987,11(1):33-50.
    [145]Li X. Finite element analysis of slope stability using a nonlinear failure criterion[J]. Computer and Geotechnics,2007,34(3):127-136.
    [146]Yang X L, Yin J H. Analytical solutions for passive earth pressure considering different failure mechanisms with nonlinear failure criterion[J]. Geotechnical Engineering,2008,39(3):129-135.
    [147]Serrano A, Olalla C, Gonzalez J. Ultimate bearing capacity of rock masses based on the modified Hoek-Brown criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(4):1013-1018.
    [148]Serrano A, Olalla C. Allowable Bearing Capacity of Rock Foundations Using a Non-linear Failure Criterium[J]. International Journal of Rock Mechanics and Mining Sciences,1996,33(4):327-345.
    [149]杨小礼.线性与非线性破坏准则下岩土极限分析方法及其应用[D].长沙:中南大学博士学位论文,2002.
    [150]Yang X L, Yin J H. Slope stability analysis with nonlinear failure criterion [J]. Journal of Engineering Mechanics,2004,130(3):267-273.
    [151]Yang X L, Yin J H. Estimation of seismic passive earth pressures with nonlinear failure criterion[J]. Engineering Structures,2006,28 (3):342-348.
    [152]胡卫东,张国祥.非线性破坏准则下的边坡稳定塑性极限分析[J].岩土力学,2007,28(9):1909-1913.
    [153]杨小礼,王作伟.非线性破坏准则下浅埋隧道围岩压力的极限分析[J].中南大学学报(自然科学版),2010,41(1):299-302.
    [154]杨小礼,李亮,刘宝琛.非线性破坏准则对竖直边坡稳定性分析的影响[J].岩石力学与工程学报,2004,23(4):592-596.
    [155]杨小礼,李亮,刘宝琛.非线性破坏准则对被动土压力的影响[J].工程力学,2004,21(1):31-36.
    [156]杨小礼,郭乃正,李亮.非线性破坏准则与岩土材料地基承载力研究[J].岩土力学,2005,26(8):1177-1183.
    [157]赵炼恒,李亮,杨小礼等.非线性破坏准则下法向受力条形浅锚抗拔力上限计算方法[J].中南大学学报(自然科学版),2009,40(5):1444-1450.
    [158]赵炼恒,罗强,李亮等.水平矩形浅锚极限抗拔力分析[J].岩土工程学报,2009,32(9):1414-1420.
    [159]Collins I F, Gunn C I, Pender M J, et al. Slope stability analyses for materials with nonlinear failure envelope[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1988,12(6):533-550.
    [160]Yang X L, Li L, Yin J H. Stability analysis of rock slopes with a modified Hoek-Brown failure criterion[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(2):181-190.
    [161]Yang X L, Yin J H. Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(4):550-560.
    [162]Yang X L, Yin J H. Linear Mohr-Coulomb strength parameters from the non-linear Hoek-Brown rock masses[J]. International Journal of Non-linear Mechanics,2006, 41(8):1000-1005.
    [163]Yang X L, Zou J F. Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion[J]. Journal of Central South University of Technology,2006,43(7):1146-1152.
    [164]Yang X L. Seismic displacement of rock slopes with nonlinear Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences,2007, 44(6):948-953.
    [165]Yang X L. Seismic bearing capacity of a strip footing on rock slopes[J]. Canadian Geotechnical Journal,2009,46(8):943-954.
    [166]Yang X L, Yin J H. Slope equivalent Mohr-Coulomb strength parameters for rock masses satisfying the Hoek-Brown criterion[J]. Rock Mechanics and Rock Engineering,2010,43(4):505-511.
    [167]杨小礼.岩石极限分析非线性理论及其应用[J].中南大学学报(自然科学版),2009,40(1):225-229.
    [168]赵炼恒,李亮,林宇亮等.基于Hoek-Brown破坏准则的均质岩石边坡动力稳定 性拟静力分析[J].土木工程学报,2010,43(增):541-547.
    [169]Collins I F. The upper bound theorem for rigid/plastic solids generalized to include Coulomb friction[J]. Journal of the Mechanics and Physics of Solids,1969,17(5): 323-338.
    [170]Collins I F. A note on the interpretation of Coulomb's analysis of the thrust on a rough retaining wall in terms of the limit theorems of plasticity theory[J]. Geotechnique,1973,23(3):442-447.
    [171]Drescher A, Detourany E. Limit load in translational failure mechanisms for associative and non-associative materials[J]. Geotechnique 1993,43(3):443-456.
    [172]Wang Y J, Yin J H, Lee C F. The influence of a non-associated flow rule on the calculation of the factor of safety of soil slopes [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(13):1351-1359.
    [173]Kumar J. Stability factors for slopes with nonassociated flow rule using energy consideration[J]. International Journal of Geomechanics,2004,4(4):264-272.
    [174]Wang Y J, Yin J H. Wedge stability analysis considering dilatancy of discontinuities [J]. Rock Mechanics and Rock Engineering,2002,35(2):127-137.
    [175]Yang X L, Guo N Z, Zhao L H, et al. Influences of nonassociated flow rules on seismic bearing capacity factors of strip footing on soil slope by energy dissipation method[J]. Journal of Central South University of Technology,2007,14(6): 842-847.
    [176]Yang, X L, Sui, Z R. Seismic failure mechanisms for loaded slopes with associated and nonassociated flow rules[J]. Journal of Central South University of Technology, 2008,15(2):276-279.
    [177]Yang, X L, Huang, F. Slope stability analysis considering joined influences of nonlinearity and dilation[J]. Journal of Central South University of Technology, 2009,16(2):292-296.
    [178]Davis E H. Theories of plasticityand the failure of soil masses[M]. Butterworth: London,1968.
    [179]Skempton A W. The pore-pressure coefficients A and B[J]. Geotechnique,1954,4 (4):143-147.
    [180]Bishop A W. The use of pore-pressure coefficients in practice[J]. Geotechnique, 1954,4(4):148-152.
    [181]Miller T W, Hamilton J M. A new analysis procedure to explain a slope failure at the Martin Lake mine[J]. Geotechnique,1989,39(1):107-123.
    [182]Miller T W, Hamilton J M. Discussion:A new analysis procedure to explain a slope failure at the Martin Lake mine[J]. Geotechnique,1990,40(1):145-147.
    [183]Michalowski R L. Slope stability analysis:a kinematical approach[J]. Geotechnique, 1995,45 (2):283-293.
    [184]Michalowski R L. Stability of uniformly reinforced slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(6):546-556.
    [185]Michalowski R L. Closure to'Stability of uniformly reinforced slopes'[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1):84-86.
    [186]Michalowski R L. Secondary reinforcement for slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(12):1166-1173.
    [187]Michalowski R L. Stability charts for uniform slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(4):351-355.
    [188]Michalowski R L. Limit analysis in geotechnical engineering[C]. International society of soil mechanics and geotechnical engineering, technical committee 34 on prediction and simulation methods in geomechanics,2005.
    [189]Viratjandr C, Michalowski R L. Limit analysis of submerged slopes subjected to water drawdown[J]. Canadian Geotechnical Journal,2006,43(8):802-814.
    [190]Michalowski R L. Critical Pool Level and Stability of Slopes in Granular Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(3): 444-448.
    [191]Kim J, Salgado R, Yu H S. Limit analysis of soil slopes subjected to pore-water pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999, 125(1):49-58.
    [192]Kim J, Salgado R, Lee J H. Stability analysis of complex soil slopes using limit analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128 (7):546-557.
    [193]Chen J, Tin J H, Lee C F. Rigid Finite Element Method for Upper Bound Limit Analysis of Soil Slopes Subjected to Pore Water Pressure[J]. Journal of Engineering Mechanics,2004,130(8):886-893.
    [194]年廷凯.桩-土-边坡相互作用数值分析及阻滑桩简化设计方法研究[D].大连:大连理工大学博士学位论文,2005.
    [195]年廷凯,栾茂田,郑德凤等.考虑边坡内孔隙水压力效应的抗滑桩简化分析方法[J].岩土力学,2008,29(4):1067-1071.
    [196]Dawson E M, Koth W H, Drescher A. Slope stability analysis by strength reduction[J].Geotechnique,1999,49(6):835-840.
    [197]Snitbhan N, Chen W F. Elastic-plastic large deformation analysis of soil slopes[J]. Computers& Structures 1978,9(6):567-577.
    [198]Duncan J M, Dunlop P. Slopes in stiff fissured clays and soils[J]. Journal of the Soil Mechanics and Foundations Division,1969,95(2):467-492.
    [199]Broms B B, Bennermark H. Stability ofclay in vertical openings[J]. Journal of the Soil Mechanics and Foundations Division,1967,193(1):71-94.
    [200]赵炼恒,罗强,李亮等.水位升降和流水淘蚀对临河路基边坡稳定性的影响[J].公路交通科技,2010,27(6):1-8.
    [201]赵炼恒,罗强,李亮等.地下水位变化对边坡稳定性影响的上限分析[J].公路交通科技,2010,27(7):1-7.
    [202]罗强,李亮,赵炼恒.水力和超载条件下锚固岩石边坡动态稳定性拟静力分析[J].岩土力学,2010,31(11):3585-3593.
    [203]Lee Y K, Pietruszczak S. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology,2008,23(5):588-599.
    [204]Wang Y. Ground response of circular tunnel in poorly consolidated rock[J]. Journal of Geotechnical and Geoenvironmental Engineering,1996,122(9):703-708.
    [205]Lee I M, Nam S W, and Ahn J H. Effect of seepage forces on tunnel face stability[J]. Canadian Geotechnical Journal,2003,40(2):342-350.
    [206]高健,张义同,乔金丽.渗透力对隧道开挖面稳定性影响分析[J].岩土工程学报,2009,31(10):1547-1553.
    [207]Lee I M, Lee J S, Nam S W. Effect of seepage force on tunnel face stability reinforced with multi-step grouting[J]. Tunneling and Underground Space Technology,2004,19(6):551-565
    [208]Lee S W, Jung J W, Nam S W et al. The influence of seepage forces on ground reaction curve of circular opening[J]. Tunneling and Underground Space Technology,2006,22(1):28-38.
    [209]Broere W. Face stability calculation for a slurry shield in Heterogeneous soft soils[J].Tunnels and Metropolises,1998,23:215-218.
    [210]赵炼恒.路基边坡稳定性与加固技术能量分析方法研究[D].长沙:中南大学博士学位论文,2009.
    [211]Donald I B, Chen Z Y. Slope stabilityanaly sis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal,1997,34(6): 853-862.
    [212]Lade P V. Static instabilityand liquefaction of loose sandy slopes[J]. Journal of Geotechnical Engineering Division ASCE,1992,118(1):51-71.
    [213]De Borst R, Vermeer P A. Possibilities and limitations of finite elements for limit analysis[J]. Geotechnique,1984,34(2):199-210.
    [214]Hoek E, Brown E T. Underground Excavations in Rock[M]. London:Institution of Mining and Metallurgy,1980.
    [215]Hoek E, Brown E T. The Hoek-Brown failure criterion-a 1988 update[C]. Proceedings of the 15th Canadian Rock Mechanics Symposium,31-38.1988, Toronto, Canada
    [216]Hoek E, Wood D, Shah S. A modified Hoek-Brown criterion for jointed rock masses [C]. Proceedings of rock characterization, Symposium of International Society Rock Mechanics,209-213. September 14-17,1992, Chester, UK,
    [217]Hoek E, Kaiser P K, Bawden W F. Support of underground excavations in hard rock[M]. Rotterdam:Balkema,1995.
    [218]Hoek E, Brown E T. Practical estimate the rock mass strength[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34 (8):1165-1186.
    [219]Hoek E, Marinos P, Benissi M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation[J]. Bulletin of Engineering Geology and the Environment,1998,57(2): 151-160.
    [220]Marinos P, Hoek E. GSI:a geologically friendly tool for rock mass strength estimation[C]. Proceedings of International Conference on Geotechnical & Geological Engineering, GeoEng2000,1422-1442. November 19-24,2000, Melbourne, Australia.
    [221]Marinos P, Hoek E. Estimating the geotechnical properties of heterogeneous rock masses such as flysch[J]. Bulletin of Engineering Geology and the Environment, 2001,60(2):85-92
    [222]Hoek E, Carranza-Torres C, Corkum B. Hoek-Brown criterion-2002 edition. Proceedings of NARMS-TAC Conference,267-273. July 7-10,2002, Toronto, Canada.
    [223]Hoek E, Marinos P, Marinos V. Characterization and engineering properties of tectonically undisturbed but lithologically varied sedimentary rock masses[J], International Journal of Rock Mechanics and Mining Sciences,2005,42(2): 277-285.
    [224]Yang X L. Seismic passive pressures of earth structures by nonlinear optimization [J]. Archive of Applied Mechanics.2011,81(9):1195-1202
    [225]Yang X L. Upper bound limit analysis of active earth pressure with different fracture surface and nonlinear yield criterion [J]. Theoretical and Applied Fracture Mechanics,2007,47(1):46-56.
    [226]樊涛.非线性非保守系统弹性力学拟变分原理研究[D].哈尔滨:哈尔滨工程大学,2007.
    [227]铁道第二勘察设计研究院.TB10003-2005铁路隧道设计规范[S].北京:中国铁道出版社,2005.
    [228]铁道部第二勘测设计院.铁路工程设计技术手册-隧道[M].北京:中国铁道出版社,1995.
    [229]王明年,郭军,罗禄森等.高速铁路大断面黄土隧道深浅埋分界深度研究[J].岩土力学,2010,31(4):1157-1162.
    [230]Lam L, Fredlund D G. A general limit equilibrium model for three-dimensional slope stability analysis [J]. Canadian Geotechnical Journal,1993,30(6):905-919.
    [231]Chen Z Y, Wang X G, Haberfiedl C. A three-dimensional slope stability analysis method using the upper bound theorem Part I:theory and methods [J]. International Journal of Rock Mechanics & Mining Sciences 2001,38(3),369-378.
    [232]张常亮,李同录,李萍.三维边坡稳定性分析的解析算法[J].中国地质灾害与防治学报,2007,18(1):99-103.
    [233]谭亮,孙世国,冉启发等.基于剩余推力法和优化原理的边坡三维稳定分析[J].北京科技大学学报,2007,29(12):1182-1185.
    [234]张常亮,李同录,李萍等.边坡三维极限平衡法的通用形式[J].工程地质学报,2008,16(1):70-75.
    [235]Ng C W W, Lee G T K. A three-dimensional parametric study of the use of soil nails for stabilising tunnel faces[J]. Computers and Geotechnics,2002,29(8):673-697.
    [236]Stark T D, Eid H T. Performance of three-dimensional slope stability methods in practice [J]. Journal of Geotechnical and Geoenvironmental Engineering,1998, 124(11):1049-1060.
    [237]Aziziana A, Popescu R. Three-dimensional seismic analysis of submarine slopes [J]. Soil Dynamics and Earthquake Engineering,2006,26(9):870-887.
    [238]Michalowski R L. Three-dimensional analysis of locally loaded slopes[J]. Geotechnique,1989,39 (1):27-38.
    [239]陈力华,林志,李星平.公路隧道中系统锚杆的功效研究[J].岩土力学,2011,32(6):1843-1848.
    [240]郭军,王明年,谭忠盛等.大跨浅埋黄土隧道中系统锚杆受力机制研究[J].岩土力学,2010,31(3):870-874.
    [241]徐立功,李浩,陈祥林.锚杆参数对围岩稳定性影响的数值分析[J].岩土工程学报,2010,32(增2):249-252.
    [242]方勇,何川.全长粘结式锚杆与隧道围岩相互作用研究[J].工程力学,2007,24(6):111-116.
    [243]Yang X L, Huang F. Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion. Tunneling and Underground Space Technology,2011, 26(6):686-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700