合成共轭亚油酸益生菌的筛选及其免疫调节功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cis-9,trans-11共轭亚油酸(c9,t11CLA)为十八碳不饱和二烯酸,具有多种生物活性,提高机体免疫调节能力是其重要功能之一。具备c9,t11CLA合成能力的益生菌在肠道内具有持续转化饮食中亚油酸(LA)的能力,从而不断为机体提供c9,t11CLA,进而提高其免疫调节能力,促进人体健康发展。本研究首先采用有效筛选路线,筛选在人体内潜在的能够合成c9,t11CLA能力的益生菌菌株,然后研究了环境及饮食因素对筛选出菌株(嗜酸乳杆菌F0221)合成c9,t11CLA能力的影响,最后以小鼠为模型考察了菌株在体内合成c9,t11CLA的能力以及对机体免疫调节能力的影响。
     以分离自中国西部地区传统发酵食品以及人类粪便样品中的193株乳酸菌为出发菌株,采用紫外法初步筛选出12株具有潜在合成CLA能力的菌株,然后采用气相色谱法进一步对这些菌株合成的CLA异构体的种类及含量进行了精确分析,发现分离自发酵食品的G14、M6、Q9和分离自人类粪便的F0721、F0221、IN5.22具有较强合成CLA的能力,而且这些菌株合成的CLA的构型均为c9,t11型。对该6株乳酸菌对胃酸的耐受能力、对胆盐的耐受能力以及对HT-29细胞的黏附能力等进行了评价。菌株F0221显示了较好的益生菌特性,被最终筛选出来,经16S rDNA序列分析技术被鉴定为嗜酸乳杆菌。接着研究了温度、pH值、气体条件和培养时间等因素对菌株F0221合成c9,t11CLA能力的影响,发现该菌株在37℃、pH6.5的厌氧环境中培养40h后c9,t11CLA产量达到最大值,为102.1±12.6μg/mL。
     研究了吐温20、吐温40、吐温60和吐温80对菌株F0221在含胆盐的回肠模拟液中繁殖和合成c9,t11CLA能力的影响,发现四种吐温均能显著(P<0.05)降低菌株在含胆盐环境中的胞内物质的泄漏程度,进而有效提高了菌株的繁殖能力,然而只有吐温80可显著(P<0.05)提高菌株单位细胞在含胆盐的环境中的LA异构酶的产量,进而增强了菌株单位细胞合成c9,t11CLA的能力。该现象发生的重要原因之一是吐温80提高了菌株细胞内18:1(c9)和19:0(cyc)脂肪酸的比例,进而提高了细菌细胞膜的流动性。
     研究了不同益生元对菌株F0221在结肠模拟液中繁殖及合成c9,t11CLA能力的影响,发现低聚半乳糖(GOS)阿拉伯半乳糖(AG)对菌株繁殖及合成c9,t11CLA能力具有显著(P<0.05)促进作用。分析原因发现,GOS的代谢产物葡萄糖和半乳糖、AG的代谢产物半乳糖通过促进菌株繁殖能力,提高了c9,t11CLA的合成能力。此外,葡萄糖和半乳糖的糖代谢产物乙酸、丙酸和乳酸通过增加菌株F0221细胞膜的渗透性,增强了底物LA进入细胞的能力,提高了细胞内LA与镶嵌于细胞膜上的LA异构酶的接触频率,从而增强菌株单位细胞合成c9,t11CLA的效率。
     以小鼠为模型,对菌株F0221的体内繁殖、c9,t11CLA合成及免疫调节能力进行了研究。摄食菌株F0221后,小鼠回肠和结肠内乳杆菌数量显著(P<0.05)增加,这提示该菌株具有短期、潜在的在小鼠回肠和结肠上皮细胞定植的能力。同时,小鼠肠道内容物中c9,t11CLA含量显著(P<0.05)增加,说明该菌株在小鼠体内同样具有合成c9,t11CLA的能力。肠道内合成的c9,t11CLA转移到了血清、肝脏和脂肪组织中,降低其中花生四烯酸水平、抑制了具有下调机体免疫调节能力的前列腺素(PGE2)的合成能力。PGE2水平的降低提高了小鼠脾脏T淋巴细胞和B淋巴细胞的增殖能力、腹腔巨噬细胞的增殖能力以及血清中细胞因子IL-2和TNF-α的水平,进而提高了机体免疫调节能力。研究了吐温80和GOS对菌株F0221在小鼠体内合成c9,t11CLA能力和调节机体免疫能力的影响,发现吐温80和GOS可显著(P<0.05)提高菌株体内合成c9,t11CLA的能力,进而增强了其对机体免疫能力的调节作用。这提示吐温80和GOS可以作为菌株F0221体内发挥免疫调节功能的促进剂。
Cis-9, trans-11conjugated linoleic acid (c9, t11CLA) is octadecadienoic acid. C9,t11CLA has many biological effects, including immunomodulatory function. C9, t11CLA producing probiotic can converet dietary linoleic aicd (LA) to c9, t11CLA in theintestinal tract, and then enhance immunomodulatory function.In this study, the c9, t11CLA producing probiotic was screened, and subsequently the in vitro influencing factorof c9, t11CLA production and in vivo immunomodulatory function of the selectedstrains were investigated.
     One hundred ninety-three strains were selected from traditional Chinese fermentedfoods and feces. According to the ultraviolet colorimetry method,12strains werescreened for their ability to produce CLA. In particular, strains F0721, F0221, IN5.22,G14, M6and Q9were found with c9, t11CLA production ability by the gaschromatography (GC) detection. The six strains mentioned above were investigated forthe ability to survive in vitro simulating gastric juice, to grow in the presence of bile saltand to adhere to HT-29cell. The strain F0221was finally selected as c9, t11CLAproducing probiotic and was identified as Lactobacillus acidophilus F0221by16SrDNA gene sequence analysis. Incubation of L.acidophilus F0221at pH6.5followed byanaerobic incubation at37℃for40h was most effective (102.1±12.55μg/mL) inpromoting c9,t11CLA formation.
     The effects of Tween20, Tween40, Tween60and Tween80on L.acidophilus F0221growth and c9,t11CLA production in the ileum simulation liquid (ISL) with bile saltwere investigated in vitro. The results showed that the four kinds of Tween couldsignificantly (P<0.05) promote strain growth in the ISL. The reason was that theleakage induced by bile salt was reduced in the presence of Tween. Tween80couldsignificantly (P<0.05) promote c9,t11CLA production in the ISL, simultaneously. Oneof the reasons was attributed to the increase of production of LA isomerae of unit cell.Additionally, when the Tween80was added in the ISL, the18:1(c9) oleic acid, whichis the fat acid composition of Tween80, can enter the cellular and be converted into19:0(cyc) cyclpopropane fatty acid. These two fatty acids can inhibit the reduction ofcell membrane fluidity induced by bile salt.
     The effects of different prebiotics on L.acidophilus F0221growth and c9, t11CLAproduction were investigated in vitro colon simulation liquid (CSL). It was found thatgalactooligosaccharides (GOS) and arabinogalactan (AG) could significantly (P<0.05)enhance cell density and c9, t11CLA production of the strain.A major reason was thatthe metabolites of GOS and AG, including glucose and galactose, could promote the growth of L.acidophilus F0221in the CLS. Additionally, the metabolites of GOS andAG, including acetic acid, propionic acid and lactic acid, could increase cell membranepermeability, the chance of substrate LA into the cell, the contact frequency of LA andLA isomerase and then increase the c9, t11CLA production.
     The in vivo c9, t11CLA levels and immunomodulatory function of L.acidophilusF0221was investigated in mice. The results demonstrated that L.acidophilus F0221could significantly (P<0.05) increase lactobacillus count and c9, t11CLA levels in theileum and colon. This result indicated that the L.acidophilus F0221could grow andproduce c9, t11CLA in the intestinal tract. The levels of c9, t11CLA and oleic in serum,liver and adipose tissue were also significantly (P<0.05) increased, and the linoleic acid(LA) and arachidonic acid levels were significantly (P<0.05) decreased.At the sametime, the serum prostaglandin E2(PGE2) levels was significantly (P<0.05) decreased.Since the widely negative effects of PGE2in the immune system, the serum IL-2andTNF-α level, proliferation of spleen lymphocyte and phagocytosis activity of peritonealmacrophage were significantly (P<0.05) increased. These results indicated that theL.acidophilus F0221could enhance specific and non-specific immunity in mice.
     The effect of Tween80and GOS on functional properties of strain.F0221was alsoinvestigated in vivo. It was found that Tween80and GOS could significantly (P<0.05)enhance c9, t11CLA levels in vivo and immunomodulatory function in mice. Thesefinding suggested that Tween80and GOS might have potentiality as facilitating agentsthat help F0221to exert an enhanced immune function.
引文
1May K C P, Bobe G, Mueller C J, et al. Conjugated linoleic acid DecreasesProstaglandin Synthesis in Bovine Luteal cells in vitro[J]. Molecular Reproductionand Development,2011(78):328-336.
    2刘瑞阳,邢华斌,杨亦文等.甲醇为溶剂红花籽油碱法异构化合成共轭亚油酸的研究[J].中国油脂,2010,(35):29-32.
    3Gnadig S, Rickert R, Sébédio J L, et al. Conjugated linoleic acid (CLA):Physiological Effects and production[J]. European Journal of Lipid Science andTechnology,2001(103):56-61.
    4Jensen H, Grimmer S, Naterstad K, et al. In vitro Testing of Commercial andPotential Probiotic Lactic Acid Bacteria[J]. International Journal of FoodMicrobiology,2012(135):216-222.
    5Kishino S, Ogawa J, Yokozeki K, et al. Linoleic Acid Isomerase in Lactobacillusplantarum AKU1009a Proved to be a Multi-component Enzyme System RequiringOxidoreduction Cofactors[J]. Bioscience Biotechnology and Biochemistry,2011(75):318-322.
    6Gorissen L, Raes K, Weckx S, et al. Production of Conjugated Linoleic Acid andConjugated Linolenic Acid Isomers by Bifidobacterium Species[J]. AppliedMicrobiology and Biotechnology,2010(87):2257-2266.
    7Rawat R, Yu X, Sweet M, et al. Conjugated Fatty Acid Synthesis: Residues111and
    115Influence Product Partitioning of the Momordica Charantia Conjugase[J].Journal of Biological Chemistry,2012,287(15):1-6.
    8王红军,曹键,王育军,等.微生物共轭亚油酸异构酶的生物学研究[J].河南工业大学学报,2007,(28):80-92.
    9陈衷周,李艳梅,赵刚,等.共轭亚油酸的性质及合成[J].中国油脂,2000,(25):41-45.
    10Herman-Lara E, Santos-Blanco V M, Vivar-Vera M A, et al. Conjugated LinoleicAcid Content in Selected Mexican Beef and Dairy Products[J]. CyTA-Journal ofFood,2012(10):71-77.
    11刘晓华,李海星,陈燕,等.瘤胃细菌生物合成共轭亚油酸的累积特性[J].食品科学,2011(32):254-267.
    12马清泉,单安山.共轭亚油酸在动物营养中的研究进展[J].饲料博览,2009,10:16-18.
    13Jutzeler van Wijlen R P, Colombani P C. Grass-based Ruminant ProductionMethods and Human Bioconversion of Vaccenic Acid with Estimations of MaximalDietary Intake of Conjugated Linoleic Acids[J]. International Dairy Journal,2010(20):433-448.
    14郭冬生,彭小兰.反刍动物共轭亚油酸合成及肉制品中的含量[J].饲料研究,2010(4):61-62.
    15Laloux L, du Chaffaut L, Razanamahefa L, et al. Trans Fatty Acid Content of Foodsand Intake Levels in France[J]. European Journal of Lipid Science and Technology,2007(109):918-929.
    16Rosell M S, Lloyd-Wright Z, Appleby P N, et al. Long-chain n-3PolyunsaturatedFatty Acids in Plasma in British Meat-eating, Vegetarian, and Vegan Men[J]. TheAmerican Journal of Clinical Nutrition,2005(82):327-334.
    17Desroches S, Chouinard P Y, Galibois I, et al. Lack of Effect of Dietary ConjugatedLinoleic Acids Naturally Incorporated into Butter on the Lipid Profile and BodyComposition of Overweight and Obese Men[J]. The American Journal of ClinicalNutrition,2005(82):309-319.
    18Salminen I, Mutanen M, Jauhiainen M, et al. Dietary trans Fatty Acids IncreaseConjugated Linoleic Acid Levels in Human Serum[J]. The Journal of NutritionalBiochemistry,1998(9):93-98.
    19Authority E F S. Opinion of the Scientific Panel on Dietetic Products, Nutrition andAllergies on a Request from the Commission Related to the Presence of trans-FattyAcids in Foods and the Effect on Human Health of the Consumption of trans-fattyAcids[J]. EFSA Journal,2004(81):1-49.
    20Duffy P E, Quinn S M, Roche H M, et al. Synthesis of trans-Vaccenic Acid andcis-9-trans-11-Conjugated Linoleic Acid[J]. Tetrahedron,2006(62):4838-4843.
    21吴天祥,李红海,杨丰科.红花油制取共轭亚油酸的研究[J].精细与专用化学品,2007(15):23-25.
    22Gammill W, Proctor A, Jain V. Comparative Study of High-linoleic acid VegetableOils for the Production of Conjugated Linoleic Acid[J]. Journal of Agricultural andFood Chemistry,2010(58):2952-2957.
    23Berdeaux O, Christie W W, Gunstone F D, et al. Large-scale Synthesis of Methylcis-9, trans-11-octadecadienoate from Methyl Ricinoleate[J]. Journal of theAmerican Oil Chemists Society,1997(74):1011-1015.
    24Maia M, Chaudhary L, Bestwick C, et al. Toxicity of Unsaturated Fatty Acids to theBiohydrogenating Ruminal Bacterium, Butyrivibrio fibrisolvens[J]. BMCMicrobiology,2010(10):52.
    25Kim Y J, Liu R H, Rychlik J L, et al. The Enrichment of a Ruminal Bacterium(Megasphaera elsdenii YJ-4) that Produces the trans-10, cis-12Isomer ofConjugated Linoleic Acid[J]. Journal of Applied Microbiology,2002(92):976-982.
    26Fukuda S, Furuya H, Suzuki Y, et al. A New Strain of Butyrivibrio fibrisolvens ThatHas High Ability to Isomerize Linoleic acid to Conjugated Linoleic Acid[J].Journal of General and Applied Microbiology,2005(51):105-113.
    27Fukuda S, Suzuki Y, Murai M, et al. Isolation of a Novel Strain of Butyrivibriofibrisolvens that Isomerizes Linoleic Acid to Conjugated Linoleic Acid withoutHydrogenation, and its Utilization as a Probiotic for Animals[J]. Journal of AppliedMicrobiology,2006(100):787-794.
    28Watson R R, Zibadi S, Preedy V R, et al. Dietary Components and ImmuneFunction[M]. USA:Humana Press,2010:217-226.
    29Corl B A, Baumgard L H, Dwyer D A, et al. The Role of△9-Desaturase in theProduction of cis-9, trans-11CLA[J]. The Journal of Nutritional Biochemistry,2001(12):622-630.
    30Kay J K, Mackle T R, Auldist M J, et al. Endogenous Synthesis of cis-9, trans-11Conjugated Linoleic Acid in Dairy Cows Ded Fresh Pasture[J]. Journal of DairyScience,2004(87):369-378.
    31Bell J A, Griinari J M, Kennelly J J. Effect of Safflower Oil, Flaxseed Oil,Monensin, and Vitamine on Concentration of Conjugated Linoleic Acid in BovineMilk Fat[J]. Journal of Dairy Science,2006(89):733-748.
    32Chajès V, Lavillonnière F, Ferrari P, et al. Conjugated Linoleic Acid Content inBreast Adipose Tissue is not Associated with the Relative Risk of Breast Cancer ina Population of French Patients[J]. Cancer Epidemiology Biomarkers andPrevention,2002(11):672-673.
    33Tanaka K. Occurrence of Conjugated Linoleic Acid in Ruminant Products and ItsPhysiological Functions[J]. Animal Science Journal,2005(76):291-303.
    34Wanders A J, Brouwer I A, Siebelink E, et al. Effect of a High Intake of ConjugatedLinoleic Acid on Lipoprotein Levels in Healthy Human Subjects[J]. Plos One,2010(5):1-7.
    35Haug A, Sjogren P, Holland N, et al. Effects of Butter Naturally Enriched withConjugated Linoleic Acid and Vaccenic Acid on Blood Lipids and LDL ParticleSize in Growing Pigs[J]. Lipids in Health and Disease,2008(7):31
    36Salgado J M, Ferreira T R B, Donado-Pestana C M, et al. Conjugated Linoleic AcidCombined with Physical Activity Reduces Body Fat Accumulation but Does notModify Lean Body Mass in Male and Female Wistar Rats[J]. Journal Of MedicinalFood,2012(15):406-412.
    37von Soosten D, Meyer U, Piechotta M, et al. Effect of Conjugated Linoleic AcidSupplementation on Body Composition, Body Fat Mobilization, Protein Accretion,and Energy Utilization in Early Lactation Dairy Cows[J]. Journal of Dairy Science,2012(95):1222-1239.
    38Onakpoya I J, Posadzki P P, Watson L K, et al. The Efficacy of Long-termConjugated Linoleic Acid (CLA) Supplementation on Body Composition inOverweight and Obese Individuals: A Systematic Review and Meta-analysis ofRandomized Clinical Trials[J]. European Journal of Nutrition,2012(51):127-134.
    39Heinze V M, Actis A B. Dietary Conjugated Linoleic Acid and Long-chain n-3Fatty acids in Mammary and Prostate Cancer Protection: A review[J]. InternationalJournal of Food Sciences and Nutrition,2012(63):66-78.
    40Schneider S, Bachmann P, Latino-Martel P, et al. Nutrition is There a Role forSupplementation with Omega-3, Conjugated Linoleic Acids and Micronutrientsduring and after Treatment of Breast Cancer[J]. Oncologie,2011(13):806-816.
    41Isaacs K, Hontecillas R, Horne W, et al. Pilot Study of the Effect of ConjugatedLinoleic Acid on the Modulation of Immune Responses in Patients with Mild toModerately Active Crohn's Disease[J]. American Journal of Gastroenterology,2011(106):S440-S441.
    42Peterson K M, O'Shea M, Stam W, et al. Effects of Dietary Supplementation withConjugated Linoleic Acid on Experimental Human Rhinovirus Infection andIllness[J]. Antiviral Therapy,2009(14):33-43.
    43MacRedmond R, Singhera G, Attridge S, et al. Conjugated Linoleic Acid ImprovesAirway Hyper-reactivity in Overweight Mild Asthmatics[J]. Clinical&Experimental Allergy,2010(40):1071-1078.
    44Turpeinen A A, Ylonen N, von Willebrand E, et al. Immunological and MetabolicEffects of cis-9, trans-11-Conjugated Linoleic Acid in Subjects with Birch PollenAllergy[J]. British Journal Of Nutrition,2008(100):112-119.
    45Gandhi R, Laroni A, Weiner H L. Role of the Innate Immune System in thePathogenesis of Multiple Sclerosis[J]. Journal of Neuroimmunology,2010(221):7-14.
    46Fischer A, Hacein Bey Abina S, Cavazzana-Calvo M. Gene Therapy for PrimaryAdaptive Immune Deficiencies[J]. Journal of Allergy and Clinical Immunology,2011(127):1356-1359.
    47Carrasco Y R. B Cells as Initial Sensors of the Adaptive Immune Response[J].Inmunologia,2008(27):95-100.
    48Roche H M, Noone E, Nugent A, et al. Conjugated Linoleic Acid: a NovelTherapeutic Nutrient[J]. Nutrition Research Reviews,2001(14):173-187.
    49Chew B P, Wong T S, Shultz T D, et al. Effects of Conjugated Dienoic Derivativesof Linoleic Acid and β-carotene in Modulating Lymphocyte and MacrophageFunction[J]. Anticancer Research,1997(17):1099-1106.
    50Cook M E, Miller C C, Park Y, et al. Immune Modulation by Altered NutrientMetabolism-nutritional Control of Immune-induced Growth Depression[J]. PoultryScience,1993(72):1301-1305.
    51Akahoshi A, Goto Y, Murao K, et al. Conjugated Linoleic Acid Reduces Body Fatsand Cytokine Levels of Mice[J]. Bioscience Biotechnology and Biochemistry,2002(66):916-920.
    52Lai C H, Yin J D, Li D F, et al. Effects of Dietary Conjugated Linoleic AcidSupplementation on Performance and Immune Function of Weaned Pigs[J]Archives of Animal Nutrition,2005(59):41-51.
    53Bassaganya-Riera J, Hontecillas-Magarzo R, Bregendahl K, et al. Effects ofDietary Conjugated Linoleic Acid in Nursery Pigs of Dirty and CleanEnvironments on Growth, Empty Body Composition, and Immune Competence[J].Journal of Animal Science,2001(79):714-721.
    54Bassaganya-Riera J, Hontecillas R, Zimmerman D R, et al. Dietary ConjugatedLinoleic Acid Modulates Phenotype and Effector Functions of Porcine CD8+Lymphocytes[J]. Journal of Nutrition,2001(131):2370-2377.
    55Bassaganya-Riera J, Hontecillas R, Zimmerman D R, et al. Long-term Influence ofLipid Nutrition on the Induction of CD8+Responses to Viral or BacterialAntigens[J]. Vaccine,2002(20):1435-1444.
    56Yamasaki M, Chujo H, Hirao A, et al. Immunoglobulin and Cytokine Productionfrom Spleen Lymphocytes is Modulated in C57BJ/6J mice by Dietary cis-9,trans-11and trans-10, cis-12Conjugated Linoleic Acid[J]. The Journal of Nutrition,2003(133):784-788.
    57Wong M W, Chew B P, Wong T S, et al. Effects of Dietary Conjugated LinoleicAcid on Lymphocyte Function and Growth of Mammary Tumors in Mice[J].Anticancer Research,1997(17):987-993.
    58Kelley D S, Warren J M, Simon V A, et al. Similar Effects of c9, t11-CLA and t10,c12-CLA on Immune Cell Functions in Mice[J]. Lipids,2002(37):725-728.
    59Song H J, Grant I, Rotondo D, et al. Effect of CLA Supplementation on ImmuneFunction in Young Healthy Volunteers[J]. European Journal of Clinical Nutrition,2005(59):508-517.
    60Sugano M, Tsujita A, Yamasaki M, et al. Conjugated Linoleic Acid ModulatesTissue Levels of Chemical Mediators and Immunoglobulins in Rats[J]. Lipids,1998(33):521-527.
    61Yamasaki M, Kishihara K, Mansho K, et al. Dietary Conjugated Linoleic AcidIncreases Immunoglobulin Productivity of Sprague-dawley Rat SpleenLymphocytes[J]. Bioscience Biotechnology and Biochemistry,2000(64):2159-2164.
    62Rauch M, Lynch S V. The Potential for Probiotic Manipulation of theGastrointestinal Microbiome[J]. Current Opinion in Biotechnology,2012(23):192-201.
    63Iannitti T, Palmieri B. Therapeutical Use of Probiotic Formulations in ClinicalPractice[J]. Clinical Nutrition,2010(29):701-725.
    64郭春锋.人源性益生菌降胆固醇机制及影响因素研究[D].哈尔滨:哈尔滨工业大学学位论文,2011:1,106-107.
    65Ford A C, Talley N J, Quigley E M M, et al. Efficacy of Probiotics in IrritableBowel Syndrome: a Meta-analysis of Randomized, Controlled trials[J]. Diseases ofThe Colon&Rectum,2009(52):1805-1810.
    66Rohde C L, Bartolini V, Jones N. The Use of Probiotics in the Prevention andTreatment of Antibiotic-associated Diarrhea with Special Interest in Clostridiumdifficile-Associated Diarrhea[J]. Nutrition in Clinical Practice,2009(24):33-40.
    67Ya W, Reifer C, Miller L E. Efficacy of Vaginal Probiotic Capsules for RecurrentBacterial Vaginosis: A Double-blind, Randomized, Placebo-controlled Study[J].American Journal of Obstetrics and Gynecology,2010(203):E121-E126.
    68Boyle R J, Mah L, Kivivuori S, et al. In vivo, in vitro and Transplacental ImmuneEffects of a Probiotic Bacterium Lactobacillus rhamnosus GG in Humans[J].Journal of Allergy and Clinical Immunology,2009(123):S200.
    69Kopp M V, Salfeld P. Probiotics and Prevention of Allergic Disease[J]. CurrentOpinion in Clinical Nutrition&Metabolic Care,2009(12):298-303210.
    70Ma E L, Choi Y J, Choi J, et al. The Anticancer Effect of Probiotic Bacilluspolyfermenticus on Human Colon Cancer Cells is Mediated Through ErbB2andErbB3Inhibition[J]. International Journal of Cancer,2010(127):780-790.
    71Ooi L G, Liong M T. Cholesterol-lowering Effects of Probiotics and Prebiotics: aReview of in vivo and in vitro Findings[J]. International Journal of MolecularSciences,2010(11):2499-2522.
    72Andersson U, Br nning C, Ahrné S, et al. Probiotics Lower Plasma Glucose in theHigh-fat Fed C57BL/6J Mouse[J]. Beneficial Microbes,2010(1):189-196.
    73Tandon P, Moncrief K, Madsen K, et al. Effects of Probiotic Therapy on PortalPressure in Patients with Cirrhosis: A Pilot Study[J]. Liver International,2009,(29):1110-1115.
    74Kruger M, Fear A, Chua W H, et al. The effect of Lactobacillus rhamnosus HN001on Mineral Absorption and Bone Health in Growing Male and OvariectomisedFemale Rats[J]. Dairy Science&Technology,2009(89):219-231.
    75Ibekwe V C, Fadda H M, McConnell E L, et al. Interplay between Intestinal pH,Transit Time and Feed Status on the in vivo Performance of pH Responsiveileo-colonic Release Systems[J]. Pharmaceutical Research,2008(25):1828-1835.
    76Holzapfel W H, Haberer P, Snel J, et al. Overview of Gut Flora and Probiotics[J].International Journal of Food Microbiology,1998(41):85-101.
    77Ruiz-Moyano S, Martín A, Benito M J, et al. Screening of Lactic Acid Bacteria andBifidobacteria for Potential Probiotic use in Iberian Dry Fermented Sausages[J].Meat Science,2008(80):715-721.
    78Islam K B M S, Fukiya S, Hagio M, et al. Bile Acid is a Host Factor that Regulatesthe Composition of the Cecal Microbiota in Rats[J]. Gastroenterology,2011(141):1773-1781.
    79Nagana Gowda G, Shanaiah N, Cooper A, et al. Bile Acids Conjugation in HumanBile is not Random: New Insights from1H-NMR Spectroscopy at800MHz[J].Lipids,2009(44):527-535.
    80Gilliland S E, Staley T E, Bush L J. Importance of Bile Tolerance of Lactobacillusacidophilus Used as a Dietary Adjunct[J]. Journal of Dairy Science,1984(67):3045-3051.
    81Lye H S, Rusul G, Liong M T. Removal of Cholesterol by Lactobacilli viaIncorporation and Conversion to Coprostanol[J]. Journal of Dairy Science,2010(93):1383-1392.
    82Liang T W, Wu Y Y, Huang T Y, et al. Conversion of Squid Pen by a Novel StrainLactobacillus paracasei subsp. paracasei TKU010, and its Application inAntimicrobial and Antioxidants Activity[J]. The Journal of General and AppliedMicrobiology,2010(56):481-489.
    83Kankainen M, Paulin L, Tynkkynen S, et al. Comparative Genomic Analysis ofLactobacillus rhamnosus GG Reveals pili Containing a Human-mucus BindingProtein[J]. Proceedings of the National Academy of Sciences,2009(106):17193-17198.
    84Tuomola E, Crittenden R, Playne M, et al. Quality Assurance Criteria for ProbioticBacteria[J]. American Journal of Clinical Nutrition,2001(73):S393-S398.
    85Candela M, Perna F, Carnevali P, et al. Interaction of probiotic Lactobacillus andBifidobacterium Strains with Human Intestinal Epithelial Cells: AdhesionProperties, Competition Against Enteropathogens and Modulation of IL-8production[J]. International Journal of Food Microbiology,2008(125):286-292.
    86Marcináková M, Klingberg T D, Lauková A, et al. The effect of pH, Bile andCalcium on the Adhesion Ability of Probiotic Enterococci of Animal Origin to thePorcine Jejunal Epithelial Cell Line IPEC-J2[J]. Anaerobe,2010(16):120-124.
    87Lee Y K, Ho P S, Low C S, et al. Permanent Colonization by Lactobacillus casei isHindered by the Low Rate of Cell Sivision in Mouse Gut[J]. Applied andEnvironmental Microbiology,2004(70):670-674.
    88Candela M, Maccaferri S, Turroni S, et al. Functional Intestinal Microbiome, NewFrontiers in Prebiotic Design[J]. International Journal of Food Microbiology,2010(140):93-101.
    89Morrow L E, Gogineni V, Malesker M A. Probiotic, Prebiotic, and Synbiotic Use inCritically Ill Patients[J]. Current Opinion in Critical Care,2012(18):186-191.
    90Charalampopoulos D, Rastall R A. Prebiotics in Foods[J]. Current Opinion inBiotechnology,2012(23):187-191.
    91Rastall R A, Maitin V. Prebiotics and Synbiotics: Towards the Next Generation[J].Current Opinion in Biotechnology,2002(13):490-496.
    92Hennessy A A, Ross R P, Devery R, et al. Optimization of a Reconstituted SkimMilk Based Medium for Enhanced CLA Production by Bifidobacteria[J]. Journal ofApplied Microbiology,2009(106):1315-1327.
    93Lee S-O, Hong G-W, Oh D-K. Bioconversion of Linoleic Acid into ConjugatedLinoleic Acid by Immobilized Lactobacillus reuteri[J]. Biotechnology Progress,2003(19):1081-1084.
    94Hattori M, Taylor T D. The Human Intestinal Microbiome: A New Frontier ofHuman Biology[J]. DNA Research,2009(16):1-12.
    95Lin T Y, Lin C W, Lee C H. Conjugated Linoleic Acid Concentration as Affected byLactic Cultures and Added Linoleic Acid[J]. Food Chemistry,1999(67):1-5.
    96Oh D K, Hong G H, Lee Y, et al. Production of Conjugated Linoleic Acid byIsolated Bifidobacterium Strains[J]. World Journal of Microbiology andBiotechnology,2003(19):907-912.
    97Alonso L, Cuesta E P, Gilliland S E. Production of Free Conjugated Linoleic Acidby Lactobacillus acidophilus and Lactobacillus casei of Human Intestinal Origin[J].Journal of Dairy Science,2003(86):1941-1946.
    98Lin T Y. Conjugated Linoleic Acid Concentration as Affected by Lactic Culturesand Additives[J]. Food Chemistry,2000(69):27-31.
    99Lee K, Paek K, Lee H Y, et al. Antiobesity Effect of trans-10, cis-12-ConjugatedLinoleic Acid-Producing Lactobacillus plantarum PL62on Diet-induced ObeseMice[J]. Journal of Applied Microbiology,2007(103):1140-1146.
    100Coakley M, Ross R P, Nordgren M, et al. Conjugated Linoleic Acid Biosynthesisby Human-derived Bifidobacterium species[J]. Journal of Applied Microbiology,2003(94):138-145.
    101Lee H-Y, Park J-H, Seok S-H, et al. Human Originated Bacteria, Lactobacillusrhamnosus PL60, Produce Conjugated Linoleic Acid and Show Anti-obesityEffects in Diet-induced Obese Mice[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids,2006(1761):736-744.
    102Wall R, Ross R P, Shanahan F, et al. Metabolic Activity of the Enteric MicrobiotaInfluences the Fatty Acid Composition of Murine and Porcine Liver and AdiposeTissues[J]. The American Journal of Clinical Nutrition,2009(89):1393-1401.
    103张琳,曹健,陈金鹏.微生物亚油酸异构酶的生物信息学学分析[J].河南工业大学学报,2007(28):55-59.
    104Kishino S, Ogawa J, Omura Y, et al. Conjugated Linoleic Acid Production fromLinoleic acid by Lactic Acid Bacteria[J]. Journal of the American Oil Chemists'Society,2002(79):159-163.
    105Jiang J, Bjorck L, Fonden R. Production of Conjugated Linoleic Acid by DairyStarter Cultures[J]. Journal of Applied Microbiology,1998(85):95-102.
    106Kim Y J, Liu R H. Increase of Conjugated Linoleic Acid Content in Milk byFermentation with Lactic Acid Bacteria[J]. Journal of Food Science,2002(67):1731-1737.
    107Peng S S, Deng M D, Grund A D, et al. Purification and Characterization of aMembrane-bound Linoleic Acid Isomerase from Clostridium sporogenes[J].Enzyme and Microbial Technology,2007(40):831-839.
    108Kim Y J, Liu R H, Bond D R, et al. Effect of Linoleic Acid Concentration onConjugated Linoleic Acid Production by Butyrivibrio fibrisolvens A38[J]. Appliedand Environmental Microbiology,2000(66):5226-5230.
    109Deng M D, Grund A D, Schneider G K, et al. Linoleic Acid Isomerae fromPropionibacterium acnes: Purification, Characterization, Molecular Cloning, andHerterologous Expression[J]. Applied Biochemistry and Biotechnology,2007(143):199-211
    110Lin T Y, Lin C W, Wang Y J. Linoleic Acid Isomerase Activity in Enzyme Extractsfrom Lactobacillus acidophilus and Propionibacterium freudenreichii ssp.shermanii[J]. Journal of Food Science,2002(67):1502-1505.
    111Macouzet M, Lee B H, Robert N. Production of Conjugated Linoleic Acid byProbiotic Lactobacillus acidophilus La-5[J]. Journal of Applied Microbiology,2009(106):1886-1891.
    112Hernandez-Mendoza A, Lopez-Hernandez A, Hill C G, et al. Bioconversion ofLinoleic Acid to Conjugated Linoleic Acid by Lactobacillus reuteri UnderDifferent Growth Conditions[J]. Journal of Chemical Technology andBiotechnology,2009(84):180-185.
    113Park Y, Albright K J, Liu W, et al. Effect of Conjugated Linoleic Acid on BodyComposition in Mice[J]. Lipids,1997(32):853-858.
    114Ogawa J, Matsumura K, Kishino S, et al. Conjugated Linoleic Acid Accumulationvia10-hydroxy-12-octadecaenoic acid During Microaerobic Transformation ofLinoleic acid by Lactobacillus acidophilus[J]. Applied and EnvironmentalMicrobiology,2001(67):1246-1252.
    115De Man J C, Rogosa M, Sharpe M E. A Medium for the Cultivation ofLactobacilli[J]. Journal of Applied Microbiology,1960(23):130-135.
    116Hartemink R, Kok B J, Weenk G H, et al. Raffinose-Bifidobacterium (RB) agar, aNew Selective Medium for Bifidobacteria[J]. Journal of Microbiological Methods,1996(27):33-43.
    117Tannock G W, Munro K, Harmsen H J M, et al. Analysis of the Fecal Microflora ofHuman Subjects Consuming a Probiotic Product Containing Lactobacillusrhamnosus DR20[J]. Applied and Environmental Microbiology,2000(66):2578-2588.
    118Rose S A. A note on Yeast growth in Media Used for the Cultivation ofLactobacilli[J]. Journal of Applied Bacteriology,1985(59):153-156.
    119Vizoso Pinto M G, Franz C M A P, Schillinger U, et al. Lactobacillus spp. With invitro Probiotic Properties from Human Faeces and Traditional Fermented Products[J]. International Journal of Food Microbiology,2006(109):205-214.
    120Pereira D I A, McCartney A L, Gibson G R. An in vitro study of the ProbioticPotential of a Bile-salt-hydrolyzing Lactobacillus fermentum Strain, andDetermination of its Cholesterol-lowering Properties[J]. Applied andEnvironmental Microbiology,2003(69):4743-4752.
    121Barrett E, Ross R P, Fitzgerald G F, et al. Rapid Screening Method for Analyzingthe Conjugated Linoleic Acid Production Capabilities of Bacterial Cultures[J].Applied and Environmental Microbiology,2007(73):2333-2337.
    122Park H G, Cho S D, Kim J H, et al. Characterization of Conjugated Linoleic AcidProduction by Bifidobacterium breve LMC520[J]. Journal of Agricultural andFood Chemistry,2009(57):7571-7575.
    123Kamlage B, Hartmann L, Gruhl B, et al. Intestinal Microorganisms do not SupplyAssociated Gnotobiotic Rats with Conjugated Linoleic Acid[J]. The Journal ofNutrition,1999(129):2212-2217.
    124郝建国,薛燕芬,马延和.一株产蛋白酶嗜碱菌株的分离、鉴定及酶学特性[J].微生物学报,2010(50):54-59.
    125Kimoto H, Ohmomo S, Okamoto T. Enhancement of Bile Tolerance in Lactococciby Tween80[J]. Journal of Applied Microbiology,2002(92):41-46.
    126Rizzo A F, Korkeala H, Mononen I. Gas-Chromatography Analysis of CellularFatty-Acids and Neutral Monosaccharides in the Identification of Lactobacilli[J].Applied and Environmental Microbiology,1987(53):2883-2888.
    127Folch J, Lees M, Sloane Stanley G H. A Simple Method for the Isolation andPurification of Total Lipides from Animal Tissues[J]. The Journal of BiologicalChemistry,1957(226):497-509.
    128Yamasaki M, Chujo H, Hirao A, et al. Immunoglobulin and Cytokine Productionfrom Spleen Lymphocytes is Modulated in C57BL/6J Mice by Dietary cis-9,trans-11and trans-10, cis-12Conjugated Linoleic Acid[J]. Journal of Nutrition.2003(133):784-788.
    129Yang H Y, Liu S L, Ibrahim S A, et al. Oral Administration of Live BifidobacteriumSubstrains Isolated from Healthy Centenarians Enhanced Immune Function inBALB/C mice[J]. Nutrition Research,2009(29):281-289.
    130Charteris W P, Kelly P M, Morelli L, et al. Development and Application of an invitro Methodology to Determine the Transit Tolerance of Potentially ProbioticLactobacillus and Bifidobacterium Species in the Upper Human GastrointestinalTract[J]. Journal of Applied Microbiology,1998(84):759-768.
    131Noh D O, Gilliland S E. Influence of Bile on Cellular Integrity and β-GalactosidaseActivity of Lactobacillus acidophilus[J]. Journal of Dairy Science,1993(76):1253-1259.
    132Kim S-J, Cho S Y, Kim S H, et al. Effect of Microencapsulation on Viability andOther Characteristics in Lactobacillus acidophilus ATCC43121[J]. LWT-FoodScience and Technology,2008(41):493-500.
    133Usman, Hosono A. Effect of Administration of Lactobacillus gasseri on SerumLipids and Fecal Steroids in Hypercholesterolemic Rats[J]. Journal of DairyScience,2000(83):1705-1711.
    134Reeves P G. Components of the AIN-93Diets as Improvements in the AIN-76ADiet[J]. Journal of Nutrion,1997(127):S838-S841.
    135Reeves P G, Nielsen F H, Fahey G C. AIN-93Purified Diets for LaboratoryRodents: Final Report of the American Institute of Nutrition ad hoc WritingCommittee on the Reformulation of the AIN-76A Rodent Diet[J]. The Journal ofNutrition,1993(123):1939-1951.
    136Tong Z C, Dong L P, Zhou L, et al. Nisin Inhibits Dental Caries-associatedMicroorganism in vitro[J]. Peptides,2010(31):2003-2008.
    137Albers R, van der Wielen R P J, Brink E J, et al. Effects of cis-9, trans-11andtrans-10, cis-12Conjugated Linoleic Acid (CLA) Isomers on Immune Function inHealthy Men[J]. European Journal of Clinical Nutrition,2003(57):595-603.
    138Kelley D S, Erickson K L. Modulation of Body Composition and Immune CellFunctions by Conjugated Linoleic Acid in Humans and Animal Models: Benefits vs.Risks[J]. Lipids,2003(38):377-386.
    139Ip C, Jiang C, Thompson H J, et al. Retention of Conjugated Linoleic Acid in theMammary Gland is Associated with Tumor Inhibition During the Post-initiationPhase of Carcinogenesis[J]. Carcinogenesis,1997(18):755-759.
    140Bhattacharya A, Banu J, Rahman M, et al. Biological Effects of ConjugatedLinoleic Acids in Health and Disease[J]. The Journal of Nutritional Biochemistry,2006(17):789-810.
    141刘晓华,曹郁生,陈燕.共轭亚油酸分析方法的研究进展[J].中国油脂,2004(29):48-50.
    142黄翠丽,王敏,成晓杰,等.一株产共轭亚油酸瘤胃细菌Streptococcusinfantarius RB111的筛选与鉴定[J].微生物学通报,2011(38):78-84.
    143Nunes J C, Torres A G. Fatty Acid and CLA Composition of Brazilian DairyProducts, and Contribution to Daily Intake of CLA[J]. Journal of FoodComposition and Analysis,2010(23):782-789.
    144Chung S H, Kim I H, Park H G, et al. Synthesis of Conjugated Linoleic Acid byHuman-derived Bifidobacterium breve LMC017: Utilization as a FunctionalStarter Culture for Milk Fermentation[J]. Journal of Agricultural and FoodChemistry,2008(56):3311-3316.
    145Kishino S, Ogawa J, Omura Y, et al. Conjugated Linoleic Acid Production fromLinoleic Acid by Lactic Acid Bacteria[J]. Journal of the American Oil ChemistsSociety,2002(79):159-163.
    146Kim Y J, Liu R H, Bond D R, et al. Effect of Linoleic Acid Concentration onConjugated Linoleic Acid Production by Butyrivibrio fibrisolvens A38[J]. Appliedand Environmental Microbiology,2000(66):5226-5230.
    147Abd El-Salam M H, El-Shafei K, Sharaf O M, et al. Screening of Some PotentiallyProbiotic Lactic Acid Bacteria for Their Ability to Synthesis Conjugated LinoleicAcid[J]. International Journal of Dairy Technology,2010(63):62-69.
    148Pennacchia C, Blaiotta G, Pepe O, et al. Isolation of Saccharomyces cerevisiaeStrains from Different Food Matrices and Their Preliminary Selection for aPotential use as Probiotics[J]. Journal of Applied Microbiology,2008(105):1919-1928.
    149òdena G, Cabré E, Galan A, et al. Administration of Lactobacillus fermentumCECT5716does not Prevent Intestinal Bacterial Translocation in Ascitic CirrhoticRats[J]. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism,2009(4):E265-E269.
    150Kirtzalidou E, Pramateftaki P, Kotsou M, et al. Screening for Lactobacilli withProbiotic Properties in the Infant Gut Microbiota[J]. Anaerobe,2011(17):440-443.
    151Maragkoudakis P A, Zoumpopoulou G, Miaris C, et al. Probiotic Potential ofLactobacillus Strains Isolated from Dairy Products[J]. International Dairy Journal,2006(16):189-199.
    152Bao Y, Zhang Y, Zhang Y, et al. Screening of Potential Probiotic Properties ofLactobacillus fermentum Isolated from Traditional Dairy Products[J]. Food Control,2010(21):695-701.
    153Fogh J, Fogh J M, Orfeo T. One Hundred and Twenty-seven Cultured HumanTumor Cell Lines Producing Tumors in Nude Mice[J]. Journal of the NationalCancer Institute,1977(59):221-226.
    154Granato D, Perotti F, Masserey I, et al. Cell Surface-associated Lipoteichoic AcidActs as an Adhesion Factor for Attachment of Lactobacillus johnsonii La1toHuman Enterocyte-like Caco-2Cells[J]. Applied and Environmental Microbiology,1999(65):1071-1077.
    155Yi H, Zhang L, Han X, et al. Isolation and Applied Potential of Lactic AcidBacteria from Chinese Traditional Fermented Food in Specific EcologicalLocalities[J]. Food Science and Biotechnology,2011(20):1685-1690.
    156Fang C L, Hu Z H, Zhu Q Y, et al. Identification of Legionella species by theComposition of Cellular Fatty Acids[J]. Frontiers of Medicine in China,2010(4):208-215.
    157Sauer S, Kliem M. Mass Spectrometry Tools for the Classification andIdentification of Bacteria[J]. Nature Reviews Microbiology,2010(8):74-82.
    158Wang S Y, Chen H C, Dai T Y, et al. Identification of Lactic Acid Bacteria inTaiwanese Ropy Fermented Milk and Evaluation of Their Microbial Ecology inBovine and Caprine Milk[J]. Journal of Dairy Science,2011(94):623-635.
    159Park J M, Shin J H, Lee D W, et al. Identification of the Lactic Acid Bacteria inKimchi According to Initial and Over-ripened Fermentation Using PCR and16srRNA Gene Sequence Analysis[J]. Food Science and Biotechnology,2010(19):541-546.
    160Farmani J, Safari M, Roohvand F, et al. Conjugated Linoleic Acid-producingEnzymes: A Bioinformatics Study[J]. European Journal of Lipid Science andTechnology,2010(112):1088-1100.
    161寇秀颖,黄东东,王三永,等.共轭亚油酸高产菌株的筛选及培养条件的优化[J].乳业科学与技术,2006(6):269-271.
    162Ovesen L, Bendtsen F, Tagejensen U, et al. Intraluminal pH in the Stomach,Duodenum, and Proximal Jejunum in Normal Subjects and Patients with ExocrinePancreatic Insufficiency[J]. Gastroenterology,1986(90):958-962.
    163Hur S J, Decker E A, McClements D J. Influence of Initial Emulsifier Type onMicrostructural Changes Occurring in Emulsified Lipids During in vitroDigestion[J]. Food Chemistry,2009(114):253-262.
    164Burns P, Reinheimer J, Vinderola G. Impact of Bile Salt Adaptation ofLactobacillus delbrueckii subsp. lactis200on its Interaction Capacity with the Gut[J]. Research in Microbiology,2011(162):782-790.
    165Perrin S, Grill J P, Schneider F. Effects of Fructooligosaccharides and TheirMonomeric Components on Bile Salt Resistance in Three Species of Bifidobacteria[J]. Journal of Applied Microbiology,2000(88):968-974.
    166Patel H M, Pandiella S S, Wang R H, et al. Influence of Malt, Wheat, and BarleyExtracts on the Bile Tolerance of Selected Strains of Lactobacilli[J]. FoodMicrobiology,2004(21):83-89.
    167Ahmed S A, Ibrahim S A, Kim C, et al. Proceedings of the2007NationalConference on Environmental Science and Technology:Part1[C]. Germany:Springer Publication,2009:17-23.
    168Nagar S, Gupta V, Kumar D, et al. Production and Optimization of Cellulase-free,Alkali-stable Xylanase by Bacillus pumilus SV-85S in Submerged Fermentation[J].Journal of Industrial Microbiology&Biotechnology,2010(37):71-83.
    169Kamande G M, Baah J, Cheng K J, et al. Effects of Tween60and Tween80onProtease Activity, Thiol Group Reactivity, Protein Adsorption, and CelluloseDegradation by Rumen Microbial Enzymes[J]. Journal of Dairy Science,2000(83):536-542.
    170Heuman D M, Bajaj R S, Lin Q. Adsorption of Mixtures of Bile Salt TaurineConjugates to Lecithin-cholesterol Membranes: Implications for Bile Salt Toxicityand Cytoprotection[J]. Journal of Lipid Research,1996(37):562-573.
    171Leverrier P, Dimova D, Pichereau V, et al. Susceptibility and Adaptive Response toBile Salts in Propionibacterium freudenreichii: Physiological and ProteomicAnalysis[J]. Applied and Environmental Microbiology,2003(69):3809-3818.
    172Begley M, Gahan C G M, Hill C. The Interaction Between Bacteria and Bile[J].Fems Microbiology Reviews,2005(29):625-651.
    173Baker R C, Vadehra D V, Gravani R B. Neutralization of Antimicrobial Propertiesof Lauricidin by Tweens[J]. Journal of Food Safety,1984(6):1-12.
    174Bhattacharjee J, Verma G, Aswal V K, et al. Tween80-Sodium DeoxycholateMixed Micelles: Structural Characterization and Application in DoxorubicinDelivery[J]. The Journal of Physical Chemistry B,2010(114):16414-16421.
    175曹健,魏明,曾实,等.一株嗜酸乳杆菌突变株亚油酸异构酶的纯化及性质[J].食品与发酵工业,2004(30):48-52.
    176苗士达,张中义,刘萍,等.植物乳杆菌亚油酸异构酶的分离纯化及其性质研究[J].食品与发酵工业,2005(31):12-15.
    177Coleman R, Lowe P J, Billington D. Membrane Lipid Composition andSusceptibility to Bile Salt Damage[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes.1980,599(1):294-300.
    178Pardo A. Effect of Surfactants on Cellulase Production by Nectria catalinensis[J].Current Microbiology,1996(33):275-278.
    179Jacques N A, Jacques V L, Wolf A C, et al. Does an Increase in MembraneUnsaturated Fatty Acids Account for Tween80Stimulation of GlucosyltransferaseSecretion by Streptococcus salivarius[J]. Journal of General Microbiology,1985(131):67-72.
    180Ruiz L, Sánchez B, Ruas-Madiedo P, et al. Cell Envelope Changes inBifidobacterium animalis ssp. lactis as a Response to Bile[J]. FEMS MicrobiologyLetters,2007(274):316-322.
    181Huot E, Barrena Gonzalez C, Petitdemange H. Tween80Effect on BacteriocinSynthesis by Lactococcus lactis subsp. cremoris J46[J]. Letters in AppliedMicrobiology,1996(22):307-310.
    182Beney L B, Gervais P G. Influence of the Fluidity of the Membrane on theResponse of Microorganisms to Environmental Stresses[J]. Applied Microbiologyand Biotechnology,2001(57):34-42.
    183Berlin E, Bhathena S J, McClure D, et al. Dietary Menhaden and Corn Oils and theRed Blood Cell Membrane lipid Composition and Fluidity in Hyper-andNormocholesterolemic Miniature Swine[J]. The Journal of Nutrition,1998(128):1421-1428.
    184Kimoto Nira H, Kobayashi M, Nomura M, et al. Bile Resistance in Lactococcuslactis Strains Varies with Cellular Fatty Acid Composition: Analysis by UsingDifferent Growth Media[J]. International Journal of Food Microbiology,2009(131):183-188.
    185Guerzoni M E, Lanciotti R, Cocconcelli P S. Alteration in Cellular Fatty AcidComposition as a Response to Salt, Acid, Oxidative and Thermal Stresses inLactobacillus helveticus[J]. Microbiology,2001(147):2255-2264.
    186Johnsson T, Nikkila P, Toivonen L, et al. Cellular Fatty Acid Profiles ofLactobacillus and Lactococcus Strains in Relation to the Oleic Acid Content of theCultivation Medium[J]. Applied and Environmental Microbiology,1995(61):4497-4499.
    187Haque M, Hirai Y, Yokota K, et al. Lipid Profile of Helicobacter spp.: Presence ofCholesteryl Glucoside as a Characteristic Feature[J]. Journal of Bacteriology,1996(178):2065-2070.
    188Taranto M P, Perez-Martinez G, Font de Valdez G. Effect of Bile Acid on the CellMembrane Functionality of Lactic Acid Bacteria for Oral Administration[J].Research in Microbiology,2006(157):720-725.
    189Disalvo E A, Simon S A. Permeability and stability of Lipid Bilayers[M]. BocaRaton: CRC Press,1995.134
    190Ma Y, Marquis R E. Thermophysiology of Streptococcus Mutans and RelatedLactic-acid Bacteria[J]. Antonie van Leeuwenhoek,1997(72):91-100.
    191In't Veld G, Driessen A J M, Konings W N. Effect of the Unsaturation ofPhospholipid Acyl Chains on Leucine Transport of Lactococcus lactis andMembrane Permeability[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,1992(1108):31-39.
    192Cummings J H. Short Chain Fatty Acids in the Human Colon[J].Gut,1981(22):763-779
    193Carneiro M S C, Lordelo M M, Cunha L F, et al. Effects of Dietary Fibre Sourceand Enzyme Supplementation on Faecal Apparent Digestibility, Short Chain FattyAcid Production and Activity of Bacterial Enzymes in the Gut of Piglets[J]. AnimalFeed Science and Technology,2008(146):124-136.
    194Akal n A S, Toku o lu, G n S, et al. Occurrence of Conjugated Linoleic Acid inProbiotic Yoghurts Supplemented with Fructooligosaccharide[J]. InternationalDairy Journal,2007(17):1089-1095.
    195Peterbauer T, Richter A. Biochemistry and Physiology of Raffinose FamilyOligosaccharides and Galactosyl Cyclitols in Seeds[J]. Seed Science Research,2001(11):185-197.
    196Kamlage B, Hartmann L, Gruhl B, et al. Linoleic Acid Conjugation by HumanIntestinal Microorganisms is Inhibited by Glucose and Other Substrates in vitro andin Gnotobiotic rats[J]. The Journal of Nutrition,2000(130):2036-2039.
    197Alakomi H-L, Skytt E, Saarela M, et al. Lactic Acid Permeabilizes Gram-negativeBacteria by Disrupting the Outer Membrane[J]. Applied and EnvironmentalMicrobiology,2000(66):2001-2005.
    198McKean D L, Pesce A J. Determination of Polysorbate in Ascites Fluid from aPremature Infant[J]. Journal of Analytical Toxicology,1985(9):174-176.
    199刘红芝.酿酒酵母甘露聚糖的制备-结构鉴定及免疫活性研究[D].北京.中国农业科学院学位论文,2009,73.
    200富校轶,李博群,张时莹,等.超滤大豆蛋白肽对小鼠免疫功能的影响[J].食品工业科技,2012(33):375-378.
    201Belury M A, KempaSteczko A. Conjugated Linoleic Acid Modulates Hepatic LipidComposition in Mice[J]. Lipids,1997(32):199-204.
    202Ing S W, Belury M A. Impact of Conjugated Linoleci Acid on Bone Physiology:Proposed Mechanism Involving Inhibition of Adipogenesis[J].Nutrition Reviews,2011(69):123-131.
    203Obsen T, Faergeman N J, Chung S, et al. Trans-10, cis-12Conjugated LinoleicAcid Decreases de novo Lipid Synthesis in Human Adipocytes[J]. The Journal ofNutritional Biochemistry,2012(23):580-590.
    204Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the Human IntestinalMicrobial Flora[J]. Science,2005(308):1635-1638.
    205Nicholson J K, Holmes E, Wilson I D. Gut Microorganisms, MammalianMetabolism and Personalized Health Care[J]. Nature Reviews Microbiology,2005(3):431-438.
    206Djouzi Z, Andrieux C. Compared Effects of Three Oligosaccharides on Metabolismof Intestinal Microflora in Rats Inoculated with a Human Faecal Flora[J]. BritishJournal of Nutrition,1997(78):313-324.
    207Sugano M, Tsujita A, Yamasaki M, et al. Lymphatic Recovery, Tissue Distribution,and Metabolic Effects of Conjugated Linoleic Acid in Rats[J]. The Journal ofNutritional Biochemistry,1997(8):38-43.
    208Mougios V, Matsakas A, Petridou A, et al. Effect of Supplementation withConjugated Linoleic Acid on Human Serum Lipids and Body fat[J]. The Journal ofNutritional Biochemistry,2001(12):585-594.
    209Huang Y C, Luedecke L O, Shultz T D. Effect of Cheddar Cheese Consumption onPlasma Conjugated Linoleic Acid Concentrations in Men[J]. Nutrition Research,1994(14):373-386.
    210Ewaschuk J B, Walker J W, Diaz H, et al. Bioproduction of Conjugated LinoleicAcid by Probiotic Bacteria Occurs in vitro and in vivo in Mice[J]. The Journal ofNutrition,2006(136):1483-1487.
    211Go G, Wu G, Silvey D, et al. Lipid Metabolism in Pigs Fed SupplementalConjugated Linoleic Acid and/or Dietary Arginine[J]. Amino Acids,2012
    212Ogborn M R, Nitschmann E, Bankovic Calic N, et al. Dietary Conjugated LinoleicAcid reduces PGE2Release and Interstitial Injury in Rat Polycystic KidneyDisease[J]. Kidney International,2003(64):1214-1221.
    213Liu K L, Belury M. Conjugated Linoleic Acid Modulation of Phorbol Ester-induced Events in Murine Keratinocytes[J]. Lipids,1997(32):725-730.
    214Hayek M G, Han S N, Wu D Y, et al. Dietary Conjugated Linoleic Acid Influencesthe Immune Response of Young and Old C57BL/6NCrLBR Mice[J]. Journal ofNutrition,1999(129):32-38.
    215Nakanishi T, Koutoku T, Kawahara S, et al. Dietary Conjugated Linoleic AcidReduces Cerebral Prostaglandin E2in mice[J]. Neuroscience Letters,2003(341):135-138.
    216Liu K L, Belury M A. Conjugated Linoleic Acid Reduces Arachidonic AcidContent and PGE2Synthesis in Murine Keratinocytes[J]. Cancer Letters,1998(127):15-22.
    217Bulgarella J, Patton D, Bull A. Modulation of Prostaglandin H Synthase Activity byConjugated Linoleic Acid (CLA) and Specific CLA Isomers[J]. Lipids,2001(36):407-412.
    218Belury M A. Dietary Conjugated Linoleic Acid in Health: Physiological Effects andMechanisms of Action[J]. Annual Review of Nutrition,2002(22):505-531.
    219Whigham L D, Cook E B, Stahl J L, et al. CLA Reduces Antigen-inducedHistamine and PGE2Release from Sensitized Guinea Pig Tracheae[J]. AmericanJournal of Physiology-Regulatory, Integrative and Comparative Physiology,2001(280):R908-R912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700