不同生育时期紫花苜蓿秋眠型标准品种耐盐机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以紫花苜蓿秋眠型标准品种(Maverick,Vernal,Pioneer5446,Legend,Archer,AB1700,Dona Aan,Pierce,CUF101)及中苜1号为材料,通过对NaCl处理下萌发期、苗期、营养期生理生化指标的测定,探讨了紫花苜蓿的耐盐机理以及耐盐能力的大小。主要结论主要如下:
     1.50 mM NaCl对紫花苜蓿种子萌发没有促进作用。在高浓度下,紫花苜蓿发芽势、发芽率、根长、苗高、发芽指数、活力指数随着盐浓度的增加而降低。紫花苜蓿种子恢复萌发率在50mM NaCl处理下均低于10%;但100 mM-200mM NaCl处理下均在150mM达到最大;在200mMNaCl处理下,恢复萌发率又有所降低。
     2.根据模糊数学隶属函数平均值(Δ)对萌发期紫花苜蓿耐盐性进行分类,结果如下:Dona Aan、Pierce、Pioneer5446和CUF101耐盐性强,Vernal、Maverick和Legend耐盐性弱,ABI700、中苜1号和Archer耐盐能力居中。以活力指数隶属度对萌发期紫花苜蓿耐盐性分类和综合分类基本吻合,因此活力指数可以作为评价耐盐性的指标。
     3.O_2~-产生速率与盐浓度呈极显著正相关,表明随着盐浓度的增加,对苗期紫花苜蓿的活性氧伤害程度加剧。依据模糊数学隶属法对苗期紫花苜蓿的盐胁迫下抗氧化能力进行分类:Dona Aan,Pierce,中苜1号具有较强的抗氧化能力;Archer,Pioneer5446,Maverick具有中度抗氧化能力,而CUF101,ABI700,Legend,Vernal的抗氧化能力较差。
     5.在较低浓度下营养期紫花苜蓿光合响应存在着预警阶段-恢复阶段-耗尽阶段。
     6.不同生育时期紫花苜蓿电导率随着盐处理浓度的增加而增加。以电导率函数对不同生育时期紫花苜蓿进行分类,其中Dona Aan、Pierce、Pioneer5446和CUF101耐盐性强,Vernal、Maverick和Legend耐盐性弱,ABI700、Archer和中苜1号耐盐性居中,以电导率分类的结果基本和种子萌发期的综合评价结果吻合,因此可以用电导率作为紫花苜蓿萌发期耐盐性鉴定的指标之一。不同生育时期的电导率隶属函数值排序基本相同,用电导率作为紫花苜蓿的耐盐性鉴定指标之一是可行的。
Salt tolerance of the different fall dormancy alfalfa in geminating period has been studied by measuring the germination energy,the germination rate,the seedling early growth,the germination index,the activity index under NaCl stress.In order to elucidate mechanism of reactive oxygen species(ROS) regulation and the relevance to salt-tolerance in the different fall dormancy alfalfa,we used Maverick,Vernal,Pioneer5446,Legend,Archer,ABI700,Dona Aan,Pierce,CUF101,Zhongmu No.1 to investigate the effects of increasing NaCl on ROS,anti-oxidative enzymes, malondialdehyde(MDA) and membrane permeability(MP)in shoots and/or roots.In addition,we designed experiments to clarify the response of photosynthetic indexes(Pn,Gs and Ci) under NaCl stress.The conductivity of different growth stages has been determined,and MDA content in the leaves of seedling stage.
     1.Seed germination of the different fall dormancy alfalfa has not been promoted under 50 mM NaCl.the length of root,the germination index,the activity index and NaCl concentration declined with NaCl concentration increasing when NaCl concentration was greater than 50 mM.The percentage of recovery were lower than 10%under 50 mM NaCl.The percentages of recovery were maxmium when NaCl concentration was 150 mM NaCl.Under the treatments with 100 mM,150 mM and 200 mM NaCl.
     2.The salt tolerance abilities of alfalfa in geminating period were evaluated comprehensively by subordinate function value method.The results showed that Dona Aan,Pierce,Pioneer5446,CUF101 had the most salt tolerance,that Maverick,Vernal,Legend had the weakest salt tolerance,that ABI700,Zhongmu No.1,Archer had medium salt tolerance.Subordinate degree of alfalfa in the activity index indicated that Aan,Pierce,Pioneer5446,CUF101 had the most salt tolerance,that Maverick,Vernal,Legend had the weakest salt tolerance,that ABI700,Zhongmu No.1,Archer had medium salt tolerance.So the activity index can be taken as the indexes of salt tolerance for alfalfa during germination.
     3.The correlation between the O_2~- production rate and NaCl concentration was significantly positive during seedling stage.In shoots of the different fall dormancy alfalfa,the degree of ROS damage has increased with the increase of NaCl concentration.The antioxidant capacity of the different fall dormancy alfalfa in seedling stage was evaluated comprehensively by subordinate function value method.The results showed that Dona Aan,Pierce,Zhongmu No.1 had the best antioxidant capacity,that CUF101,ABI700,Legend,Vernal had the weakest antioxidant capacity, that Archer,Pioneer5446,Maverick had the medium antioxidant capacity.
     4.The photosynthetic response of the different fall dormancy alfalfa consisted of alarm phase, phase of resistance or phase of restoration,phase of exhaustion under 50 and 100 mM NaCl.
     5.With the increase of NaCl concentration,the conductivity of the different fall dormancy alfalfa seed has increased during different growth stages.Subordinate degree of alfalfa in the conductivity during different growth stages indicated that Dona Aan,Pierce,Pioneer5446,CUF101 had the most salt tolerance,that Maverick,Vernal,Legend had the weakest salt tolerance,that ABI700,Zhongmu No.1,Archer had medium salt tolerance.So the conductivity can be taken as the indexes of salt tolerance for alfalfa during different growth stages.
引文
1.Aebi H.Catalase in vitro[J].Methods in Enzymol,1984,105:121-126.
    2.Al-khatib M Ncneilly T,Collins J C.The potential of selection and breeding for improved salt tolerance in Lucerne[J].Ephytica,1993,65:43-51.
    3.Al-khatib-MM and Collins J.C.Between and with in culture variability in salt tolorance in lucerne.Genet.Resour Crop EV.1994,41:159-164.
    4.Alscher R G,Donahue JL,Cramer CL.Reactive oxygen species and antioxidants:Relationships in green cells.Physiol.Plant,1997,100:224-233.
    5.Aronson JA.Haolphyte Data Base of Salt Tolerant Plants of the World.Turson A rizona:The University of Arizona,1989
    6.Asada K and Takahashi M.Production and scavenging of active oxygen in photosynthesis[M].In:Kyle DJ,Osmond CB,Arntzen CJ.Photoinhibition.Amsterdam:Elsevier Science Publishers B.V.,1987,227-287.
    7.Asada K.The water-water cycle in chlorplasts:scavenging of active oxygen and dissipation of excess photons.Annu.Rev.Plant Physiol.Plant Mol.Biol.50,601-639.
    8.Ashraf,M.Breeding for salinity tolerance in plant.Crit.Rev.Plant Sci.1994,13:17-42
    9.Bajji M.,Kinet J.M.and Lutts S.Osmotic and ionic effects of NaCl on germination,early seedling growth,and ion content of Atriplexhalimus(Chenopodiceae)[J].Can.J.Bot.2002,80:297-304.
    10.Banuelos MA,Garciadeblas B,Cubero B,et al.Inventory and functional characterization of the HAK potassium transporters of rice.Plant Physiology,2002,130:784-795.
    11.Bethke PC,Drew MC.Stomatal and nonstonmatal components to inhibition of photosynthesis in leaves of Captcum annuum during progressive exposure to NaCl salinity.Plant Physiol,1992,99:219-226.
    12.Bewley J.D,Black M.Physiology and Biochemistry of Seeds in Relation to Germination.Springer-Verlag,Berlin.1982,2:375
    13.Bewley J.D.,Black M.Physiology and Biochemistry of Seeds in Relation to Germination.Springer-Verlag,Berlin.1982,Vol.2,pp375
    14.Blumwald,Eduardo.Sodium transport and salt tolerance in plants[J].Current Opinion in Cell Biology,2000,12:431-434.
    15.Bowler C,Fluhr R.The role of calcium and activated oxygens as signals for controlling cross-tolerance[J].Trends Plant Sci.,2000,5:241-245
    16.Bowler C,Van Montagu T,Inze D.Superoxide dismutase and stress tolerance.Ann.Rev.Plant Physiol.Plant Mol.Biol,1992,43:83-16.
    17.Bradford MM.A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal.Biochem.,1976,72:248-254.
    18.Breckle SW.How do halophytes overcome salinity? In:Khan MA,Ungar IA(eds).Biology of Salt Tolerant Plants.Book Crafters,Michigan,USA.1995 199-213.
    19.Brownell P F,Crossland C J.The requirement for micronutrient by species having the C4 dicarboxylic photosynthesis pathway[J].Plant Physiology,1972,49:794-799.
    20.Brownell,PF.Sodium as an essential micronutrient element for plants and its possible role in metabolism.Advance in Botanical Research,1979,7:117-224
    21.Brownell,PF.Sodium as an essential micronutrient element for plants and its possible role in metabolism.Advance in Botanical Research,1979,7:117-224
    22.Brugnoli E.and Bjorkman O.Growth of cotton under continuous salinity stress:influence on allocation pattern,stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy[J].Planta.l992,187:335-347.
    23.Buege JA,Aust SD.Methods Enzymol 1978,52:302-305.
    24.Bydr S,Reins D and Doetsch PW.Effects of oxidative DNA damage on transcription by RNA polymerases[J].Free Radic Biol Med.,1990,9(1):47-57.
    25.Carter D R,Cheeseman J M,Plant Cell Environ,1993,16:215-223
    26.Chung-Kyoon A,Murphy TM.Plasma membrane redox enzyme is involved in the synthesis of O2 and H2O2 by phytophthora elicitor-stimulated rose cells[J].Plant Physiol,1995,107:1241.
    27.Cramer G.R.,L(a|¨)uchli A.Polito V.S.Displacement of Ca2+ by Na+ from the plasmalemma of root cells[J].Plant Physiol.1985,79:207-211.
    28.Cramer,G,Epstein,E & La(u|¨)chli,A.Na-Ca interactions in barley seedlings:relationship to ion transport and growth.Plant,Cell and Environment,1989,12:551-558
    29.Cramer,GR & Lauchli,A.Ion activities in solution in relation to Na+-Ca2+ interactions at the plasmalemma.Journal of Experimental Botany.1986,37:321-330
    30.Cramer,GR,Lynch,J,Lauchli,A & Epstein,E.Influx of Na+,K+,and Ca2+ into roots of salt-stressed cotton seedlings:effects of supplemental Ca2+.Plant Physiology,1987,83:510-516
    31.Crane FL,Sun IL,Sun EE,et al.Plasma membrane redox and regulation of cell growth[J].Protoplasma,1995,184:3.
    32.Cristina L,Maria S,Michela M,Flavia NL.Antioxidative enzymes in wheat subjected to increasing water deficit and rewatering.J Plant Physiol,2000,157:273-279
    33.del Rio LA,Lyon DS,01ah I,et al.Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant[J].Planta,1983,158:216-224.
    34.Demidchik V,Tester M.Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots.Plant Physiology,2002,128:379-387
    35.Dionisio-Sese,M.L.and S.Tobita.Antioxidant responses of rice seedlings to salinity stress[J].Pant Sci,1998,135:1-9.
    36.Dobrenz A K.Carbohydrates in alfalfa seed developed for salt tolerance during germination[J].Agronomy J,1993,85:834-836.
    37.Doulis AG,Hausladen A,Mondy B,et al.Seasonal changes in anioxidants of red spruce(Picea rubens Sarg)at two site in the eastern United States[J],New Phytol.,1993,123:365-374.
    38.Draycott,A.P.,and Bugg,S.M.Response by sugarbeet to various amounts and times of application of sodium chloride fertilizer in relation to soil type.J.Agric.Sci.1982,98:579-592.
    39.Everard J D,Gucci R,Susan C,et al.Gas exchange and carbon partitioning in the leaves of celery(Apium graveolens L.) at various of root zone salinity,Plant Physiol.1994,106:281-292.
    40.Farquar G D,Von Caemmerer S,Berry JA.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J].Planta,1980.149:78-90.
    41.Flowers TJ,Hajibagheri MA,Clipson NJW.Halophytes.The Quarterly Review of Biology,1986,61:313-337.
    42.Flowers TJ,Lauchli A.Sodium versus potassium:Substitution and compartmentation.In A Lauchli,RL Bieleski(eds),Inorganic Plant Nutrition,Springer-Verlag,Berlin,1983,651-681.
    43.Flowers TJ,Troke PF,Yeo AR.The mechanism of salt tolerance in halophytes.Annual Review of Plant Physiology,1977,28:89-121.
    44.Flowers TJ.Improving crop salt tolerance.J Exp Bot,2004,55:307-319.
    45.Foyer CH,Halliwell B.The presence of glutathione and glutathione reductase in chloroplasts:a proposed role in ascorbic arid metabolis[J].Planta,1976,133:21-35.
    46.Fridovich I,Superoxide radical and superoxide dismutases[J].Annu Rev Biochem.1995,64:97-112.
    47.Fridovich I.Superoxide dismutase.Adv Enzymol,1986,58:61-97.
    48.Fu HH,Luan S.AtKUPl:a dual-affinity K+ transporter from Arabidopsis.The Plant Cell,1998,10:63-73.
    49.Giridarakumar S,Madhusudhan KV.,Sreenivasulu N,et al.Stress responses in two genotypes of mulberry(Morusalba L.) under NaCl salinity.Indian J.Exp.Biol.2000,38:192-195.
    50.Gomez J M,Jimenez A,Olmos E and Sevilla F,et al.Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea(Pisum sativum cv.Puget) chloroplast.Journal of Experimental Botany,2004,55,394,119-130.
    51.Gomez,J.M.,J.A.Hernandez,A.Jimenez,L.A.del Rio and F.Sevilla.Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants[J]. Free Rad.Res,1999,31:11-18.
    52.Gosset,D.R.,S.W.Banks,E.P.Millhollon and M.C.Lucas.Antioxidant response to NaCl stressin a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat,buthionine sulfoximine,and exogenous glutathione[J].Plant Physiol,1996,112:803-809.
    53.Grant J J,Loake G J.Role of reactive oxygen intermediates and cognate redox signaling in disease resistance[J]Plant Physiol,2000,124:21-29.
    54.Greenway H,Munns R.Mechanisms of salt tolerance in nonhalophytes.Annu Rev Plant Physiol,1980,31:149-190.
    55.Halliwell B and Gutteridge J.Reaction of the superoxide radical,in:Free radicals in biology and medicine.Clarendon Press,Oxford.1989,301-307.
    56.Hamada A,Shono M,Xia T,et al.Isolation and characterization of a Na+/H+ antiporter gene from the Halophyte Atriplex gmelini.Plant Molecular Biology,2001,46:35-42.
    57.Hamer,P.M.,and Benne,E.J.,Sodium as a crop nutrient.Soil.Soc.Am.J.1945,60:137-148.
    58.Hasegawa PM,Bressan PA,Zhu JK,et al.Plant cellular and molecular response to high salinity[J].Anne Rev Plant Physiol Mol Biol,2000,51:463-499.
    59.Henzler T,Stendle E.Transport and metabolic degradation of hydrogen peroxide in Chara coralline:Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels[J].J Exp Bot,2000,51(353):2053-2066.
    60.Hernandez J A,Campillo A,Jimenez A,et al.Response of antioxidant systems and leaf water relations to NaCl stress in pea plants.New Phytol,1999,141:241-251.
    61.Hernandez J A,Corpas F J,Gomez M,et al.Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria[J].Physiol Plant,1993,89:103-110.
    62.Hernandez JA,Ferrer MAJimenez A,et al.Antioxidant system and O2-./H2O2 production in the apoplast of Pisum sativum L.leaves:its relation with NaCl-induced necrotic lesions in minor veins[J].Plant Physiol.,2001,127:817-831.
    63.Hernandez,J A,Jimenez A,Mullineaux P,et al.Tolerance of pea(Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses[J].Plant Cell Environ,2000,23:853-862.
    64.Hernandez,J.A.,E.Olmos,F.J.Corpas,F.Sevilla,L.A.del Rio.Salt-induced oxidative stress in chloroplast ofpeaplants.Plant Sci[J].1995,105:151-167.
    65.Horv(?)th Eszter,Janda Tibor,Szalai Gabriella,Pdldi Emil.In vitro salicylic acid inhibition of catalase activity in maize:differences between the isozymes ang a possible role in the induction of chilling tolerance.Plant Science,2002,163:1129-1135.
    66.Imlay JA and Linn S.DNA damage and oxygen radical toxicity[J].Sci,1998,240:l 302-1 309.
    67.Jiang M and Zhang J.Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves[J].J.Exp.Bot.,2002b,53(379):2401-2410.
    68.Jiang M,Zhang J.Role of abscisic acid in water-stress-induced antioxidant defence in leaves of maize seedlings[J].Free Rad.Res.,2002a,36:1001-1015.
    69.Jiang M,Zhang J.Involvement of plasma membrane NADPH oxidase in abscisic acid and water stress-induced antioxidant defense in leaves of maize seedlings[J].Planta,2002c,215:1022-1033.
    70.Keifer,DW & Lucas,WJ.Potassium channels in Chara corallina:control and interaction with the electrogenic H+ pump.Plant Physiology.1982,69:781-788.
    71.Kim EJ,Kwak JM,Uozumi N,et al.AtKUPl:an Arabidopsis gene encoding high-affinity potassium transport activity.The Plant Cell,1998,10:51-62.
    72.Kinet JM and Lutts S.Osmotic and ionic effects of NaCl on germination,early seedling growth,and ion content of Atriplexhalimus(Chenopodiaceae)[J].Can.J.Bot,2002,80:297-304.
    73.Kochhar S.Kochhar V K.Expression of antioxidant enzymes and heat shock proteins in relation to combined stress of cadmium and heat in Vigna mungo seedlings.Plant Sci,2005,168:921-929.
    74.Kurban H.,Saneoka H.,Nehira K.,Adilla R.,Premachandra G.S.,and Fujita K.,Effect of salinity on growth,photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi[J].Soil Sci.Plant Nutr.,1999,45:851-862.
    75.Larcher W.Physiological Plant Ecology.Ecophysiology and stress physiology of Functional Groups.Springer-Verlag,New York/Berlin/Heidelberg.1995,321-327.
    76.Lascano HR,Casano LM,Melchiorre MN,Trippi VS.Biochemical and molecular characterization of wheat chloroplastic glutathione reductase.Biologia Plantarum.2001,44(4):509-516.
    77.Lascano HR,Gomez LD,Casano LM,Trippi VS.Change in glutathione reductase activity and protein content in wheat leaves and chloroplasts exposed to photooxidative stress,Plant Physiol Biochen,1998,36:321-329.
    78.Lehr,J.I.,The importance of sodium for plant nutrition.Soil.Sci.1947,63:479.
    79.Lehr,J.I.,Sodium as a crop nutrient.J.Sci.Food Agric.1953,4:460-471.
    80.Levitt J.Response of plants to environmental stress[M].New York:Academic Press,1980,365-434.
    81.Lin C.C.,Kao C.H.Proline accumulation is associated with inhibition of rice seeding root growth caused by NaCl.Plant Sci.1996,114:121-128.
    82.Listowski I,Abramovitz M,Homma H,Niitsu Y,Intracellular binding and transport of hormones and xenobiotics by glutathione S-transferase.Drug Metab Rew,1988,19:305-318.
    83.Lynch,J & Lauchli,A.Potassium transport in salt-stressed barley roots.Planta,1984,161: 295-301.
    84.Lynch,J & Lauchli,A.Salt stress disturbs the calcium nutrition of barley(Hordeum vulgare).New Phytologist,1985,99:345-354.
    85.Lynch,J,Cramer,GR & Lauchli,A.Salinity reduces membrane-associated calcium in corn root protoplasts.Plant Physiology.1987,83:390-394.
    86.Magat,S.S.,and Goh,K.M.Effect of chloride fertilizers on ionic composition and cation-anoin balance and ratio of fodder beet(Beta vulgaris L.) grown under field conditions.New Zealand J Agric.Res.1990,33:29-40.
    87.Maribel L,Dionisio-Sese,Satoshi T.Antioxidant response of rice seedlings to salinity stress.Plant Science,1998,135:1-9.
    88.Marschner,H.Mineral Nutrition of Higher Plants.Academic Press,London,1995.
    89.Marschner.高等植物的矿质营养[M].李春俭译.北京:中国农业出版社,2001:282-286.
    90.M(a|¨)ser P,Eckelman B,Vaidyanathan R,et al.Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTl.FEBS Lett,2002,531,157-161.
    91.Maslenkora LT,Adaptation to salinity as monitored by PS Ⅱ oxygen evolving reactions in barley thylakoids[J].Plant Physiol.1993,142:629-634.
    92.May MJ,Leaver CJ.Oxidative stimulation of glutathione synthesis in Arabidopsis thaliana suspension cultures[J].Plant Physiol.,1993,103:1155-1163.
    93.Mccord JM,Fridovich I.Superoxide dismutase:An enzymic function for crythrocuprein(hemocuprein).J Biol Chem,1969,244:6049-6055.
    94.Mccoy T J.Tissue culture evaluation of NaCl torlerance in medicago species[J].Plant Cell Reports,1987,8(3):31-34.
    95.Mehlhorn H,Lelandais M,Korth HG,Foyer CH[J].Ascorbate is the natural substrate for plant peroxidases.FEBS Lett.1996,378,203-206.
    96.Mengel K and Kirkby E.Principles of Plant Nutrition.Worblaufen-Bern:Switzerland,International Potash Inst,1982.
    97.Mittler R.Oxidative stress,antioxidants and stress tolerance[J].Trends in Plant Science,2002,7:405-410.
    98.Mittova V,Tal M,Volokita M,Guy M.Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii[J].Plant Cell Environ,2003,26,845-856.
    99.Miyake C,Asada K.Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary product monodehydroascorbate radical in thylakoids[J].Plant cell physiol,1992,33,541-553.
    100.Montasir,A.H.,Sharoubeem,H.H.,and Sidrak,G.H.,Partial substitution of sodium for potassium in water cultures.Plantr Soil.1996,25:181-194.
    101.Moran JF,Becana M,Iturke-Oaanetxe I,et al.Drought induces oxidative stress in peaplant[J],plant,1994,94:346-352.
    102.Muller M,Santarius K A.Changes in chloroplast membrance lipids during adaptation of barley to extreme salinity[J].Plant Physiol.1978,62:326-333.
    103.Munns and Termaat,Whole-plant responses to salinity.Aust J Plant Physiol,1986,13:143-160.
    104.Munns R,Lange OL.Encyclopedia of Plant Physiology.In:Berlin,eds.Springer Verlag,1983,59-60.
    105.Munns R.Comparative physiology of salt and water stress.Plant Cell and Environment,2002,25:239-250.
    106.Munns R.Physiologicalprocesses limiting plant growth in saline soils:some dogmas and hypotheses.Plant Cell and Environment.1993.16:15-24.
    107.Nakano Y and Asada K.Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J].Plant and Cell Physiol.,1981,22:867-880.
    108.Nakano Y,Asada K.Purification of ascrobate peroxidase in spinach chloroplastits inactivation in ascrobate-depleted medium reaction by monodehydroascrobate radical.Plant Cell Physiol,1987,28:131-140.
    109.Neumann,PM,Azaizeh,H & Leon,D.Hardening of root cell walls:a growth inhibitory response to salinity stress.Plant,Cell & Environment.1994,17:303-309.
    110.Neumann,PM,van Volkenburgh,E & Cleland,RE.Salinity inhibits bean leaf expansion by reducing turgor,not cell wall extensibility.Plant Physiology.1988,88:233-237.
    111.Neumann,PM.Rapid and reversible modifications of extension capacity of cell walls in elongating maize leaf tissues responding to root addition and remival of NaCl.Plant,Cell & Environment,1993,16:1107-1114.
    112.Noctor Graham,Foyer CH.Ascorbate and glutathione:keeping oxidative oxygen under control.Annu Rev Plant physiol plant mol boil,1998,49:249-279.
    113.Potikha TS,Collins CC,Johnson DI et al.The Involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers[J].Plant Physiol,1999,119:849-858
    114.Rains DW,Epstein E.Sodium absorption by barley roots:its mediation by mechanism of alkali cation transport.Plant physiol,1967,42:319-323.
    115.Richard D.Bliss K A.Piatt—Aloin.Thomson WW.Changes in plasmalemma organization in cowpea radicle during imbition in water and NaCI solutions[J].Plant,Cell and Environment.1984.7:601-606.
    116.Rodriguez-Navarro A.Potassium transport in fungi and plants.Biochim Biophys Acta,2000, 1469,1-30.
    117.Sairam PK and Srivastava GC.Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress[J].Plant Sci,2002,162:897-904
    118.Sandalio LM,Fernandez VM,Ruperez FL,et al.Superoxide free radicals are produced in glyoxysomes[J].Plant Physiol.,1988,87:1-4.
    119.Sandalio LM,Palma JM and del Rio LA.Localization of manganese superoxide dismutase in peroxisomes isolated from Pisum sativum L[J].Plant Sci.,1987,51:1-8.
    120.Savoure A,Thorin D,Davey M,X.J.Hua X J,et al.NaCl and CuSO4 treatments trigger distinct oxidative defense mechanism in Nicotiana plumbaginifolia L.Plant Cell Environ,1999,22:387-396.
    121.Schaedle M and Bassham JA.Chloroplast glutathione reductase[J].Plant Physiol.,1977,59:1011-1012.
    122.Shalata A,Mittova V,Volokita M,Guy M,et al.Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli to salt-dependent oxidative stress:the root antioxidative system[J].Physiol.Plant,2001,112:487-494.
    123.Shen B,Jense RG,Bohner HJ.Increased resistance to oxidative stress in transgenic plant by targeting mannitol biosynthesis to chloroplasts[J].Plant Physiol.,1997,113:1177-1183.
    124.Smirnoff N.Antioxidant systems and plant reponse to the environment[M].In:Evironment And Plant Metabolism(Smirnoff.N.).BIOS Scientific Publishers,Oxford,UK.1995,217-243.
    125.Smirnoff N.Plant resistance to environment stress[J].Curr Opini in Bitotech.,1998,9:214-219.
    126.Sreenivasulu N,S Ramanjulu,Ramachandra-Kini K.Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox-tail millet with differential salt tolerance.Plant Sci,1999,141:1-9.
    127.Stewart,R.R.C.and J.D.Bewley,Lipid peroxidation associated with accelerated aging of soybean axes[J].Plant physiol,1980,65:245-248
    128.Subbarao G V,Ito O,Berry W L,et al.Sodium-A fuctional plant nutrient[J].Critical Reviews in Plant Sciences,2003,22:391-416.
    129.Sultana N.Ikeda T,Itoh R.Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains.Environ Exp Bot,1999,42:211-220.
    130.Tijen D.Ismail T.Comparative lipid peroxidation,antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.Environ.Exp.Bot.2005,53:247-257.
    131.Tobel K,Zhong LP,Qiu GYY,et al.Characteristics of seed germination in five non-halophytic Chinese desert shrub species.J.Arid Env.2001,47:191-201
    132.Troug,E.,Berger,K.C.,and Attoe,O.J.,Response of nine economic plants to fertilization with sodium.Soil.Soc.Soc.Am.J.1953,76:41-50.
    133.Ungar I.A.Ecophysiology of vascular halophytes.CRC press,Boca Raton.1991,9-48
    134.Ungar 1A.Halophyte seed germination[J].Bot Rev,1978,(44):233-264.
    135.V(?)ry AA,Robinson MF,Mansfield TA,et al.Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte.Plant Journal,1998,14:509-521.
    136.Victor JT,Barry LF.Reactive oxygen species in cell signaling[J].Am J Physiol Lung Cell Mol Physiol,2000,279:1005-1028.
    137.Virginia G.,Jorge C.,Xavier J.and Loreto H.The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species.Plant Physiol.2002.130:1516-1526.
    138.Volkand S and Feierabend J.Photoinactivation of catalase at lowtemperature and its relevance to photosynthetic and peroxide metabolism in leaves[J].Plant,Cell Environ.1989,12:701-712.
    139.Vranov A E,Ineze D,Breusegem F V.Signal transduction during oxidative stress[J].J Exp.Bot.,2002,53:1227-1336.
    140.Walker R R,Blackmore DH.et al.Carbon dioxide assimilition and folier ion concentration in leaves of Leamon[citrus sinensis(L.)osbeck]trees irrigated with NaCl and Na2SO4,Aust.J.Plant Physiol.1993,20:173-85.
    141.Wang A and Luo G.Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants[J].Plant Physiol.Commu.(In China),1990,6:55-57.
    142.Willekens H,Chamnongpol S,Davey M,Schraudner M,Langebartels C.Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants[J].EMBO Journal,1997,16:4806-4816.
    143.Willekens H,Langebartels C,Tire C.Differential expression of catalase gene in Micotiana plumbaginifolia[J].Proc.Natl.Acad.Sic USA.1994,91=10450-10457.
    144.Wills ED.The effect of inorganic iron on the thiobarbituric acid method for the determination of lipid peroxides[J].Biochin Biophys Acta.1964,84:475-477.
    145.Wolf DJ.Effect of NaCl salinity on flows and partitioning of C.N.and mineralions in whole plants of white lupin,Lupinus albus L.J Exp Bot,1992,43(251):777-788.
    146.Wooley,J.T.Sodium and silicon as nutrients for the tomato plant.Plant Physiol.1957,1:317-321.
    147.Zhang MQ,Chen R K,Yu SL.The mathematical analysis on metabolism of active oxygen of sugarcane under water stress.Acta Agronomica Sinica,1996,22(6):263-267.
    148.Zhang Qiu-Fang,Li Yuan-Yuan et al.NaCI enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L.[J].Plant Sci,2005,168:423-430.
    149.Zhu JK.Plant salt tolerance.Trends Plant Sci,2001,6:66-71
    150.Zidan,I,Azaizeh,H & Neumann,PM.Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiology.1990,93:7-11.
    151.Zidan,I,Jacoby,B,Ravina,I & Neumann,PM.Sodium does not compete with calcium in saturating plasma membrane sites regulating 22Na influx into salinised maize roots.Plant Physiology,1991,96:331.
    152.Ziska L H et al,1990.Plant Physiology,93:864-870.
    153.白玉娥,根茎类禾草耐盐性评价及生理基础的研究[D].内蒙古农业大学,2004
    154.卢欣石.中澳苜蓿抗逆性评价与育种第5次学术研讨会综述[C].国际学术动态,北京林业大学,2006,4:20-21。
    155.毕玉芬.新疆北部苜蓿属植物秋眠性[J].安徽农业大学学报,2002,29(4):383-386.
    156.柴媛媛,史团省,谷卫彬.种子萌发期甜高粱对盐胁迫的响应及其耐盐性综合评价分析[J].种子,2008,27(2):43-47.
    157.陈德明,俞仁培,杨劲松.盐渍条件下小麦抗盐性的隶属函数值法评价[J].土壤学报,2002,39(3):368-373.
    158.陈少裕,膜质过氧化对植物细胞的伤害[J].植物生理学通讯,199l,27(2):84-90
    159.高桂娟,毛凯,杨春华,韩瑞宏.牧草及草坪草种子耐盐性研究进展[J].四川草原,2002,35(4):33-36.
    160.耿华珠.苜蓿耐盐鉴定初报[J].中国草地,1990,2(2):67-69.
    161.龚明,作物抗性鉴定方法与指标及其综合评价[J].云南农业大学学报,1989,4(1):73-78.
    162.郭鹏程.长期施用含氯化肥对土壤性质和作物产量品质的影响.见:胡思农等编.硫、镁和微量元素在作物营养平衡中的作用(国际学术讨论会论文集).成都:成都科技大学出版社,1993,494-499.
    163.韩清芳.不同苜蓿品种抗逆性生产性能及品质特性研究[D].西北农林科技大学,2003.
    164.黄文惠,刘自学.概论苜蓿的分布和发展[M].中国苜蓿,北京:中国农业出版社,1995,2-7.
    165.黄学林,陈润政.种子生理学实验手册[M].农业出版社,1990.
    166.贾庚祥,朱至清,李银心.甜菜碱与植物耐盐基因工程.植物学通报,2002,19(3):272-279
    167.李崇巍,贾志宽,林岭,等.几个苜蓿新品种抗旱性的初步研究[J].干旱地区农业研究,2002,20(4):21-25.
    168.李三相,周向睿,王锁民.Na+在植物中的有益作用[J].中国沙漠,2008,28(3):485-490.
    169.李双顺,林桂珠,林植芳.丙二醛对苋菜叶片光合作用的影响[J].植物生理学通讯,1998,5(3):41-44.
    170.李向林,万里强.苜蓿秋眠性及其与抗寒性和产量的关系[C],第二届中国苜蓿发展大会论文集,2002,20-24.
    171.梁云娟,李燕,多立安.不同盐分胁迫对苜蓿种子萌发的影响[J].草业科学,1998,15(6):21-25.
    172.廖祥儒,贺普超,万怡震,等.盐胁迫对葡萄新硝叶片的伤害作用[J].果树科学,1996,13(4):211-214.
    173.林文杰,陈丽晖.植物体中的自由基[J].海南大学学报自然科学版,1998,16(4):370-375.
    174.林莺,NaCl对海滨锦葵光合作用特性的效应[D],山东师范大学,2006.
    175.刘春华,苏加楷,黄文惠.禾本科牧草五种耐盐生理指标的研究[J].草业学报,1993,2(1):46-54.
    176.刘春华,张文淑.六十九个苜蓿品种耐盐性及其二上耐盐生理指标的研究[J].草业科学,1993,10(6):16-22.
    177.刘华.中苜一号紫花苜蓿抗逆性及其利用研究[D].甘肃农业大学,2004.
    178.刘建宁,胡跃高.紫花苜蓿休眠类型与生长特性及生产性能的研究[D],第二届中国苜蓿发展大会论文集,2002,66-68.
    179.卢青.植物耐盐性的分子生物学研究进展[J].生物学杂志,2000,17(4):9-11.
    180.卢欣石,申玉龙.苜蓿秋眠性研究与利用[J].国外畜牧学—草原与牧草,1991,3(4):1-4.
    181.卢欣石.中国苜蓿92个地方品种资源秋眠性评定[C],第二届中国苜蓿发展大会论文集,2002,15-20.
    182.卢欣石.中国苜蓿鉴定品种秋眠性研究[J].中国草地,1998,19(3):1-5.
    183.潘全山.草坪草耐盐性研究Ⅰ.不同草种和品种在盐胁迫下的抗逆性[J].草业科学,1999,16(12):50-53.
    184.齐冰洁,易津.赖草属牧草种子及幼苗耐盐性生理基础的研究[J].干旱区资源与环境.2001,15(5):41-46.
    185.山东农学院和西北农学院编,植物生理学实验指导,山东科学技术出版社,济南,1980,308-310.
    186.苏国兴,洪法水.桑品种耐盐性的隶属函数法之评价[J].江苏农业科学,2002,18(1):42-47.
    187.孙启忠,王育青.关于苜蓿抗寒性的几个问题[J].牧草与饲料,1992,13(2):31-34.
    188.孙玉,陈珈.植物细胞质膜氧化还原系统与信号转导[J],植物细胞质膜氧化还原系统与信号转导.植物生理学通讯,1997,33(3):161-167.
    189.汤章城.逆境条件下植物游离脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984,12(4):27-32.
    190.陶嘉龄,郑光华.种子活力[M].北京:科学出版社,1991.
    191.陶向新,模糊数学在农业科学中的初步应用[J].沈阳农业大学学报,1982,32(2):96-107.
    192.吐尔逊娜依,高辉远,安沙舟,等.8种牧草耐盐性综合评价[J].中国草地,1995,16(1):30-32.
    193.汪月霞,孙国荣,王建波,等.NaCl胁迫下星星草幼苗MDA含量与膜透性及叶绿素荧光参数之间的关系[J].生态学报,2006,26(1):122-129.
    194.王爱国,罗文华.植物的超氧物自由基与羟胺反应的定量关系[J].植物生理学通讯,1990,19(6):25-28.
    195.王爱国,邵从本,罗广华.丙二醛作为植物质膜过氧化指标的探讨[J].植物生理学通讯,1986,16(2):55-57.
    196.王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,23(14):25-30.
    197.王宝增.低浓度的NaCl对玉米、小麦生长效应的基础研究[D].山东师范大学,2004.
    198.王洪春.专题讲座-第二十六讲植物抗性生理[J].植物生理学通讯,1981,13(6):72-81
    199.王瑞刚.盐诱导氧化胁迫与杨树耐盐性研究[D].北京林业大学,2007.
    200.王小山.豆科牧草在种子萌发期和苗期的耐盐生理机制研究[D].中国农业大学,2006
    201.王艳青,陈雪梅,李悦等.植物抗逆中的渗透调节物质及其转基因工程进展[J].北京林业大学学报,2001,23(4):66-70.
    202.王宗立,李建坤,王志霞.水稻耐盐性的生理研究[J].江苏农业学报,1990,6(2):1-6.
    203.王遵亲等著.中国盐渍土[M].北京:科学出版社,1993.
    204.萧冰.五种豆科牧草耐盐临界值,极限值的研究[J].草业科学,1994,11(3):70-73.
    205.徐恒刚,张萍,李临杭,等.对牧草耐盐性测定方法及其评价指标的探讨[J].中国草地,1997,18(5):52-54,64.
    206.许大全.光合作用效率[M].第一版,上海:上海科学技术出版社,2002.
    207.许详明,叶和春,李国风.植物抗盐机理的研究进展.应用与环境生物学报,2000,6(4):379-387.
    208.阎秀锋,孙国荣.星星草生理生态学研究[M].北京:科学出版社,2000.
    209.杨梅周.农杆菌介导酿酒酵母3-磷酸甘油脱氢酶基因转化紫花苜蓿的研究[D].甘肃农业大学,2003.
    210.杨青川,孙彦,苏加楷,耿华株,郭文山.紫花苜蓿耐盐育种及耐盐遗传基础的研究进展[J].中国草地,2001,23(1):59-62.
    211.杨青川,孙彦.紫花苜蓿耐盐育种及耐盐遗传基础的研究进展[J].中国草地,2001,21(1):59-62。
    212.余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,2002,752-753.
    213.于卓,孙祥等.草地早熟禾品种间幼苗耐盐性差异的研究[J].草业学报,1997,5(2):128-132.
    214.苑盛华,杨传平,焦喜才.盐渍条件下林木种子的萌发特性[J].东北林业大学学报,1996,24(6):41-46.
    215.张海燕,赵可夫.盐和水分胁迫对盐地碱蓬幼苗渗透调节效应的研究.植物学报,1998,40(1):56-61.
    216.张宏明,蔡以滢,陈珈.Phytophthora palmin分泌的10.6KD蛋白激发烟草的过敏反应[J]. 植物学报,1999,37(41):1183-1186.
    217.张世君.紫花苜蓿的秋眠性及其应用[J].草业科学,2002,9(4):64-66.
    218.张淑红,张恩平,马德华.植物耐盐性研究进展[J].北方园艺,2000,23(3):19-20.
    2 19.张新华,宋丹,刘正祥.盐胁迫下11个树种生理特征及其耐盐性研究[J].林业科学研究,2008,21(2):168-175.
    220.赵可夫,范海编.盐生植物及其对盐渍生境的适应机理[M].北京,科学出版社.2005
    221.赵可夫,王韶唐.作物抗性生理[M].北京:中国农业出版社.1990:249-313.
    222.赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993,63-68.
    223.赵世杰.植物组织中丙二醛测定方法的改进[J].植物生理学通讯,1994,30(3):207.
    224.周爱清,罗顺.种子活力[M].北京:农业出版社,1990.
    225.周丽霞,王朝凌,卢欣石.盐分含量对不同秋眠性苜蓿出苗与生长的影响[J].草业科学,1998,15(2):55-61.
    226.朱新广,张其德.对光合作用影响的研究进展.植物学通报,1999,16(4):332-338.
    227.邹邦基.钠的植物营养与生理生态[J].植物生理学通讯,1985,34(5):5-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700