低温锻炼对黄瓜幼苗抗冷效应的影响及转录因子CBF1的克隆与转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜是重要的蔬菜作物之一,世界各地普遍栽培。黄瓜属于喜温作物,早春季节经常受到低温的危害,日光温室黄瓜冬春季节则易受低温影响。我国劳动人民经长期实践得出了低温锻炼能增强黄瓜抗冷能力的经验,多年来的大量试验也证明了低温锻炼确实能增强植物耐冷能力。但选取多低的温度和多长时间进行锻炼效果最好,目前尚无定论。植物的一切生命活动均受遗传物质的控制,目前已从多种植物中克隆出了耐寒基因,其中转录因子CBF能激活耐寒基因的表达,CBF超表达能提高植物的耐寒能力。本试验选取不同低温对黄瓜幼苗进行锻炼,以探寻最佳锻炼温度及时间。另外从经过低温锻炼的黄瓜幼苗中克隆出黄瓜CBF1基因,并构建表达载体,成功转入抗病但不耐寒黄瓜自交系,转基因植株耐寒能力明显增强。具体结果如下:
     1、以耐寒自交系S11和冷敏感自交系S22为试材,以10/4℃、10/6℃、10/8℃三种温度处理,对三叶一心期幼苗进行低温锻炼。结果表明:10/4℃锻炼导致黄瓜幼苗SOD、POD、CAT保护酶活性下降,Vc含量降低,根系活力降低,冷害指数增加,电解质渗透率增加,这说明10/4℃锻炼已对幼苗造成冷伤害;10/6℃和10/8℃锻炼使黄瓜幼苗SOD、POD、CAT保护酶活性大幅提高,Vc含量升高,减少了活性氧的危害,可溶性糖和可溶性蛋白含量增加,丙二醛含量下降,冷害指数显著降低,根系活力上升,这说明10/6℃和10/8℃锻炼能增强幼苗的抗冷能力。综合评价对耐寒自交系S11来说,以10/6℃锻炼3d效果最好,冷敏感自交系以10/6℃锻炼2d效果最好。
     2、以耐寒自交系S11为试材,研究低温锻炼对黄瓜幼苗叶片叶肉细胞超微结构的影响。结果表明:正常条件下的黄瓜幼苗,叶绿体结构完整,基粒多,基粒片层排列紧密,整个膜系统完整。冷胁迫导致叶绿体结构变形,基粒片层松散无序,叶绿体膜受到严重损伤,冷胁迫后受伤的膜系统不能立即修复,反而受损伤程度加重。低温锻炼增强了黄瓜幼苗抗冷能力,使幼苗在冷胁迫条件下维持膜系统较完整状态,叶绿体受损轻,基粒片层排列较紧密,冷胁迫后膜系统修复也较快,这初步说明,适宜的低温锻炼使黄瓜幼苗在冷胁迫下维持膜系统,尤其是叶绿体的较完整性,从而减轻了冷伤害。
     3、以耐寒能力强的黄瓜‘山农5号’为试材,以拟南芥CBF1基因的保守序列设计引物,通过RT-PCR方法,从低温锻炼的幼苗叶片中克隆出黄瓜CBF1基因,该基因长671bp,推导的氨基酸序列为213个氨基酸,与GenBank中的同源序列比较,本试验克隆的基因与拟南芥的基因在编码区完全相同,仅在起始密码子5’上游存在部分差异,与无包芥、高山离子芥、马蔺等同源性也很高。用SacI和SacII消化pCBF1,获得CBF1基因,用SacI和BamHI对pROK2双酶切,回收大片断,然后进行连接,构建了黄瓜转录因子CBF1基因的正义表达载体,经SacI和HindIII双酶切鉴定,证明了该基因已经成功连入pROK2中,命名为pROK2-CBF1。该载体的构建,为开展转基因研究,以提高植物抗寒、抗旱、抗盐等逆境及基因功能分析,提供了保障。
     4、利用花粉管通道途径转化的优势,采用子房微量注射的方式,将重组质粒转化抗病但不耐寒的黄瓜自交系。经Kan初步筛选、PCR检测和Southern杂交检测,确定有两株转基因植株,转化率为0.05%。不同花龄子房注射的结果表明,以花前一天子房注射效果最好,此时注射出现了转基因植株。转基因植株后代出现分离,其分离不符合孟德尔遗传规律,可能是由基因沉默所致。但随世代增加,转基因植株出现的比率明显增加。
     5、转基因植株抗冷性明显增强。T1代转基因植株经苗期低温胁迫发现幼苗SOD活性、POD活性比野生型显著提高,脯氨酸含量、可溶性蛋白含量比野生型大幅提高,而冷害指数明显降低,T1代转基因植株耐寒能力显著提高。T2代转基因植株经自然低温检测,发现野生型因低温死亡早。而转基因植株因低温致死时间延迟,T2代转基因植株耐寒能力优于野生型。T3代转基因植株在冬季低温条件下生长势明显优于野生型,转基因植株能安全越冬,而野生型已冻死。转基因植株抗霜雪病和白粉病能力强,具有野生型同等的抗病性,而抗冷能力明显增强,至此我们已得到了即抗病耐寒能力又大幅提高的转基因新种质,目前已得到了T3代株系,为今后开展相关黄瓜育种工作奠定了基础。
Cucumber (Cucumis sativus L.) is an important vegetable and planted all over the world. Cucumber belongs to thermophilic crops and is easily suffered chilling damage in early spring in solar greenhouse as well as in open field. Many papers reported that cold acclimation can enhance cold tolerances of cucumber whereas the proper temperature was in debate. All life activities of plant are controlled by genetic materials. At present, the cold tolerance genes have been cloned in many plants and found that the activator of transcription CBF can activate expression of cold tolerance genes and the cold tolerance of plants can be increased by CBF over-expression. In this research, we chose three different low temperatures to train cucumber seedlings and try to find the optimum low temperature and time. At the same time, we cloned CBF1 gene from cucumber seedlings during cold acclimation, and CBF1 gene sense expression vector was constructed and transferred into cucumber inbred line, the cold tolerance of the transferred plants were increased significantly.
     The details were as follows:
     1.S11 (cold tolerance and self-bred line) and S22 (cold sensitive and self-bred line) seedlings were treated under three low day/night temperature combinations (10/4℃, 10/6℃and 10/8℃) at three true leaves stage. The results showed that the activities of SOD, POD, CAT and root activity,Vc content decreased significantly, the chilling injury index and electrolyticleakage increased significantly under the treatment of 10/4℃,these indicated that cold damage has arisen in cucumber seedling leaves under this treatment. The activities of SOD, POD, CAT and the content of Vc, soluble protein, soluble sugar increased significantly under the treatments of 10/6℃and 10/8℃, thus reduced the active oxygen damages. At the same time, the MDA contents and chilling injury index decreased significantly, but root activity increased, all these indicated that the cold tolerance of cucumber seedlings can be enhanced by use of cold acclimation under the treatments of 10/6℃and 10/8℃. In general, the best cold acclimation condition for S11 was 10/6℃and lasting for 3d, as for S22 was 10/6℃and lasting for 2d.
     2. Using S11 as test material, experiments were conducted to study the effect of cold acclimation on mesophyll cell ultrastructure of cucumber seedlings. The results showed that in normal growth conditions, the grana lamella in cucumber seedlings leaves were arranged regularly with more grana, chloroplast structure and the whole membrane system was complete. The chloroplast structure were changed, the grana lamella become loose and disorder under cold stress, and the chloroplast membrane was injured seriously under cold stress. Furthermore, the damage to membrane system was increased instead of repaired. Cold acclimation enhanced cold tolerances of cucumber seedlings. Compared to cucumber seedling without cold acclimation, the grana lamella in cucumber seedlings with cold acclimation were arranged relative closely, the whole membrane system was more complete, the damage to chloroplast was slighter and the damage can be repaired in a short time under cold stress. All these indicated that cold acclimation with optimum temperature can maintained the integrity of membrane system (especially chloroplast) under cold stress, thus alleviated the cold damage to cucumber seedlings.
     3. Using the high cold tolerance cucumber plant as test material. PCR primers were designed based on the conservation sequence of CBF1 gene in arabidopsis thaliana. By means of RT-PCR methods, we had cloned CBF1 gene from cucumber seedlings leaves with cold acclimation, and the gene contained 671bp and 213 amino acids determined by this gene. The gene had 100 percent homology to that of arabidopsis thaliana in coding region, and had minor difference in start codon 5′-upstream region. The gene also has high homology compared to that of chorispora bungeana, olimarabidopsis pumila and Chinese small iris.
     The pCBF1 was digested with SacI and SacII, and then CBF1 gene was obtained. After the double digestion to PROk2 with SacI/BamHI, fragments were ligated. Then the sense expression vector of activating transcription factor of cucumber was constructed and ordered pROK2-CBF1. With this expression vector, we can transfer the gene to other plants to increase their resistance to low temperature, drought and salt.
     4. The target gene was transferred into cucumber self-bred line (disease resistance and cold sensitive) by pollen-tube pathway via ovary-injecting. Two transgenic plants were found by use of preliminary screening of Kan, PCR and Southern hybridization detection, and the conversion is 0.05%. The optimum time for ovary-injecting was one day before flowering, and can get transgenic plants at this time. The separation law of transformation generation was not as agreement with the Mendelian genetic law, the reason may be gene silencing. The transformants probability of appearance increased with adding of generation.
     5. Under cold stress, the activities of SOD, POD and the contents of proline, soluble protein of T1 generation increased significantly compared with those of the wild type. The generation of T2 grew longer time under nature low temperature and generation of T3 had strong growth potential under low temperature in winter compared with the wild type, and can live through the winter, while the wild type all died. The cold tolerance was enhanced and the disease resistance to downy mildew, powdery mildew was kept in transgenic plants. At present, the generation of T3 was obtained.
引文
1.艾希珍,于贤昌,王绍辉,等.低温胁迫下黄瓜嫁接苗与自根苗某些物质含量的变化.植物生理学通讯,1999,35(1):26-28
    2.曹德菊,程备久,徐照明,等.花粉管法将除草剂基因导入红麻的有效方法及参数研究.中国麻作,2000,22(1):1-6
    3.曹阳,赵东利,王仁军,等.高梁花粉管通道法导入抗虫基因的研究.大连大学学报,2001,22(6):47-52
    4.崔百明,封玲,王爱英,等.转基因PCR与卡那霉素检测的比较.石河子大学学报(自然科学版),2000,4(2):103-106
    5.曹锡清.膜质过氧化对细胞与机体的作用.生物化学与生物物理学进展,1986,(2):17-23
    6.陈贵林,乜兰春,李建文,等.低温胁迫对西葫芦嫁接苗光合特性的影响.上海农业学报2000,16(1):42-45
    7.陈发河,张维.变温处理后甜掓果实对低温胁迫的生理反应.园艺学报,1994,21(4):351-356
    8.戴金平,沈征言,简令成.低温诱导对黄瓜幼苗几种酶活性的影响.植物学报,1991,33(8):627-632
    9.邓德旺,郭三堆,杨志民.棉花花粉管通道法转基因的分子细胞学机理研究.云南大学学报(自然科学版),1999,21:124-125
    10.冯世康,陈成斌,赖群珍,等.外源DNA直接导入玉米的分子育种技术研究初报.广西农学报,2001,4:16-18
    11.龚明,丁念诚,贺子义,等.盐胁迫下大麦与小麦叶片脂类过氧化伤害与超微结构变化的关系.植物学报,1989,31(11):841-846
    12.顾兴芳,封林林,张春霞,等.黄瓜低温发芽能力遗传分析.中国蔬菜,2002(3):5-7
    13.龚蓁蓁,沈慰芬,周光宇,等.授粉后外源DNA导入植株技术-DNA通过花粉管通道进入胚囊。中国科学(B辑),1988,6:611-614
    14.侯文胜,郭三堆,路明.利用花粉管通道法获得雪花凝集素基因小麦.植物学通报,2003,20(2):198-204
    15.黄骏麒,钱思颖,周光宇,等.外源抗枯萎病棉DNA导入感病棉的抗性转移.中国农业科学,1986,19(3):32-36
    16.黄永芬,汪清胤,付桂荣,等.美洲拟蝶抗冻蛋白基因(afp)导入番茄的研究.生物化学杂志,1997,13(4):418-422
    17.何洁,刘鸿先,王以柔,等.低温与植物的光合作用.植物生理学通讯,1986,(2):1-6
    18.黄荣峰,杨宇红,王学臣.植物对低温胁迫响应的分子机理.农业生物技术学报,2001,9:92-96
    19.侯爱菊,朱延明,杨爱馥,等.诱导黄瓜直接器官发生主要影响因素的研究.园艺学报,2003,30(1):101-103
    20.侯锋.黄瓜幼苗耐寒性鉴定方法研究.中国主要蔬菜抗病育种进展,1995,474-477
    21.简令成.植物的寒害与抗寒性.哈尔滨:黑龙江科学技术出版社,1986,52-84
    22.简令成.植物抗寒机理的研究进展.植物学通报,1992,9:17-22
    23.简令成,孙龙华,卫翔云,等.从细胞膜系统的稳定性与植物抗寒性关系的研究到抗寒剂的研制.植物学通报,11(特刊),1994:1-22
    24.纪颖彪,蔡洙湖,朱其杰.黄瓜种子低温发芽能力的配合力和遗传力分析.中国农业大学学报,1997,31:4-8
    25.冀俊丽,盛长明,石明,等.通过负压花粉管法将耐盐基因HVAI转入小麦的研究.麦类作物学报,2002,22(2):10-13
    26.金建风,高强,陈勇,等.转移拟南芥CBF1基因引起水稻植株脯氨酸含量提高.细胞生物学杂志,2005,27(1):73-76
    27.康国斌,雍伟东.低温诱导的黄瓜ccr18基因的cDNA克隆及其表达特性分析.植物学报,2001,43(9):955-959
    28.李新国,段伟,孟庆伟,等. PSI的低温光抑制.植物生理学通讯,2002,38:375-387
    29.李晓萍,郭俊彦.黄瓜幼苗发育及冷锻炼过程子叶中的多肽变化.植物学报,1993,35(10):766-771
    30.李晓萍,陈贻竹,刘鸿先,等.冷诱导对黄瓜幼苗光合特性与耐冷力的影响.中国科学院华南植物研究所集刊,1991,7:69-74。
    31.李美茹,刘鸿先,王以柔.植物抗冷性分子生物学研究进展.热带亚热带植物学报,2000,8(1):70-80
    32.李静,韩秀兰,沈法富,等.提高棉花花粉管通道技术转化率的研究.棉花学报,2005,17(2):67-71
    33.李忠杰,孙光祖,王广金,等.辐照外源DNA导入小麦诱变效果初探.核农学报,1995,16(1):1-4
    34.李美茹,刘鸿先,王以柔.植物细胞中的抗寒物质及其与植物耐冷性的关系.植物生理学通讯,1995,31:328-334
    35.李美茹,刘鸿先.低温与光对黄瓜幼苗子叶光合电子传递活性的影响.植物生理学报,1993,19(1):23-30
    36.李荣富,王丽雪.低温胁迫对葡萄叶片及根系细胞亚显微结构的影响.华北农学报,1996,11(4):109-113
    37.刘志方,陈穂云,夏光敏,等.利用花粉管通道途径获得转基因小麦.山东大学学报(自然科学版),2001,36(1):84-89
    38.刘国权,孟巧霞,倪进斌,等.水稻花粉管通道法育种研究.中国农学通报,2003,19(5):75-77
    39.刘根齐,张孔湉,林世兰,等.外源DNA直接导入小麦及其在育种上的应用.遗传学报,1994,21(6):463-467
    40.刘友良,朱根海,刘祖祺,等.植物抗冻性测定技术的原理和比较.植物生理学通讯,1985,21(1):40-43
    41.刘鸿先,王以柔,李晓萍,等.低温诱导植物基因表达的改变与耐寒性.中科院华南植物所集刊,1991(7):54-61
    42.刘鸿先,曾绍西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响.植物生理学报,1985,11(1):48-57
    43.刘建辉,崔鸿文.电导法鉴定黄瓜抗寒性的研究.西北农业大学学报,1995,23(4):74-77
    44.刘明池.提高黄瓜幼苗抗冷性研究.华北农学报,1994,9(3):52-57
    45.刘强,张勇,陈受宜.干旱、高盐及低温诱导的植物蛋白激酶基因.科学通报,2000,45:561-566
    46.刘燕,胡鸢蕾,董静,等.转基因草莓向栽培草莓中转移CBFI基因的研究.分子植物育种,2007,5(3):309-313
    47.林良斌,官春云,李恂,等。子房注射法与农杆菌法转化甘蓝型油菜的比较研究.生命科学研究,2000,4(3):231-236
    48.罗明,罗忠训,朱彩章,等. PINⅡ基因通过花粉管通道法转化水稻的研究.湖北大学学报(自然科学版),2002,2(3):259-262
    49.梁明山,吴淑惠,李薇,等.诸葛菜DNA对油菜的高效转化.西南农业学报,1996,9(4):35-41
    50.梁顺祥,许永财,迟德钊,等.春小麦外源DNA两次导入和导入后杂交及其后代醇溶蛋白电泳分析.青海科技,1998,5(2):9-11
    51.牟红梅,刘树俊,周文娟,等.慈姑蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析.遗传学报,1999,26(6):634-643
    52.马德华,庞金安,霍振荣.黄瓜耐低温研究进展.天津农业科学,1997,3(4):1-8
    53.梅莤,张兴国.黄瓜组织培养研究.西南农业大学学报,2002,24(3):266-267
    54.倪万潮,郭三堆,贾士荣.花粉管通道介导的棉花遗传转化.中国农业科技导报,2000,2(2):27-32
    55.潘杰,简令成,钱迎倩.小麦抗寒力诱导过程中特异性蛋白质的合成.植物学集刊,1994,7:144-157
    56.庞金安,马德华.低温锻炼对黄瓜幼苗光合作用的影响.河南农业大学学报,2000,34(1):40-42
    57.庞金安,马德华,霍振荣,等.水杨酸预处理对提高黄瓜幼苗耐低温能力的影响.华北农学报,2000,15(1):112-115
    58.孙艳,崔鸿文,王飞,等. PEG渗调处理对黄瓜种子活力及耐低温能力的影响.北方园艺,1994,(6):1-3
    59.孙艳,崔鸿文,胡荣,等.水杨酸对黄瓜幼苗壮苗的形成及抗低温胁迫能力的生理效应.西北植物学报,2000,20(4):616-620
    60.孙小镭.黄瓜耐寒耐阴特性人工鉴定方法研究.植物生理学报,1994,4(2):60-63
    61.佘小平,李忠歧,杨建雄,等. PP333对黄瓜幼苗素质及抗冷能力的影响.西北植物学报,1994,17(2):205-209
    62.苏维埃.植物对温度逆境的适应.见余淑文,汤章诚主编,植物生理与分子生物学(第二版).北京:科学出版社,2001,721-738
    63.王荣富.植物抗寒指标的种类及其应用.植物生理学通讯,1987,(3):49-55
    64.王以柔,刘鸿先,李平,等.在光照和黑暗条件下低温对水稻幼苗光合器官膜脂过氧化作用的影响.植物生物学报,1986,12(3):244-251
    65.王毅,方秀娟,徐欣,等.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响园艺学报,1995,22(3):299-300
    66.王以柔,曾韶西,刘鸿先.冷锻炼对水稻和黄瓜幼苗SOD、GR活性及GSH、ASA含量的影响.植物学报,1995,37(10):776-780
    67.王艇,苏应娟,刘良式.植物低温诱导蛋白和低温诱导基因的表达调控.武汉植物学研究,1997,15(1):80-90
    68.王艇,唐振亚.植物冷驯化和热激反应的分子基础.见:刘良式编,植物分子遗传学.北京:科学出版社,1997,499-547
    69.王忠.植物生理学.北京,中国农业出版社,2000:240-241
    70.王长海,蓝海燕.利用花粉管通道法将外源质粒DNA注入棉花的改良方法.棉花学报1999,11(4):220-221
    71.王利华,刘明,苏乔,等.花粉管通道法转化大豆的分子表征.分子植物育种,2004,2(2):193-196
    72.王光清,王蕴珠,胡荣霞,等.青菜花粉管通道法导入外源DNA的研究初报.复旦学报(自然科学版),1996,35(2):127-131
    73.吴琰,董静,郭宝林,等.转CBF1基因地被石竹的抗寒性评价.中国农学通报,2007,23(5):59-62
    74.吴秀红.大豆花粉管通道法导入外源DNA的适宜时期和方法探讨.黑龙江农业科学,2001,2:48-49
    75.吴浚江,徐鹏飞,张淑珍.大豆育种中利用花粉管通道法导入外源基因应注意的几点问题.大豆通报,2005,4:6
    76.魏珉,邢禹贤,王秀峰,等. CO2加富对黄瓜叶片显微和亚显微结构的.园艺学报,2002,29(1):30-3
    77.奚亚军,任鹏,柳曙冻,等.花粉管通道法转化小麦影响因素的研究.中国农学通报,2004,20(6):23-25
    78.谢道昕,范云六,倪万潮,等.苏云金杆菌杀虫晶体蛋白导入棉花获得转基因植株.中国科学,1991,4:367-373
    79.许春辉,赵福洪,王可玢.低温对黄瓜光系统Ⅱ的影响.植物学报,1988,30:601-605
    80.于贤昌,邢禹贤,马红,等.不同砧木与接穗对黄瓜嫁接苗抗冷性的影响.中国农业科学,1998,31(2):41-47
    81.于贤昌,邢禹贤,马红,等.黄瓜嫁接苗对不同低温胁迫的反应.上海农业学报,1999,15(1):47-50
    82.于贤昌,邢禹贤,马红,等.低温胁迫下黄瓜嫁接苗和自根苗内源激素的变化.园艺学报,1999,26(6):406-407
    83.于洪欣,柳建军,冯兆礼,等.通过花粉管途径将抗虫基因(CPTI)导入小麦的研究.山东农业科学,1999,1:5-8
    84.余桂荣,尹钧,任江萍,等.小麦花粉管通道法转基因研究.麦类作物学报,2004,24(2):15-19
    85.余阳俊,朱其杰.黄瓜成熟胚离体培养中的胚状体诱导和植株再生.植物生理学通讯,1992,28(1):37-39
    86.姚明华,徐跃进,李晓丽.茄子耐冷性生理生化指标的研究.园艺学报,2001,28(6):527-531
    87.杨阿明,沈征言.低温诱导提高黄瓜幼苗耐寒性的效应.园艺学报,1992,19(1):61-66
    88.杨玲.不同低温处理对黄瓜子叶极性脂组成的影响.园艺学报,2001,28:36-40
    89.张福墁,马国成.日光温室不同季节和生态环境对黄瓜光合作用的影响.华北农学报,1995,10(1):70-75
    90.张明科,孙艳.脯氨酸和蔗糖溶液浸种对黄瓜幼苗生长及其抗冷能力的影响.陕西农业科学,1997,(3):15-17
    91.张宝龙,倪万潮,张天真,等.花粉管通道法转基因抗虫棉外源基因的整合方式.江苏农业科学,2004,20(3):144-148
    92.张广辉,巩振辉,薛万新,等.大白菜和油菜真空渗入遗传转化法初报.西北农业大学学报,1998,26(4):1-4
    93.张兴国,刘佩瑛.黄瓜原生质体培养再生胚状体和植株研究.西南农业大学学报,1998,20(4):287-292
    94.张承妹,陆家安.黄瓜组织培养与诱导四倍体再生植株.上海农业学报,1995,11(3):31-36
    95.张晗,信月芝,郭惠明,等. CBF转录因子及其要植物抗冷反应中的作用.核农学报,2006,20(5):406-409
    96.赵万苓,姜世平,付新生,等.利用花粉管通道法将查尔酮基因导入仙客来.分子植物育种,2005,3(4):536-541
    97.赵泓,刘凡,姚磊.简单快捷建立高频黄瓜子叶离体再生体系.生物技术,2000,10(2):9-11
    98.朱素琴.膜脂与植物抗寒性关系研究进展.湘潭师范学院学报(自然科学版),2002,24(4):49-54
    99.朱其杰.黄瓜耐冷性鉴定指标及遗传规律的研究.中国主要蔬菜抗病育种进展,1995,457-462
    100.曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响.植物生理学报,1990,16(1):37-43
    101.曾君祉,王东江,吴有强,等.用花粉管途径获得小麦转基因植株.中国科学,1993,23(3):256-262
    102.曾君祉,吴有强,王东江,等.花粉管通道(或运载)法转化的植株后代遗传表现及机理的探讨.科学通报,1998,46(6):561-566
    103.曾纪晴,刘鸿先,王以柔,等.黄瓜幼苗子叶在低温下的光抑制及其恢复.植物生理学报,1997,23(1):15-20
    104.庄东红,曹君,胡东,等.盐生植物总DNA经花粉管通道导入花生研究初报.广东农业科学,2005,1:31-33
    105.甄伟,陈溪,孙思洋,等.冷诱导基因的转录因子CBFI转化油菜和烟草及抗寒鉴定.自然科学进展,2002,(12):1104-1109
    106.Artus N N,Uemura M,Steponkus P L, Gilmour S J,Lin C T,Thomashow MF. Constitutive expression of the coldregulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA, 93:1340-1349
    107.Baker S S, Wilhelm K S,Thomashow M F. The 5-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold,drought and ABA-regulated gene expression. Plant Mol. Boil, 1994, 24: 701-713
    108.Chong K, Tan K H. Function analysis of ver 203 gene through antisense transgenic winter wheat plants. Plant Physiology, 1995,108,(2):475
    109.Close T J. Dehydrins: a commonality in the response of plants to dehydration and low temperature. Plant Physiol,1997,100:291-296
    110.Choi D W, Rodriguz E M, Colse T J. Barley cbf3 gene identification ,expression pattern, and map location. Plant Physiology, 2002, 129:1781-1787
    111.Cabrera R M,Saltveit M E,Owens K.Cucumber cultivars differ in their response to chilling temperatures. J Am Soc Hortic Sci,1992,117:802-807
    112.Cai Z H, Zhu Q J,Xu Y. Studies on inheritance of chilling tolerance in cucumber seeding stage. Acta Hort,1995,402:206-213
    113.Cade R M, Wehner, T C and Blazich F A. Effect of Explant Age and Growth Regulator Concentration on Adventious Shoot Formation from Cotyledonary Tissue of Cucumber. J Amer Soc. Hort. Sci,1990,115,691-696
    114.Dubouzel J G, Sakuma Y, Ito Y, Kasuga M,Dubouzet EG, Miura S,Seki M, Shinozaki K, Yamaguchi-Shi-nozaki K. OsDREB genes in rice(Oryza Sativa L) encode transcription activators that Function in drought, hight salt and cold responsive gene expression. Plant Journal ,2003,33:751-763
    115.Dunn M A, Hughes M A, Pearce R S, Jack P L. Molecular characterization of abarley gene induced by cold treatment. J Exp Bot, 1990,41:1405-1413
    116.Dunn M A,Hughes M A, Zhang L, Pearce R S, Quigley A S, Jack P L. Nucleotide sequence and molecular analysis of the low temperature induced barley gene, BLT4. Mol Gen Genet, 1991, 229:389-394
    117.Erez A, Cohen E, Frenkel C. Oxygen-mediated cold-acclimation in cucumber (Cucumis sativus) seedlings. Physiol Plant, 2002, 115:541-549
    118.Fowle S G, Cook D, Thomashow M F. Low temperature induction of Arabidopsis CBF1,2,and 3 is getted by the circadian clock. Plant Physiology, 2005, 137: 961-968
    119.Guy C L,Hummel R L, Haskell M. Induction of freezing tolerance in spinach cold acclimation. Plant Physiol, 1987, 84: 868-871
    120.Gilmour S J, Artus N N, Thomashow M F. cDNA sequence analysis and expression of two cold-regultaed genes of Arabidopsis thaliana. Plant Mol boil, 1992, 18: 13-21
    121.Gilomur S J, Zarka D G, Stockinger E J, Salazar M P, Houghton J M, Thomashow M F. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J, 1998, 16(4):433-442
    122.Guo W,Ward RW, Thomashow M F. Characterization of a cold-regulated wheat gene related to Arabidopsis cor47. Plant Physiol, 1992, 100:915-922
    123.Guy C L, Haskell D. Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Plant Physiol, 1987, 84: 872- 878
    124.Guy C L, Niemi K j. Brambl R. Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA, 1985, 82: 3673-3677
    125.Gusta L V, Wilen R W, Fu P. Low temperature stress tolerance: the role of abscisic acid, sugars, and heat-stable proteins Hortsci, 1996,30(1):39-45
    126.Gamboa M C, Rasmussen Poblete S, Valenzuela PDT, Krauskopf E. Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Physiology and Biochemistry,2007,45:1-5
    127.Gilmour S J, Sebolt A M, Everard J D,Thomashow M F, Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 2000,124,1854-1865
    128.Guo Y, Xiong L M, Ishitani M, Zhu J K. An Arabidopsis mutation in translation elongation factor 2 causes superinduction of CBF/DREB1 transcription factor genes but blocks the induction of their downstream targets under low temperatures. Proc. Natl. Acad. Sci, 2002, 99(11): 7786-7791
    129.Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of Spinach. Porc. Natl. Acad Sci USA,1985,82,3673-3677
    130.Haake V, Cook D, Riechmann J L, Pineda O, Thomashow M F, Zhang J Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiology, 2002,130(2):639-648
    131.Hsieh T H, Lee J T, Yang P T, Chiu L H, Charng Y Y, Wang Y C, Chan M T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative strssses in transgenic tomato. Plant Physiology, 2002, 129: 1086-1094
    132.Hsieh T, Lee J T, Charng Y Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology, 2002, 130: 618-626
    133.Lou H and Kako S. Somatic Embryogenesis and Plant Regeneration in Cucumber. Hortscience, 1994, 29(8): 906-909
    134.Hong B, Uknes S, Ho T H D. Cloning and characterization of a cDNA encoding a mRNA rapidly induced by ABA in barley aleurone layers. Plant Mol Biol, 1988, 11: 495-506
    135.Hess D. Investigation on the intra and interspecific transfer of anthocyanin genes using pollen as vector.Z. Pflanzenphysiol Bcl,1980,98:321-327
    136.Hodgson R A L. Inhibition of photo synthesis by chilling in light. Plant Sci Lett,1987,49:75-80
    137.Ismail A M, Hall A E, Close T J. Allelic variation of a dehydrin gene cosegregates with chilling tolerance duing seeding emergence. Proc Nat Acad Sci USA, 1999,96(23): 13566-13570
    138.Ito Y, Katsura K, maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol, 2006, 47(1): 141-153
    139.Jaglo K R, Kleff S, Amundsen K L, Zhang X, Haake V, Zhang J Z,Deits T, Thomashow M F. Componets of the Arabidopsis C-repeat / dehydration - responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Phyciology, 2001,127:910-917
    140.Jaglo Ottosen K R,Gilmour S J, Zarka D G, Schabenberger O, Thomashow M F. Arabidopsis CBFI overexpression induces COR genes and enhances freezing tolerance. Science, 1998, 280: 104-106
    141.Kazuoka T, Oedak. Heat-stable COR (cold-regulated) proteins associated with freezing tolerance in spinach. Plant Cell Physiol, 1992,33(8):1107-1114
    142.Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold and ABA-induced genes of Arabidopsis thaliana. Plant Mol Biol, 1992,19:689-692
    143.Kang H M, Saltveit M E. Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Plant Physiol,2002,115(4):571-576
    144.Kanaya E, Nakajima N, Morikawak. Characterization of the transcriptional factor CBF1 from Arabidopsis thaliana. J Biol Chem,1999,274(23):16068-16078
    145.Kang H M, Saltveit M E. Activity of enzymatic antioxidant defense systems in chilled and heat shocked cucumber seedlings radicles.Physiol Plant, 2001, 113:548-556
    146.Kimball S, Land Salibury F B. Ultrastructural Changes of Plants Exposed to Low Temperature Amer. J. Bot, 1973, 60: 1028-1033
    147.Lasley S E. After effects of light and chilling temperature on photo synthesis in excised cucumber cotyledons. J Amer Hort Sci,1979,104:477-486
    148.Lee S H, Singh A, Chung G C, Kim Y S, Kong I B. Chilling root temperature causes rapid ultrastructrural changes in cortical cells of cucumber root tips. J ExpBot, 2002, 53:2225-2237
    149.Luo Z X, Wu R. A simple method for the transformation of rice via the pollen tube pathway. Plant Mol Biol Rep,1988,7:69-77
    150.Limin A E, Dangluk J, Chauvin L P, Fowler D B, Sarhan F. Chromosome mapping in low-temperature induced Wcs 120 family genes and regulation of cold-tolerance expression in wheat. Mol Gen Genet, 1997,253:720-727
    151.Ladyman J A R, Girard B. Cucumber Somatic Embryo Development on Various Gelling Agents and Carbohydrate Source. Hort Science, 1992,(27):2
    152.Leah R, Tommerup H. Biochemical and Molecular Charaterization of Three Barley Seed Proteins with Antifungal Properties. J Biol Chem,1991,266:1564
    153.Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchr-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 nd DREB2, with an EREB/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperatuer-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10(8):1391-1406
    154.Lee H, Xiong L, Ishitani M, Stevenson B, Zhu J K. Hosl, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell, 1998, 10: 1151-1161
    155.Lee H, Xiong L, Ishitani M, Stevenson B, Zhu J K. Cold-regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. The Plant Journal,1999,17:301-308
    156.Lafuente M T, Belver A, Guge M G, Saliveit M E. Effect of temperature conditioning on chilling injury of cucumber cotyledons: possible role of abscisic acid and heat shock proteins. Plant Physiol, 1991, 95: 443-449
    157.Monica A H. The molecular biology of plant acclimation to low temperature. Journal of Experimental Botany,1996,47(296): 291-305
    158.Mangrich M E, Saltveit M E. Effect of chilling, heat shock and vigor on the growth of cucumber(Cucumissativus) radicles. Physiol Plant 2000,109:137-142
    159.Markhatr A HⅢ. Chilling injury: a review of possible causes. HortScience, 1986, 21: 1329-1333
    160.Moffat A S. Finding new ways to protect drought-stricken plants. Science, 2002, 296(5571):1226-1229
    161.Medina J, Bargues M, Terd J, Pe’rez-Alonso M, Salinas J. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology, 1999, 119: 463-469
    162.Miura K, Jin J B, Lee J Y, Yoo C Y, Stirm V, Miura T, Ashworth E N, Bressan R A, Yan D J, Hasegaua P M. SIZI-mediated sumoylation of ICEI controls CBF3/DREBIA expression and freezing tolerance in Arabidopsis. The plant cell, 2007, 19:1403-1414
    163.Monroy A F, Sangwan V, Dhindsa R S. Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold-inactivation. Plant J, 1998, 13: 653-660
    164.Martthias H, Virginia W. Effect of cold treatment on protein synthesis and mRNA levels in rice Leaves. Plant Physiol, 1989, 91: 930-936
    165.Meza-Bassol. Changes in protein synthesis in rapeseed (Brassica napus) seedings during low temperature treatment, plant physiol, 1986, 82: 733-738
    166.Nawab Ali, Robert M, Skirvin, Walter E Splittstoesser. Regeneration of Cucumis sativus from Cotyledons of Small Explants HortScience, 1991, 26(7), 925
    167.Novillo F, Alonso J M, Ecker J R, Salinas J. CBF2/DREBIC is a negative regulator of CBF1/DREBIB and CBF3/DREBIA expression and plays a central role in stress tolerance in Arabidopsis Proc, Natl. Acad.Sci, 2004, 101(11): 3985-3990
    168.Nordin K. Separate signal pathway, regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana. Plant Mol Biol, 1991, 16: 1061-1071
    169.Pandey K K, Sexal transfer of special genes without gametal fusion. Nature, 1975, 256(5515):310-313
    170.Potrykus I. Gene transfer to cereals: an assessment. Biotechnology, 1990, 6:535-542
    171.Powles S B. Interaction between light and temperature on the photo inhibition of photo synthesis in chilling sensitive plants. Plant Cell and Enviro, 1983, 6:117-123
    172.Qian C T, Jahn M M, Staub J E, Luo X D, Chen J E. Meiotic chromosome behavior in an allotrip loid derived from an amphidiploid×diploid mating in Cucumis Plant Breeding, 2005, 124:272-276
    173.Qin F, Sakuma Y, Li J, Liu Q, Li Y Q, Shinozaki K, Shinozaki K Y. Cloning and functional analysis of a novel DREBI/CBF transcriptionfactor involved cold-responsive gene expression in Zea mays L. Plant & Cell physiology, 2004, 45(8): 1042-1052
    174.Ronchi V N, Giorgetti L. The cell commitment to somatic embryogenesis. Biotechnology in Agriculture and Forestry. 1994, 30:3-18
    175.Rab A, Saltveit M E. Differential chilling sensitivity in cucumber (Cucumis sativus) seadlings. Physiol Plant, 1996b, 96:375-382
    176.Saczynska V, Chilling susceptibility of Cucumis sativus species. Phytochemistry, 1993, 33(1):61-67
    177.Sang-Min Chung. Inheritance of chilling injury: a maternally inherited trait in cucumber. J. Amer. Soc. Hort. Sci. 2003, 128(4): 526-530
    178.Shen W Y, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant physiol, 2000,124:431-439
    179.Staub J E, Fredric L, Marty T L. Electrophretic variation in cross compatible wild diploid species of Cucumis. Can J Bot, 1987, 65:792-798
    180.180 Stockinger E J, Gilmour S J, and Thomashow M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit, Plant Biol, 1997, 94(3): 1035-1040
    181.Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchr-Shinozaki K. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs,transcription factors involved in dehydration and cold-inducible gene expression. Biochem Biophys Res Commun, 2002,290: 998-1009
    182.Stockinger E J, Mao Y, Regier M K, Triezenberg S J, Thomashow M F. Transcriptional adaptor and histon acety I transferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional adaptor involved in cold-regulated gene expression. Nucleic Acids Rs, 2001,29(7):1524-1533
    183.Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, Shinozaki K, Yamaguchi-shinozaki K. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 2006,18:1292-1309
    184.Shinwari Z K, Nakasima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K. An Arabido psis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. Biochem Biophys Res Commun, 1998, 250:161-170
    185.Trulson A J, Shahin E A, Invitro plant regeneration in the genus cucumis. Plant sci, 1986, 47:35-43
    186.Tachibana S. Effect of root temperature on the rate of water and nutrient absorption in cucumber cultivars and fig leaf gourd J. of the Jan. Soc for Hort Sci, 1987, 55:461-467
    187.Thomashow M F. Role of cold responsive genes in plant freezing tolerance Plant physiology, 1998, 118:1-7
    188.Tan M, Lu S, Jing Y, Zhou X J, Sun J W, Shen S H. Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea Plant Physiology and Biochemistry, 2005, 43:233-239
    189.Tewari A K, Tripathy B C. Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (cucumis sativus L.) Planta, 1999, 208:431-437
    190.Van Hasselt P R, Van Berlo H A C. Photooxidation damage to the photosynthetic apparatus during chilling. Physicl plant, 1980,50:52-56
    191.Van Burren M L, Salvi S, Morgante M, Serhani B, Tuberosa R. Comparative genomic mapping between a 745kb region flanking DREBIA in Arabidopsisthaliana and maize. Plant Molecular Biology, 2002, 48:741-750
    192.Wen yun shen. Involvement of polyamines in the chilling tolerance of cucumber cultivars. Plant Physiology, 2000,124:431-439
    193.Weiser C J. Cold resistance and injury in woody plants. Science, 1970, 169:1269-1278
    194.Wise R R, Naylor A W. Chilling-enhanced photooxidation: the peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. Plant Physiol, 1987a, 83:272-277
    195.Wise R R. Naylor A W. Chilling-enhanced photooxidation: evidence for role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidunts. Plant Physiol, 1987b 83: 278-282
    196.Xiong Y, Fei S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass (Lolium perenne L.) . Planta. 2006, 224:878-888
    197.Yu X M. Winter rye antifreeze activcity increases in response to cold and drought, but no abscisic acid. Physiol plant, 2001, 112:78-86
    198.Yu J Q, Zhou Y H, Ye S F, Huang L F. 24-epibrassinolide and abscisic acid protect cucumber seedlings from chilling injury. J Hortic Sci Biotech, 2002,77:470-473
    199.Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salt stress Plant Cell, 1994, 6: 251-264
    200.Zhou G Y, Inheritance of exogenous DNA into cotton embryos. Method In Enzymology 1983, (101):433-488

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700