制备聚苯乙烯微球的新方法探究研究及其在激光成型领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速成型技术在现代的制造领域中的竞争力越来越强,选择性激光烧结技术作为快速成型技术的一种,已经受到越来越多的关注。烧结材料是该领域研究的重点之一。本论文主要研究选择性激光成型技术的一种重要烧结材料聚苯乙烯(PS)及PS微球的制备,并比较了两种不同的烧结原料形状不规则的PS粉末和PS球形粉末在激光烧结过程中的表现。
     首先采用传统的悬浮聚合法制备PS微球,并对聚合工艺参数中的搅拌速度及引发剂含量对微球的尺寸及分布的影响做了相关研究。研究表明,随着搅拌速度的增加,微球的粒径变小并且当搅拌速度为600转/分时,微球的形貌及分散性较佳。随着引发剂含量的增加,微球的粒径逐渐增加且当引发剂的含量占单体总量的1.5%时,微球的形貌及分散性较佳。
     本文开发出了一种由粉碎的PS粉末制备PS微球的新工艺,利用光学显微镜详细阐述了由形状不规则的PS粉末到球形PS粉末这一变化过程,并对原粉以及制得的微球的扫描电镜图片、堆积密度等进行了对比。结果表明,原粉的堆积密度为0.464g/cm3,制得的微球粉末的堆积密度为0.688g/cm3,微球粉末的堆积密度比原粉的堆积密度提高了48.4%。通过对微球粉末的热失重分析,比较三种不同的后处理方法对聚苯乙烯微球粉末的除杂效果,相比较而言,50℃蒸馏水煮的方法有一定的效果但不是特别明显,采用50℃酒精煮以及在50℃真空干燥箱中干燥的方法效果都比较好。
     分别以形状不规则的PS粉末和PS球形粉末为烧结原料,根据电脑中设计的相同的三维CAD图形在激光快速成型上进行烧结实验,比较烧结工艺复杂度、烧结制件的精度并对烧结制件断面进行了扫描电镜分析。相比之下,以PS微球粉末为烧结原料时,烧结工艺简单,可以节省大量的人力物力降低了生产成本,同时烧结制件的尺寸精度也有了很大的提高。
The competitive power of Rapid Prototyping (RP) is becoming stronger and stronger in the field of modern manufacturing. One important branch of RP is selective laser sintering (SLS), which has attracted increasing attention. One of the research key points in this field is sintering raw materials. In this paper, the sintering materials polystyrene (PS) and the preparation of PS microspheres were studied. Two different kinds of sintering materials including irregularly shaped PS powder and PS spherical powder were used in SLS technology in order to find out their different performance.
     First, Polystyrene (PS) microspheres with different sizes were prepared by suspension polymerization. The effect of initiator concentration and stirring speed on the average size and size distribution was evaluated. The results showed that the average size of PS microspheres reduced with the increase of the stirring speed. When the stirring speed was600RPM the surface appearance and size distribution of PS microspheres were relatively good. The average size of PS microspheres increased with increasing initiator content, the surface appearance and size distribution of PS microspheres were relatively good when the mass ratio of BPO to styrene was1.5:100.
     In this paper, a novel method which can prepare PS microspheres from irregularly shaped PS powder was explored. Optical microscopy with a camera was used to describe the whole change process. The SEM figure and bulk density of the original PS powder and prepared PS spherical powder were studied. The bulk density of original PS powder was0.464g/cm3, while the bulk density of PS spherical powder was0.688g/cm3increasing by48.4%. In addition, three different post treatment methods were adopted to remove the impurities within PS microspheres. The first one was heating PS microspheres in50℃distilled water for10hours, the second one was heating PS microspheres in50℃ethanol for10hours, the third one was heating PS microspheres in50℃vacuum oven for24hours. The thermogravimetric analysis results showed that the second and the third one can remove most of the impurities which were more effective than the first one.
     The irregularly shaped PS powder and PS spherical powder were sintered respectively according to the same three-dimensional CAD graphic. And then the sintering process, the accuracy of sintered parts and the SEM graphic of sintered parts section were also studied. In contrast, when the sintering raw material was PS spherical powder, the sintering process was more convenient so the production cost was lower, and the dimensional accuracy of sintered parts was better.
引文
[1]张剑峰,张建华,赵剑峰,等.激光快速成形制造技术的应用研究进展[J].航空制造技术,2002,27(7):34-36.
    [2]Agarwala M., Bourell D., Beaman J., et al. Post-processing of selective laser sintered metal parts. Rapid Prototyping Journal,1995,1(2):36-44.
    [3]Kruth JP. Material increase manufacturing by rapid prototyping technique[J]. Annals of the CIPP,1999,40(2):603-604.
    [4]Chua Chee Kai, Leong Kah Fai. Rapid prototyping in Singapore:1988 to 1997[J]. Rapid Prototyping Journal,1997,3(3):116-119.
    [5]余东满,李晓静,高志华.快速成型技术工艺特点及影响精度的因素[J].机械设计与制造,2011,22(7):112-114.
    [6]张汪年,邓宁,鞠银燕.快速成型技术及其在模具制造中的应用[J].九江学院学报,2010,11(1):9-11.
    [7]陈婵娟.快速成型技术的现状及发展趋势[J].湖南科技学院学报,2011,32(8):68-71.
    [8]潘琰峰,沈以赴,顾冬冬,等.选择性激光烧结技术的发展现状[J].工具技术,2004,38(6):3-7.
    [9]张媛.熔融沉积快速成型精度及工艺研究[D].大连:大连理工大学,2009.
    [10]王广春,赵国群.快速成型与快速模具制造技术及其应用[M].北京:机械工程出版社,2003.
    [11]陈小文,李建雄,刘安华.快速成型技术及光固化树脂研究进展[J].激光杂志2011,32(3):1-3.
    [12]赵萍,蒋华,周芝庭.熔融沉积快速成型工艺的原理及过程[J].机械制造与自动化,2003,15(5):17-19.
    [13]王雅先.激光选区快速成型技术在汽车行业的应用[J].激光杂志,2011,32(3):37-38.
    [14]Deckard C. R. Method and apparatus for producing parts by selective sintering[P]. US:4863538,1989.
    [15]任继文,彭蓓.选择性激光烧结技术的研究现状与展望[J].机械设计与制造,2009,21(10):266-268.
    [16]任继文,刘建书.选择性激光烧结主要成型材料的研究进展[J].机械设计与制造,2010,22(11):266-268.
    [17]钱心远,刘芳辉,张杰.聚合物选择激光烧结的研究进展[J].塑料科技,2009,37(9):73-76.
    [18]谢小云,王云英,孟江燕,等.聚苯乙烯粉末选择性激光烧结成型机理的研究[J].航空材料学报,2006,26(1):32-35.
    [19]张渤涛,郝滨海,卢霄,等.选择性激光烧结技术的特点及其在模具制造中的应用[J].锻压技术,2005,29(3):7-9.
    [20]曾锡琴,朱小蓉.激光选区烧结和成型材料的应用现状[J].机械研究与应用,2005,18(6):19-21.
    [21]Alessandro Franco, Michele Lanzetta, Luca Romoli. Experimental analysis of selective laser sintering of polyamide powders:an energy perspective[J]. Journal of cleaner production,2010,30(18):1722-1730.
    [22]Siddharth Ram Athreya, Kyriaki Kalaitzidou, Suman Das. Mechanical and microstructural properties of Nylon-12/carbon black composites:Selective laser sintering versus melt compounding and injection molding[J]. Composites Science and Technology,2011,71(12):506-510.
    [23]Jinsong Yang, Yusheng Shi, Qiwen Shen, Chunze Yan. Selective laser sintering of HIPS and investment casting techno logy [J]. Journal of materials processing technology,2009,38(209):1901-1908.
    [24]崔建芳,党惊知,白培康,等.PS粉末激光烧结快速成型技术及其在铸造中的应用[J].工程塑料应用,2005,33(10):35-37.
    [25]汪艳,史玉升,黄树魁.聚碳酸酯粉末的选择性激光烧结成型[J].工程塑料应用,2006,34(12):34-36.
    [26]Denucci, Patricia Parks. New process creates prototyping-fast[J]. Foundry Management&Technology,1993,28(11):22-24.
    [27]Atwood C.L., Maguire M.C., Pardo B.T., et al. Rapid prototyping application for manufacturing[J]. SAMPE Journal,1996,32(1):55-60.
    [28]赵保军,施法中.选择性激光烧结PC粉末的建模研究[J].北京航空航天大学学报,2002,28(6):660-663.
    [29]左堂海,王鹏程,田芳,等.新型复合蜡粉激光选区烧结成型工艺研究[J].金属铸锻焊技术,2008,37(19):13-16.
    [30]汪艳,史玉升.滑石粉填充尼龙12的选择性激光烧结成型[J].现代塑料加工应用,2009,21(5):23-25.
    [31]Gill T. J., Hon K. K. B. Experimental investigation into the selective laser sintering of silicon carbide polyamide composites [J]. Proceedings of Institution of Mechanical Engineering,2004,42(218):1249-1255.
    [32]许超,杨家林,王洋.尼龙材料的选区激光烧结性能试验研究[J].新技术新工艺,2005,17(1):41-44.
    [33]李好管,吴卫东.聚苯乙烯的生产和消费[J].上海化工,2002,27(5):33-35.
    [34]钱伯章.聚苯乙烯的技术发展与市场动态[J].国外塑料,2011,29(6):38-43.
    [35]郭明洋.浅谈家电中聚苯乙烯的应用前景[J].化学工程与设备,2010,26(10):131-132.
    [36]王戬涛.聚苯乙烯树脂的合成结构和性能[J].内蒙古石油化工,2008,18(4):36.
    [37]孙海霄,曾繁涤,林柳兰等.激光选区烧结技术及所用高分子材料对工艺的影响[J].工程塑料应用,2001,29(3):12-15.
    [38]范星河,谢晓峰.用多孔玻璃膜誉悬浮聚合法制备单分散性聚苯乙烯微球[J].高分子学报,2001,32(3):395-399.
    [39]王胜林,朱以华,吴秋芳,等.微悬浮聚合法合成聚苯乙烯磁性微球[J].华东理工大学学报,2001,27(4):364-367.
    [40]廖永康.悬浮聚合法合成超高分子量的聚乙烯醇[J].合成化学,2004,12(1):100-104.
    [41]李红,关燕霞,薛新民等.悬浮聚合法合成纳米级单分散交联聚苯乙烯微球[J]石油化工,2004,33(6):560-563.
    [42]曹同玉,刘庆生,胡金生.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,1997.
    [43]罗时忠,胡文芳,张文敏.高浓乳液聚合法制备单分散聚苯乙烯胶乳反应机理研究[J].安徽师范大学学报,2000,23(1):98-101.
    [44]吴其晔,高卫平,贾云,等.乳液聚合法合成单分散交联PS纳米微球[J].青岛化工学院学报,2000,21(1):1-5.
    [45]张凯,傅强,江璐霞.分散聚合反应中影响聚苯乙烯微球粒径的因素[J].材料研究学报,2002,17(1):107-111.
    [46]钱海滨,薛敏钊,李博,等.单分散PS/PAA聚合物微球的研制[J].功能高分子学报,2004,17(14):581-586.
    [47]Zhang K, Fu Q, Fan J H, et al. Preparation of Ag/PS composite particles by dispersion polymerization under ultrasonic irradiation[J]. Mater Lett,2005,42(59): 3682-3685.
    [48]茹宗玲,杜慧.苯乙烯分散聚合反应制备均一粒径PS微球[J].安阳师范学院学报,2002,12(5):18-22.
    [49]吕睿,张洪涛.窄分散大粒径交联聚苯乙烯功能微球的合成研究[J].功能高分子学报,2003,16(1):54-57.
    [50]顾井丽,黄源,等.无皂乳液聚合制备亚微米级单分散聚苯乙烯微球[J].全成橡胶工业,2004,27(4):213-216.
    [51]吴其晔,高卫平,贾云.无皂乳液聚合法合成单分散交联PS纳米微球[J].塑料工业,2000,28(3):21-25.
    [52]彭洪修,等.无皂乳液聚合法合成均一性聚苯乙烯微球[J].华东理工大学学报,2002,28(3):260-264.
    [53]张凯,雷毅,王宇光,等.单分散聚苯乙烯微球的制备及影响因素研究[J].功能高分子学报,2002,15(2):189-193.
    [54]Liu P. Facile preparation of monodispersed core/shell zinc oxide-polystyrene (ZnO-PS)nanoparticles via soapless seeded micromulsion polymerization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,40(291): 155-161.
    [55]郭宝华,陈曦,徐军,等.一种平均粒径可控的制备高堆积密度聚酰胺粉体的方法[P].中国专利:CN200410088820.7.2005,06-08.
    [56]甘宏宇,周锦鑫,顾顺超.单分散性高分子微球制备工艺的研究[J].材料导报,2008,22(3):301-303.
    [57]舒霞,吴玉程,程继贵,等Mastersizer2000激光粒度分析仪及其应用[J].合肥 工业大学学报自然科学版,2007,30(2):164-167.
    [58]赵青秀,李雅宁.激光粒度分析仪及其应用刍议[J].技术与应用,2010,24(8):51-53.
    [59]李红,张礼林,关燕霞,等.葡萄糖水溶液分散物系悬浮聚合法制备微米级单分散交联聚苯乙烯微球[J].石油化工,2006,35(1):70-73.
    [60]卢灿辉,陈文定.高分子超微粉体的制备应用及功能化[J].功能高分子学报,1996,9(2):307-316.
    [61]崔秀兰,张淑芬,包毅.溶剂沉淀法制备聚酰胺粉末之溶剂与粉末结构和热稳定性的关系[J].精细化工,1996,13(4):41-45.
    [62]汪艳.选择性激光烧结高分子材料及其制件性能研究[D].武汉:华中科技大学,2005.
    [63]谢小林,肖慧萍,范红青,等.降低聚苯乙烯粉末激光烧结收缩率的研究[J].南昌航空工业学院学报,2004,18(3):69-71.
    [64]孙胜伟,张坚,郑海忠,等.激光选取烧结PS制件精度的研究[J].现代塑料加工应用,2007,19(1):26-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700