东海鮸鱼群体遗传多样性与11种石首鱼分子系统学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石首鱼是重要的经济鱼类,中国有石首鱼类17属30种。由于过度捕捞和生境改变,导致石首鱼类资源锐减,个别属种已经被列为易危或濒危种类,石首鱼类资源有效保护和合理利用前景令人担忧。此外、石首鱼科种类繁多且具分布有明显的地理区域性,是进化研究的好材料。本研究首先以控制区序列为分子标记解析东海鮸鱼群体遗传多样性;其次,测定10种石首鱼类线粒体基因组全序列,并解析基因组编码区和非编码区特征;最后,基于获得的石首鱼线粒体基因组序列构建11种石首鱼分子系统树,并结合分子定时技术估算物种分歧时间,以期为石首鱼类资源可持续利用和石首鱼类起源分化研究积累理论资料。
     主要研究结果如下:
     (1)东海鮸鱼群体存在轻微遗传结构,舟山群体与温岭、象山、乐清、瑞安、温州群体遗传分化显著。鮸鱼群体控制区序列偏离中性进化且群体曾经历过扩张历史,扩张事件发生于约17,4000年前,处于第四纪更新世末期。更新世海平面反复升降可能是导致鮸鱼群体扩张的原因。
     (2)10种石首鱼线粒体基因组在基因编码及排列顺序、基因结构、碱基组成和密码子使用频率方面均高度保守,且符合脊椎动物线粒体基因组典型模式。非编码区则存在显著的结构变异现象。10种石首鱼类线粒体基因组轻链复制起始区环结构碱基分为三个类型:T碱基或偏T碱基密集,C碱基或偏C碱基密集,无明显碱基偏性组成。臂结构存在两种保守序列:5’-GCCGG-3’和5’-ACCGG-3’。控制区中央保守区在10种石首鱼线粒体基因组中存在不同程度缺失,其中的关键保守序列也存在变异。变异类型包括完全缺失,缺失CSB-F,以及CSB-E标志序列与典型序列不同。这些普遍的变异类型,提示石首鱼类线粒体基因组控制区可能存在不同类型的进化路径。
     (3)构建的分子系统树强烈支持石首鱼科和黄鱼亚科单系性,但不支持白姑鱼亚科单系起源。黄鱼属与梅童鱼属属间关系极近,不支持两属的单系性。银彭纳石首鱼较勒氏枝鳔石首鱼、尖头黄鳍牙和黄姑鱼分化更早。分子定时技术估算出中国近海石首鱼类起源于约101万年前,处于更新世中期,时间上明显晚于美洲石首鱼类化石记录的年代,支持美洲所在的新大陆为石首鱼类起源中心,随后部分祖种迁移扩散至旧大陆并适应环境演化成为旧大陆现今属种原始祖先这一假说。
The sciaenid fishes (family Sciaenidae) are very important fisher resource andattractive species for aquaculture. China has the highest number of species in this family,with about30species in17genera. Due to a prolonged period of intensive fishing, theresources of sciaenid fishes have been remarkably declined, some species even was listedas endangered. In addition, sciaenid fishes commonly occur in temperate to tropical coastalwater and estuaries throughout the world, but are absent or poorly represented in oceanicislands group. Such pattern of distribution of sciaenid fishes provides a good model forstudying the fish evolution. In this study, the population genetic structure of miiuy croakerin East China Sea was investigated first. Secondly, ten mitochondrial genomes of croakerswere sequenced and characterized. Bioinformatic analyses were used to compare thecharacterization of coding regions and detect the variation in non-coding regions. Thirdly,phylogenetic relationships of eleven croakers were investigated and molecular datingtechnology was used to estimate the divergence time of those species with the aim to inferthe history of their origin and evolution.
     This thesis mainly contains three parts as followings:
     1. Weak genetic structure was detected among the six miiuy croaker populations, Fstanalysis revealed that ZS population showed significant genetic differentiations with theother five populations (RA, WL, WZ, YQ and XS). Neutrality test, mismatch distributionanalysis and minimum spanning network analysis indicated the miiuy croaker in the EastChina Sea might have experienced a rapid population expansion, and this event mayoccurred in late Pleistocene, about17,4000years ago. The climate change happened inPleistocene ice age and the resulting fluctuation of sea levels might explain the suddenexpansion of miiuy croaker population.
     2. The mitochondrial genomes of ten croakers are much conserved in genomecomposition, gene order, gene structure, base composition and codon usage frequency, andare similar to the typical vertebrate mitochondrial genome. Significant structure variationswere detected in the non-coding region. The pattern of loop and stem are different amongten mitochondrial genomes. The loop of OLhas three types: T-rich or partial T-rich, C-rich or partial C-rich, and no base-bias. Two type of conserved motif were identified in stem ofOL:5’-GCCGG-3’ and5’-ACCGG-3’. The complete central conserved sequence domainwas absence in the mitochondrial genome of spinyhead croaker, bighead croaker, smallyellow croaker and large yellow croaker. The incomplete central conserved sequencesdomain was detected in the mitochondrial genome of silver croaker, with absence of CSB-F.Although the central conserved sequence domain in goatee croaker was complete, but theCSB-E was5’-GTGAGG-3’, rather than the typical5’-GTGGGG-3’, all these resultsindicated that the control region in mitochondrial genomes of sciaenid fishes may evolveunder different pattern.
     3. The phylogenetic tree supported the monophyly of Sciaenidae and Pseudosciaeniae,but rejected the monophyly of Argyrosominae. Larimichthys and Collichthys have agenetically closet relationship, and the monophyly of both genera were rejected,introgressive hybridization may exits between Larimichthys and Collichthys fishes. Silvercroaker was found to be more evolutionarily older than goatee croaker, golden drum andyellow drum. Molecular dating analysis showed that the sciaenid fishes of coastal water ofChina may originate in the middle Pleistocene, about1.01million years ago (95%Posteriorprobability density0.7176mya to1.3132mya) and was obviously later than the ancestor ofAmerica sciaenid fishes documented by fossil record. This result could be another evidencefor the hypothesis that the common ancestor of family Sciaenidae may have a New Worldorigin, with subsequent dispersal of ancestor of the Old World group.
引文
[1]麦克尼利.保护世界的生物多样性[M].李文军,译.北京:中国科学技术出版社,1992,1-199.
    [2]施立明.遗传多样性及其保护[J].生物科学信息,1990,2(4):158-164.
    [3]Mosseler A, Innes DJ, Roberts BA. Lack of allozymic variation in disjunct Newfoundlandpopulations of red pine (Pinusresinosa)[J]. Canadian Journal of Forest Research,1991,21(4):525–528.
    [4]黄磊;王义权.扬子鳄种群的微卫星DNA多态及其遗传多样性保护对策分析[J].遗传学报,2004,31(2):143-150.
    [5]Schaal BA, Leverich WJ, Rogstad SH. Comparison of methods for assessing genetic variationin plant conservation biology. Falk DA&KE Holsinger. Genetics and Conservation of RarePlants[M]. New York: Oxford University Press,1991,123-134
    [6]Cheng YZ, Xu TJ, Shi G et al. Complete mitochondrial genome of the miiuy croakerMiichthys miiuy (Perciformes, Sciaenidae) with phylogenetic consideration[J]. MarineGenomics,2010,3(3-4):201–209.
    [7]Xu TJ, Cheng YZ, Sun YN et al. The complete mitochondrial genome of bighead croaker,Collichthys niveatus (Perciformes, Sciaenidae): structure of control region and phylogeneticconsiderations[J]. Molecular Biology Reports,2011,38(7):4673–4685.
    [8]Cheng YZ, Wang RX, Xu TJ. The mitochondrial genome of the spinyhead croaker Collichthyslucida: Genome organization and phylogenetic consideration[J]. Marine Genomics,2011a,4(1):17–23.
    [9]杨金权,胡雪莲,唐文乔等.长江口邻近水域刀鲚的线粒体控制区序列变异与遗传多样性[J].动物学杂志,2008,43(1):8-15.
    [10]袁娟,张其中,李飞等.铜鱼线粒体控制区的序列变异和遗传多样性[J].水生生物学报,2010,34(1):9-19.
    [11]Cheng YZ, Jin XX, Shi G et al,. Genetic diversity and population structure of miiuy croakerpopulations in East China Sea revealed by the mitochondrial DNA control region[J].Biochemical Systematics and Ecology,2011b,39(4-6):718–724.
    [12]丁少雄,王军,全成干等.野生与养殖鱼免状黄姑鱼群体遗传多样性的同工酶比较[J].厦门大学学报(自然科学版),2001,40(4):922–926
    [13]刘世禄,王波,高天翔等.美国红鱼养殖种群的同工酶酶谱及其生化遗传初步分析[J].海洋水产研究,2002,23(3):10–14
    [14]蒙子宁,庄志猛,金显仕等.黄海和东海小黄鱼遗传多样性的RAPD分析[J].生物多样性,2003,11(3),197–203
    [15]郭明兰,苏永全,丁少雄等.双棘黄姑鱼人工繁育群体遗传多样性的RAPD分析[J].厦门大学学报(自然科学版).2006,45(2):293–296.
    [16]柴学军,胡则辉,徐君卓.日本黄姑鱼与状黄姑鱼的分子标记和遗传变异[J].宁波大学学报(理工版),2007,20(2):175–178
    [17]许广平,仲霞铭,丁亚平等.黄海南部小黄鱼群体遗传多样性研究[J].海洋科学,2005,29(11):34–38
    [18]韩志强,高天翔,王志勇等.黄姑鱼群体遗传多样性的AFLP分析[J].水产学报,200630(5):640–646
    [19]刘颖,蔡明夷,刘贤德等.大黄鱼♀与黄姑鱼♂.杂交F1家系初孵仔鱼的AFLP分析[J].水产学报,2010,34(6):852–858.
    [20]郑德锋,赵金良,周文玉等.我国沿海棘头梅童鱼(Collichthys lucidus)群体遗传结构的AFLP分析[J].海洋与湖沼,2011,42(3):443–447.
    [21]毛勇,蒋秋芬,曾华嵩等.大黄鱼线粒体DNA控制区遗传多样性分析[J].厦门大学学报(自然科学版),201049(3):440–444.
    [22]李昂,高天翔,孙典荣.中国近海与日本近海白姑鱼线粒体细胞色素b基因全序列比较分析[J].中国水产科学,2010,17(6):1166–1172.
    [23]郑德锋,赵金良,周文玉.棘头梅童鱼线粒体控制区的序列变异与群体遗传结构[J].渔业科学进展.2011,32(2):34–40.
    [24]韩冰.黄姑鱼和鮸鱼的形态学特征及黄姑鱼群体的遗传学研究[D].硕士学位论文,中国海洋大学,青岛,2007.
    [25]韩志强.三种海洋鱼类分子地理学研究[D].博士学位论文,中国海洋大学,青岛,2008.
    [26]Xiao YS, Zhang Y, Gao TX et al. Genetic diversity in the mtDNA control region andpopulation structure in the small yellow croaker Larimichthys polyactis[J]. EnvironmentalBiology of Fish,2009,85(4):303–314.
    [27]Kim JK, Kim YH, Kim MJ et al. Genetic diversity, relationships and demographic history ofthe small yellow croaker, Larimichthys polyactis (Pisces: Sciaenidae) from Korea and Chinainferred from mitochondrial control region sequence data[J]. Animal Cells and Systems,2010,14(1):45-51.
    [28]Gold JR, Richardson LR, Furman C et al. Mitochondrial DNA differentiation and populationstructure in red drum (Sciaenops ocellatus) from the Gulf of Mexico and Atlantic Ocean[J].Marine biology,1993,116(2):175–185.
    [29]Gold JR, Turner TF. Population structure of red drum (Sciaenops ocellatus) in the northernGulf of Mexico, as inferred from variation in nuclear-encoded microsatellites[J]. MarineBiology,2002,140(2):249–265
    [30]Patterson HM, McBride RS, Julien N. Population structure of red drum (Sciaenops ocellatus)as determined by otolith chemistry[J]. Marine Biology,2004,144(5):855–862.
    [31]Rosa R, Horacio S, Sim ni S et al. Low levels of genetic diversity depicted frommitochondrial DNA sequences in a heavily exploited marine fish (Cynoscion acoupa,Sciaenidae) from the Northern coast of Brazil[J]. Genetics and Molecular Biology,2008,31(2):487–492.
    [32]Graves JE, McDowell JR. A genetic analysis of weakfish Cynoscion regalis stock structurealong the mid-Atlantic coast[J]. Fishery Bulletin,1992,90(3):469–475.
    [33]Angela PL, José AL. Genetic Structure of Brazilian Populations of White Mouth CroakerMicropogonias furnieri (Perciformes: Sciaenidae)[J]. Brazilian Archives of Biology andTechnology,2006,49(3):429–439.
    [34]Anatro AD, Lessa EP. Phenotypic and genetic variation in the white croaker Micropogoniasfurnieri Desmarest1823(Perciformes: Sciaenidae): testing the relative roles of genetic driftand natural[J]. Journal of Zoology,2011,285(2):139–149
    [35]Anatro AD, Pereira AN, Lessa EP..Genetic structure of the white croaker, Micropogoniasfurnieri Desmarest1823(Perciformes: Sciaenidae) along Uruguayan coasts: contrastingmarine, estuarine, and lacustrine populations[J]. Environmental Biology of Fish,2011,91(4):407–420.
    [36]Beckwitt R. Genetic structure of Genyonemus lineatus, Seriphus politus (Sciaenidae) andParalabrax clathratus (Serranidae) in southern California[J]. Copeia,1983,(3):691–696.
    [37]Santos S, Tomas H, Izenip F et al. Population genetic structuring of the king weakfish,Macrodon ancylodon (Sciaenidae), in Atlantic coastal waters of South America: deep geneticdivergence without morphological change[J]. Molecular Ecology,2006,15(14):4361–4373.
    [38]Masatoshi Nei, Sudhir Kumar著,吕宝钟,钟扬,高莉萍译,分子进化与系统发育[M].北京:高等教育出版社,2002,6
    [39]Crick FHC, Watson JD. Molecular Structure of Nucleic Acids[J]. Nature1953,171:737–738..
    [40]Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and highthroughput[J]. Nucleic Acids Research,2004,32(5):1792–1797.
    [41]Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignmentprogram[J]. Brief Bioinformatics2008,9(4):286–298.
    [42]Saitou N, Nei M. The Neighbor-joining Method: A New Method for ReconstructingPhylogenetic Trees[J]. Molecular Biology and Evolution,1987,4(4):406–425.
    [43]杨子恒.计算分子进化[M].钟扬,译,上海:复旦大学出版社,2008:308–310.
    [44]Kass RE, Raftery AE. Bayes factors[J]. Journal of the American Statistical Association,1995,90(430):773–795.
    [45]Goodman M. Immunochemistry of the primates and primate evolution[J]. Annals of the NewYork Academy of Science,1992,102,219-234.
    [46]Sarich, Wilson. Immunological time scale for hominid evolution[J]. Science,1967,158,1200–1203.
    [47]Cann RL, Stoneking M, Wilson AC. Mitochondrial DNA and human evolution[J]. Nature,1987,325,3–36.
    [48]Miya M, Takeshima H, Endo H et al. Major patterns of higher teleostean phylogenies: a newperspective based on100complete mitochondrial DNA sequences[J]. MolecularPhylogenetics and Evolution.2003,26(1):121–138.
    [49]Nakatani M, Miya M, Mabuchi1K et al. Evolutionary history of Otophysi (Teleostei), a majorclade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation[J]. BMCEvolutionary Biology,2011,11:177.
    [50]Unmack PJ, Hammer MP, Adams M et al. A Phylogenetic Analysis of Pygmy Perches(Teleostei: Percichthyidae) with an Assessment of the Major Historical Influences on AquaticBiogeography in Southern Australia[J]. Systematic Biology,2011,60(6):797–812.
    [51]Trewavas E. A basis for classifying the sciaenid fishes of tropical West Africa[J]. Ann MagNat Hist,1962,5(51):167–176.
    [52]朱元鼎,罗云林,伍汉霖.中国石首鱼类分类系统的研究与新属新种的叙述[M].上海:上海科学技术出版社,1963,1–17.
    [53] Trewavas E. The sciaenid fishes with a single mental barbell[J]. Oopeia,1964,107-117.
    [54]Trewavas E, Yazdan GM. Chrysochir, a new genus for the sciaenid fish Otolithus aureusRichardson, with consideration of its specific synonyms[J].Journal of Natural History,1965,8(88):249.
    [55]Mohan RSL. On three new genera of sciaenid fishes (Pisces: Sciaenidae) from India[J].Current Science,1969,38:295–296.
    [56]Taniguchi N. Comparative osteology of the sciaenid fishes from Japan and its adjacentwaters-I. Neurocranium[J]. Japanese Journal of Ichthyology,1969a,16(2):55–67.
    [57]Taniguchi N. Comparative osteology of the sciaenid fishes from Japan and its adjacentwaters-II. Vertebrae Ibid[J]. Japanese Journal of Ichthyology,1969b,16(4):153–156.
    [58]Taniguchi N. Comparative osteology of the sciaenid fishes from Japan and its adjacentwaters-III. Premaxillary and dentary Ibid[J]. Japanese Journal of Ichthyology,1970,17(4):135–140.
    [59]Mohan RSL. A synopsis of the Indian genera of the fishes of the family Sciaenidae[J]. IndianJournal of Fishery,1972,16:82–98.
    [60]Trewavas E. The sciaenid fishes (croakers or drums) of the Indo-West-Pacific[J]. Trans ZoolSoc Lond,1977,33:253–541.
    [61]Chao LN. A basis for classifying Western Atlantic Sciaenidae (Teleostei: Perciformes)[M].NOAA Technical Report Circular-415, United States Department of Commerce, NationalMarine Fisheries Service,1978a.
    [62]Chao LN. Sciaenidae[M].94pp (in Vol.4), in W. Fischer, ed. FAO species identificatiunsheets for fishery purposes, western Central Atlantic Ocean; fishisng area1978b,31. Vols.1-6; pag. var, FAO, Rome.
    [63]Sasaki. Phylogeny of the family Sciaenidae, with notes on its zoogeography (Teleostei:Perciformes)[D]. Thesis of Doctor of Philosophy, Hokkaido University, Japan,1989.
    [64]Chao LN, Miller RV. Two new species of sciaenid fishes (Tribe: Sciaenini) from theCaribbean Sea and adjacent waters[J]. Bulletin of Marine Science,1975,25(2):259–271.
    [65]成庆泰,郑葆珊.中国鱼类系统检索[M].北京:科学出版社,1987,317–324
    [66]孟庆闻.鱼类分类学[M].北京:中国农业出版社,1995,713–728
    [67]Boeger WA, Kritsky DC. Parasites, fossils, and geologic history: Historical biogeography ofthe South American freshwater croakers, Plagioscion spp.(Teleostei, Sciaenidae)[J].Zoologica Scripta,2002,32(1):3–11.
    [68]Shaw CR. How many genes evolve?[J]. Biochemical Genetics,1970,4(2):275–283.
    [69]Weinstein MP, Yerger RW. Protein taxonomy of the Gulf of Mexico and Atlantic Oceanseatrouts, Genus Cynoscion[J]. Fish Bulletin1976a,74:599–607.
    [70]Weinstein MP, Yerger RW. Electrophoretic investigation of subpopulations of the spottedseatrout, Cynoscion nebulosus (Cuvier), in the Gulf of Mexico and Atlantic coast ofFlorida[J]. Comparative Biochemistry and Physiology1976b,54(1):97–102.
    [71]Fitzsimons JM, Rogers JS, Cashner RC. Karyologic and electrophoretic studies of the genusCynoscion (Sciaenidae, Perciformes) from the northern Gulf of Mexico[J]. Japanese Journalof Ichthyology,1985,31(4):444–448.
    [72]Ayala FJ. Genetic differentiation during the speciation process[J]. Evolutionary Biology,1975,8:1–78.
    [73]Avise JC. Genetic differentiation during the speciation [M]. Ayala FJ, Molecular evolution.Sinaeur Associates, Inc, Sunderland,1976.106–122.
    [74]Menezes M R, Taniguchi N. Interspecific genetic divergence in sciaenids from Japan and itsadjacent waters[J]. Japanese Journal of Ichthyology,1988,35(1):40–46.
    [75]Menezes MR, Naik S, Martins M. Genetic characterization in four sciaenid species fromArabian Sea[J]. Journal of Fish Biology,1993,43(1):61–67.
    [76]Lakra WS, Goswami M, Mohindra V et al. Molecular identification of five Indian sciaenids(Pisces: Perciformes, Sciaenidae) using RAPD markers[J]. Hydrobiologia,2007,583(1):359–363.
    [78]丁少雄.分子标记在大黄鱼(Pseudosciaena crocea)遗传育种及石首鱼科(Sciaenidae)分子系统进化研究中的应用[D].博士学位论文,厦门大学,厦门,2001
    [79]蒙子宁,庄志猛,丁少雄等.中国近海8种石首鱼类的线粒体16S rRNA基因序列变异及其分子系统进化[J].自然科学进展,2004,14(5):514–521.
    [80]田兰香,梁冰,张树义等.细胞色素b基因序列与7种石首鱼类的系统进化[J].台湾海峡,2004,23(4):436–443.
    [81]Vinson C, Gomes G, Schneider H et al. Sciaenidae fish of the Caeté River Estuary, NorthernBrazil: mitochondrial DNA suggests explosive radiation for the Western Atlanticassemblage[J]. Genetics and Molecular Biology,2004,27(2):174–180.
    [82]张祖兴,李明云,朱俊杰.大黄鱼mtDNA ND5和Cytb基因的克隆与序列分析[J].水产科学,2006,25(12):626–631.
    [83]童馨,杜博,喻达辉等.浅色黄姑鱼线粒体16S rRNA基因片段序列特征分析[J].海洋水产研究,2007,28(3):85–91.
    [84]陈泉梅.中国石首鱼科鱼类分子系统学研究[D].硕士学位论文,暨南大学,广州,2007
    [85]Cui ZX, Liu Y, Li CP, You F et al. The complete mitochondrial genome of the large yellowcroaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control regionand the phylogenetic position of the Sciaenidae[J]. Gene,2009,432(1-2):33–43
    [86]Lakara WS, Goswami M, Gopalakrishnan A. Molecular identification and phylogeneticrelationships of seven Indian Sciaenids (Pisces: Perciformes: Sciaenidae) based on the16SrRNA and cytochrome c oxidase subunit I mitochondrial gene[J]. Molecular BiologyReports,2009,36(5):831–839.
    [87]Carlos VC, Windsor EA, Mercedes GW et al. A mitochondrial DNA based on phylogeny ofweakfish species of the Cynoscion group (Pisces; Sciaenidae)[J]. Molecular Phylogeneticsand Evolution,2009,53(2):602–607.
    [88]柳淑芳,陈亮亮,戴芳群等.基于线粒体COI基因的DNA条形码在石首鱼科(Sciaenidae)鱼类系统分类中的应用[J].海洋与湖沼,2010,41(2):223–232.
    [89]Cheng J, Ma GQ, Miao ZQ et al. Complete mitochondrial genome sequence of thespinyhead croaker Collichthys lucidus (Perciformes, Sciaenidae) with phylogeneticconsiderations[J]. Molecular Biology Reports,2011,39(4):4249-4259.
    [90]彭志兰,柳敏海,傅荣兵等.舟山鱼群体遗传多样性的AFLP研究[J].上海海洋大学报,2010,19(2):172–177.
    [91]Seyoum S, Tringali MD, Bert TM et al. A analysis of genetic population structure in reddrum, Sciaenops ocellatus, based on mtDNA control region sequences[J]. Fishery Bulletin,2000,98(1):127–138.
    [92]Sambrook J, Russell DW, editors. Molecular cloning: A laboratory manual[M].3rd ed., NewYork, NY: Cold Spring Harbor Laboratory Press,2001
    [93]黄志坚,徐晓鹏,唐晶晶等.淡水鱼类线粒体DNA D-loop基因的设计与应用[J].中山大学学报(自然科学版),2009,48(4):84–88.
    [94]Tamura K, Dudley J, Nei M et al. MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version4.0[J]. Molecular Biology and Evolution,2007,24(8):1596–1599.
    [95]Excoffier L, Laval G, Schneider S. Arlequin ver3.0: an integrated software package forpopulation genetics data analysis[J]. Evolutionary Bioinformatics Online,2005,1:47–50.
    [96]Fu YX. Statitical tests of neutrality against population growth, hitchhiking and backgroundselection[J]. Genetics,1997,147(2):915–925.
    [97]Harpending H, Sherry ST, Rogers AR et al. The genetic structure of ancient humanpopulations[J]. Current Anthropology,1993,34(4):483–496.
    [98]Rogers AR, Harpending H et al. Population growth makes waves in the distribution ofpairwise genetic differences[J]. Molecular Biology and Evolution,1992,9(3):552–569.
    [99]Rogers AR. Genetic evidence for a Pleistocene population explosion[J]. Evolution1995,49(4):608–615.
    [100]Alvarado-Bremer JR, Stequert B, Robertson NW et al. Genetic evidence for inter-oceanicsubdivision of bigeye tuna (Thunnus obesuslowe) populations[J]. Marine Biology,1998,132(4):547–557.
    [101]Kimura M, Crow JF. The number of alleles that can be maintained in a finite population[J].Genetics,1964,49(4):725–738
    [102]Beheregaray LB, Sunnucks P. Fine-sclae genetic structure, estuarine colonization andincipient speciation in marine silverside fish Odontesthes argentinensis[J]. MolecularEcolution,2001,10:2849–2866.
    [103]陈省平.赤点石斑鱼种群遗传多样性研究[D].博士学位论文,中国海洋大学,青岛,2007
    [104]Avise JC, Neigel JE, Arnold J. Demographic influences on mitochondrial DNA lineagesurvivorship in animal populations[J]. Journal of Molecular Evolution,1984,20(2):99–105.
    [105]Hewitt G. The genetielegacy of the Quaternaryiee ages[J]. Nature,2000,405:907–13.
    [106]Imbrie J, Boyle EA, Clemens SC et al. On the structure and origin of major glaciationcycles. Linear responses to Milankovitch forcing[J]. Paleoceanography,1992,7:701–738.
    [107]Lambeck K, Esat TM, Potter EK.Links between climate and sea levels for the pastthree million years[J]. Nature,2002,419:199–206.
    [108]Liu JX, Gao TX, Zhuang ZM et al.Late Pleistocene divergence and subsequent populationexpansion of two closely related fish species, Japanese anchovy (Engraulis japonicus)andAustralian anchovy (Engraulis australis)[J]. Molecular Phylogenetics and Evolution,2006,40(3):712–723.
    [109]Lecomte F, Grant WS, Dodson JJ et al. Livingwith uncertainty:genetic imprints of climateshrifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax)[J].Molecular Ecolution,2004,13(8):2169–2182.
    [110]王登玉.中华乌塘鳢线粒体DNA控制区结构分析与群体遗传学研究[D].硕士学位论文,厦门大学,厦门,2008.
    [111]郭新红,刘少军,刘巧,刘筠.鱼类线粒体DNA研究新进展[J].遗传学报,2004,31(9):983–1000.
    [112]Naylor GJ, Collins TM, Brown WM et al. Hydrophobicity and phylogeny[J]. Nature,1995,373(6515):555–556.
    [113]Ojala D, Montoya J, Attardi G et al. tRNA punctuation model of RNA processing in humanmitochondria[J]. Nature,1981,290:470–474.
    [114]Ohtsuki T, Kawai G, Watanabe K et al. The minimal tRNA: unique structure of Ascarissuum mitochondrial tRNAser-UCU having a short T arm and lacking the entire D arm[J].FEBS Lett,2002,514:37–43.
    [115]Zardoya R, Meyer A. The complete DNA sequence of the mitochondrial genome of a ‘livingfossil’, the coelacanth (Latimeria chalumnae)[J]. Genetics,1997,146(3):995–1010.
    [116]Kim IC, Lee JS. The complete mitochondrial genome of the rockfish Sebastes schlegeli(Scorpaeniformes, Scorpaenidae)[J]. Molecules Cells,2004,17(2):322–328.
    [117]Kim IC, Kweon HS, Kim YJ. The complete mitochondrial genome of the javeline goby(Acanthogobius hasta)(Perciformes, Gobiidae) and phylogenetic considerations[J]. Gene,2004,336(2):147–153.
    [118]Hixson JE, Wong TW, Clayton DA. Both the conserved and divergent5′-flanking sequencesare required for initiation at the human mitochondrial origin of light strand replication[J].Journal of Biological Chemistry,1986,261:2384–2390.
    [119]Wong TW, Clayton DA. In vitro replication of human mitochondrial DNA: accurateinitiation at the origin of light-strand synthesis[J]. Cell,1985,42(3):951–958.
    [120]Macey JR, Larson A, Ananjeva NB. Two novel gene orders and the role of light-strandreplication in rearrangements of the vertebrate mitochondrial genome[J]. Molecular Biologyand Evolution,1997,14(1):91–104.
    [121]Mauro DS, Gower DJ, Oommen OV. Phylogeny of caecilian amphibians (Gymnophiona)based on complete mitochondrial genomes and nuclear RAG1[J]. Molecular Phylogeneticsand Evolution,2004,23(2):227–234.
    [122]Johansen S, Guddal PH, Johansen T. Organization of the mitochondrial genome of Atlanticcod, Gadus morhua[J]. Nucleic Acids Research,1990,18(3):411–419.
    [123]Ponce M, Infante C, Jiménez-Cantizano RM. Complete mitochondrial genome of theblackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae), with high levels of lengthheteroplasmy in the WANCY region[J]. Gene,2008,409(1):44–52.
    [124]Liu Y, Cui ZX. The complete mitochondrial genome sequence of the cutlassfish Trichiurusjaponicus (Perciformes: Trichiuridae): Genome characterization and phylogeneticconsiderations[J]. Marine Genomics,2009,2:133–142.
    [125]Desjardins P, Morais R. Sequence and gene organization of the chicken mitochondrialgenome. A novel gene order in higher vertebrates[J]. Journal of Molecular Biology,1990,212(4):599–634.
    [126]Seligmann H, Krishnan NM. Mitochondrial replication origin stability and propensity ofadjacent tRNA genes to form putative replication origins increase developmental stability inlizards[J]. Journal of Experimental Zoology Part B: Moleculat and Development Evolution,2006,306(5):433–449.
    [127]Clayton DA. Replication of animal mitochondrial DNA[J]. Cell,1982,28(4):693–705.
    [128]Lee WJ, Conroy J, Howell WH. Structure and evolution of teleost mitochondrial controlregion[J]. Journal of Molecular Evolution,1995,41(1):54–66.
    [129]Kimura M. Evolution rate at molecular level[J]. Nature,1968,217:624–626.
    [130]Groves P, Shields GF. Phylogenetics of the Caprinae on cytochrome b sequences[J].Molecular Phylogenetics Evolution,1996,5(3):467–476.
    [131]马春艳,马凌波,倪勇等.基于RAG1基因的中国近海13种石首鱼科鱼类系统进化关系[J].水产学报,2012,36(1):9-16.
    [132]Yang Z. Maximum likelihood models for combined analyses of multiple sequence data[J].Journal of Molecular Evolution,1996,42(5):587–596.
    [134]Yamanoue Y, Miya M, Inoue JG et al. The mitochondrial genome of spotted greenpufferfish Tetraodon nigroviridis (Teleostei: Tetraodontiformes) and divergence timeestimation among model organisms in fishes[J]. Genes Genetic Systems,2006,81(1):29–39.
    [135]Brown JM, Lemmon AR. The Importance of Data Partitioning and the Utility of BayesFactors in Bayesian Phylogenetics[J]. Systematic Biology2007,56(4):643–655.
    [136]Huelsenbeck JP, Ronquist F.MRBAYES: Bayesian inference of phylogeny[J].Bioinformatics,2001,17(8):754–755.
    [137]Nylander JAA, Ronquist F, Huelsenbeck JP. Bayesian phylogenetic analysis of combineddata[J]. Systematic Biology,2004,53(1):47–67.
    [138]Huelsenbeck JP, Larget B, Miller RE et al. Potential applications and pitfalls of Bayesianinference of phylogeny[J]. Systematic Biology,2002,51(5):673–688.
    [139]Larget B, Simon DL. Markov chain Monte Carlo algorithms for the Bayesian analysis ofphylogenetic trees[J]. Molecular Biology Evolution,1999,16(6):750–759.
    [140]Brandley MC, Schmitz A, Reeder TW. Partitioned Bayesian Analyses, Partition Choice, andthe Phylogenetic Relationships of Scincid Lizards[J]. Systematic Biology,2007,56(4):643–655.
    [141]Huddleston R W, Takeuchi G T. First fossil record of Totoaba (Teleostei: Sciaenidae) basedupon early Miocene otoliths from California with comments on the ontogeny of the saccularotolith[J]. Bulletin Southern California Academy of Sciences,2007,106(1):1–15.
    [142]Takeuchi G T, Huddleston R W. A new early Miocene species of Pogonias (Teleostei:Sciaenidae) based on otoliths from California[J]. Bulletin Southern California Academy ofScience,2008,107(2):68–80.
    [143]Bannikov AF, Carnevale G, Landini W. A new Early Miocene genus of the familySciaenidae (Teleostei, Perciformes) from the eastern Paratethys[J]. Comptes Rendus Palevol,2009,8(6):535–544.
    [144]Chao LN. A synopsis on zoogeography of the Sciaenidae [A]. Pages570-589in T. Uyeno, R.Arai, T. Taniuchi and K. Matsuura, eds. Indo-Pacific fish biology: Proc. Second Int’l Conf.Indo-Pacific fishes; July-Auguest1985. Ichthyological Society of Japan, Tokoyo.
    [145]Collins LS Coates AG, Jackson JBC, et al. Closure of the Isthmus of Panama: thenear-shore marine record of Costa Rica and western Panama[J]. Geological Society ofAmerica Bulletin,1992,104(7):814–828.
    [146]Coates A G, Obando F A. The geologic evolution of the Central American Isthmus. Pp.21–56in Evolution and environment in tropical America [M].(J.B.C. Jackson, A.F. Budd,and A.G. Coates, eds.), Univ. Chicago Press, Chicago, Ill.,425pp,1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700