高烈度地震峡谷区公路选线理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个地震多发国家,地震带来的地壳能量释放会引起地球表面的强烈振动,对地质条件较差的高山峡谷区道路、桥梁等基础设施造成了严重损害。同时,由于现有公路选线方法对高烈度地震峡谷区的地震风险未做重点考虑,进而加剧了区域生命线震时的受灾程度。因此,深入研究公路走廊带震害空间分布特征,考虑并评估区域潜在地震风险,建立高烈度地震峡谷区公路选线理论体系,不仅是保障交通设施地震安全的基础性课题,也是实现公路与环境和谐相处、科学合理安排公路建设任务的迫切需要。
     论文依托交通部重大科技专项“汶川地震灾后重建公路抗震减灾关键技术研究”和西部交通建设科技项目“武罐高速公路抗震优化设计及灾害防治技术研究”,以公路路线为研究对象,以高烈度地震峡谷为前提条件,采用ArcGIS技术平台,基于风险分析与管理理论,重点进行高烈度地震峡谷区公路选线理论与方法的研究,以期解决复杂条件下震区公路路线选择与设计难题。
     论文系统分析了国内外相关研究成果,针对现有公路选线理论体系和方法的优缺点及适用性,提出了本文的研究思路和技术路线。采用地理信息系统、遥感解译、全球定位系统等现代信息技术,针对汶川地震灾区,开展公路走廊带震害调查。归纳总结震区公路的主要成灾模式,分析了公路走廊带工程震害空间分布特征。考虑公路震害地带性分布规律分析需求,从概念、逻辑、物理三个方面对公路震害空间数据库进行结构设计,基于GeoDatabase框架,建立了异源异质公路震害空间数据库。提出以ArcGIS为技术支撑,以空间数据挖掘理论为基础的公路震害数据属性关联方法,构建了公路走廊带地质灾害与环境因子的属性关联数据模型,揭示了公路走廊带地质灾害地带性分布规律。
     针对高烈度地震峡谷区地震风险突出的特点,开展面向风险的高烈度地震峡谷区公路走廊带选择方法研究,并从系统工程思维的角度阐述了面向风险选线方法的具体内涵。采用主成分分析与专家调查相结合的方法进行因子辨识,筛选出对区域地震风险有显著影响作用的峰值加速度、植被覆盖率、地层岩性和坡度作为评价因子。基于云模型理论,提出云模型——层次分析法的公路震害风险评估赋权方法,建立了公路震害风险评估模型,用以表征公路走廊带区域潜在的地震风险状态,提高了公路震害风险评价的定量化程度。
     论文通过深入分析影响地震峡谷区公路路线方案决策的关键因素,建立以风险、经济、安全、环境为目标层,以9个单因子为指标层的两层次评价指标体系。在ArcGIS支持下,考虑路线方案评价需求,构建了路线方案评价单因子的计算方法和量化模型。引入最大限度考虑决策者交互要求的多属性评价理论,提出了基于方案综合度和达成度的高烈度地震峡谷区路线方案多属性评价方法,建立路线方案综合度和达成度的求解模型,并阐述了具体的评价步骤和流程,为实现路线方案的合理选择提供了技术支持。
     论文对比分析了震区公路路线设计指标及其大小与震害间的关系,明确了高烈度地震峡谷区公路路线关键设计指标,提出了平纵横合理布设要素。基于震时救援车辆特性,参照公路地震风险等级划分标准,制定了救援道路的具体设置方法。采用三维离散元数学建模,揭示不同频率、振幅、持续时间等地震波参数及岩层倾角条件下,边坡高度、坡度对边坡动力位移的影响规律,提出了震区公路边坡坡度与高度的合理值域。从桥梁、隧道、支档工程三个方面,归纳总结了高烈度地震区公路构造物的合理布置方法。
     最后,论文以武罐高速公路为依托,将提出的方法、指标体系、模型具体应用到路线选择与设计实践中,指导武罐高速公路的路线选择与设计,验证了研究成果的可行性。
     高烈度地震峡谷区公路选线理论与方法研究采用现场调查、数学建模、理论分析、工程验证相结合的研究方法,提高了数据分析与管理的精度,丰富了我国公路选线方法和理论体系。不仅对高烈度地震峡谷区公路建设具有重要的实践意义,对保障重大交通工程地震安全、协调公路与自然环境的关系具有长远的意义,而且对进一步推进我国交通事业的科学发展有着重要的理论意义。
With the frequent earthquake in China, strong vibrations on the surface of Earth causedby the energy release from crust lead to serious damage to the roads, bridges and otherinfrastructures in gorge area. On the other hand, Existing selection method lacks considerationthe earthquake risk in high seismic intensity canyon region that intensifies the damage degreeof regional lifeline. Therefore, an essential question has been raised as to discuss spatialdistribution characteristics of earthquake damage in highway corridors, take into account andassess potential seismic risk, establish theoretical system of highway alignment selection forhigh intensity seismic canyon region, which are not only the basic issues, but also the urgentneeds of assigning construction tasks reasonable and realizing harmony with the environment.
     Sponsored by special funds of ministry of transport “Research on the key technology ofhighway’s anti-seismic and disaster reduction in reconstruction of Wenchuan earthquake” andwestern traffic technology funds “Research on optimization design of Wuguan expresswayanti-seismic and disaster control technology”, This thesis focuses on the highway alignmentselection in high seismic intensity canyon region. Based the theory of risk analysis andmanagement, the theory and method of highway alignment selection in high intensity seismiccanyon region are researched, in order to solve highway alignment selection and designproblems under complex conditions in seismic areas.
     In response to the limitation of existing theory system and method of highway alignmentselection, the main content is proposed. Using geographic information system, remote sensing,and global positioning system, the earthquake disasters are surveyed along the highwaycorridors in Wenchuan earthquake areas. The major disaster model is summarized and thespatial distribution characteristics are analyzed. Considering the zonal distribution of seismicdamage to highway, from three aspects of conceptual, logical and physical to design thestructure of spatial database, based on GeoDatabase, the heterogeneous spatial database forhighway earthquake disaster is established. Under the technical support of ArcGIS, based onspatial data mining theory, this dissertation presents a attribute correlation method of highwayearthquake data. The data model of attribute correlation between geological disaster andenvironmental factors is established, and the laws of zonal distribution along highwaycorridors are revealed.
     For the outstanding characteristics of earthquake risk in high intensity seismic canyonregion, the dissertation discusses the selection method for highway corridor risk-oriented andillustrates the specific contents of risk-oriented from the perspective of system engineering.Combining the method of main component analysis and experts surveys, the dissertationscreens out peak acceleration, vegetation coverage, formation lithology and slope asassessment factors that have significant effect on regional earthquake risk. Based on cloudmodel theory, the method of specifying assessment weights is proposed using cloud model and analytical hierarchy process, and the risk assessment model for highway earthquake isestablished, which express potential earthquake risk and improve the quantitative degree ofearthquake risk assessment.
     Analyzing the key factors influencing the alignment selection in depth, the dissertationestablishes an assessment system with two levels-a criteria level with risk, economy, safe,environment as index, an alternative level with9-single-factor as index. Using ArcGIS andconsidering the need of alignment selection assessment, the calculation method andquantitative model of assessment factor are established. Introducing multiple attributeassessment theory considering the interact requires between decision makers, the dissertationproposes the multiple attribute assessment method with integrated degree and matched degreein high intensity seismic canyon region, establishes approach model for alignment selectionintegrated degree and matched degree, and illustrates specific assessment procedure, which allprovide technological support for reasonable alignment selection.
     Analyzing the highway alignment design indexes and the relationship between theirvalues with earthquake, the key design indexes for alignment selection in high intensityseismic canyon region are specified, and factors of the reasonable plan, vertical and horizontalalignment layout are proposed. According to the rescue vehicle characteristics and followingthe standards of highway earthquake risk hierarchy, the specific method for rescue highway ismade. Using three-dimensional discrete mathematical modeling, for different seismic waveparameters-frequency, amplitude and duration-and angle of rocks, the influence laws of slopeheight and gradient on dynamic displacement of slope are revealed, and a reasonable regionfor height and gradient in earthquake areas is proposed. From the aspects of bridge, tunnel andretaining projects, a reasonable layout method for highway infrastructures in earthquake issummarized.
     In the case study of Wuguan expressway, the method, index system, model researchedabove are applied in alignment selection and design, which verifies the feasibility of researchresults.
     This theory and method for alignment selection combines field surveys, mathematicalmodeling, theory analysis and construction verification, improves the precision of dataanalysis and management, enriches highway alignment selection methods and theory systemin our country. It has an important practical meaning not only for the highway construction inhigh intensity seismic canyon region, but also for harmonious relationship between highwayand environment; and further more, it has an important theoretical meaning for the scientificdevelopment of transportation in our country.
引文
[1]中国地震局监测预报司.中国地震活动分布统计图集[M].湖南:湖南地图出版社,2001.
    [2]孙其政,吴书贵.中国地震监测预报40年(1966-2006)(上下)[M].北京:地震出版社,2007.
    [3]中华人民共和国交通运输部.汶川地震公路震害图集[M].北京:人民交通出版社,2009.
    [4]周海涛.汶川、玉树地震对我国公路交通抗震减灾技术的影响与启示.2011公路工程抗震减灾国际技术研讨会,北京,2011.
    [5]杨少伟.道路勘测设计(第3版)[M].北京:人民交通出版社,2009.
    [6]交通部公路司.公路工程技术标准(JTG B01-2003)[S].北京:人民交通出版社,2003.
    [7]中交第一公路勘察设计研究院.公路路线设计规范(JTG D20-2006)[S].北京:人民交通出版社,2006.
    [8]中交第二公路勘察设计研究院.公路路基设计规范(JTG D30-2004)[S].北京:人民交通出版社,2004.
    [9] Mitomi H,Yamazaki F,Matsuoka M.Automated detection of building damage due torecent earthquakes using aerial television images. Proceedings of the21st AsianConference on Remote Sensing,Taipei,2000:1-7.
    [10] Mitomi H,Yamazaki F,Matsuoka M.Development of automated extraction method forbuilding damage area based on maximum likelihood classifier.Proceedings of8thInternational Conference on Structural Safety and Reliability,California:New Beech,2001:2430—3442.
    [11] Ellen M. Earthquake Damage Identification using Multi-Temporal High-ResolutionOptical Satellite Imagery. Environmental Engineering (2005) Volume:00, Issue: C,Publisher:2005IEEE International, Pages:2-5.
    [12] John A. Effects of Catastrophic Events on Transportation System Management andOperations. Massachusetts:Cambridge,April22,2002.
    [13] John B. Mander.Overview of Highway Damage:Kocaeli, Turkey Earthquake. In:TheMarmara. Turkey Earthquake Reconnaissance Report. August17,1999.
    [14] Pamuk. A,Kalkan. E, Ling. H I. Structural and geotechnical impacts of surface ruptureon highway structures during recent earthquakes in Turkey. Soil Dynamics andEarthquake Engineering.2005,25:7-10.
    [15]吴剑.基于面向对象技术的遥感震害信息提取与评价方法研究[D].武汉:武汉大学,2010.
    [16]赵福军.遥感影像震害信息提取技术研究[D].哈尔滨:中国地震局工程力学研究所,2010.
    [17]许强,黄润秋.5.12汶川大地震诱发大型崩滑灾害动力特征初探[J].工程地质学报.2009,6:721-729.
    [18]张鹏,李宁,陈新民等.汶川地震山体崩塌破坏特征的分析与启示.见黄润秋.《第三届全国岩土与工程学术大会论文集》.四川成都:四川科学技术出版社,2009:696-699.
    [19]甘建军,黄润秋,范崇荣等.都江堰—汶川公路边坡地震破坏模式研究[J].水文地质工程地质.2011,3:59-65.
    [20]李建民,冯际安,金大勇等.“5.12”汶川地震灾区桥梁典型损毁情况与原因浅析[J].城市道桥与防洪.2008,8:26-28.
    [21]姚令侃,冯俊德,杨明.汶川地震路基震害分析及对抗震规范改进的启示[J].西南交通大学学报.2009,03:301-311.
    [22]袁炳祥,谌文武,梁收运等.青藏铁路沿线活动断裂带对地质选线的影响[J].西北地震学报.2009,31:121-125.
    [23]韩康.艰险山区地震区铁路选线初步研究[J].铁道工程学报.2009,2:6-9.
    [24] Werner SD.,Taylor CE,Moore JE II etal. A Risk-Based Methodology for Assessing theSeismic Performance of Highway Systems. MCEER-00-0014. Buffalo NY:Multidisciplinary Center for Earthquake Engineering Research.2000.
    [25] Werner SD.,Craig E. TAYLOR,Sungbin CHO. New Developments in Seismic RiskAnalysis of Highway Systems.13th World Conference on Earthquake EngineeringVancouver. Canada,August1-6,2004,Paper No.2189.
    [26] Lalliana Mualchin. Seismic hazard analysis for critical infrastructures in California.Engineering Geology.2005,Volume79:177–184.
    [27]久保庆三郎.桥梁的震害预测,张尚识译.国外地震工程.1984,5:1-11.
    [28] KawashimaK.日本公路桥的抗震鉴定和加固,杨海荣,郑琦译.国外桥梁.1997,2:69-77.
    [29] I.G.G.Buekle,S.H.Kim. A Vulnerability Assessment modal for Highway Bridges.Technical Council on Lifeline Earthquake Engineering Monograph No.6, LifelineEarthquake Engineering, Proceedings of the Fourth U.S Conference. AmericanSociety of Civil Engineers,New York,1995:493-500.
    [30]周神根,王天威,杨春环.铁路桥梁震害简易预测法[J].抗震防灾对策.开封:河南科学技术出版社,1988:276-283.
    [31]朱美珍.公路桥梁震害预测,见:林皋.第三界全国地震工程会议议论文集.大连:大连理工大学出版社,1990.
    [32]黄龙生,黄勇.公路桥梁的震害概率[J].工程抗震.1996,3:46-48.
    [33]日本道路协会.日本道路桥梁抗震设计规范,方书同解说.1996.
    [34]道路桥设计计算例编集委员会.道路桥设计计算例[M].日本东京,山海堂,2000.
    [35]日本道路协会.道路桥示方书同解说:V耐震设计篇.2002.
    [36]孙利民,范立础.阪神地震后日本桥梁抗震设计规范的改订[J].同济大学学报(自然科学版).2001,1:60-64.
    [37]叶耀先.美国抗震设计规范的新进展[J].国外地震工程.1982,04:32-41.
    [38] W· Phillip Yen,Richard A· Pratt.新的美国公路桥抗震设计指导规范[J].公路.2009,05:108-111.
    [39] NCHRP20-7/Task193·公路桥梁抗震设计推荐指南LRFD的最终报告.
    [40] California Department of Transportation.Caltrans Seismic design Criteria. United StatesCalifounia,2001.
    [41]高田至郎.地下生命线的耐震设计.隧道译丛.1991,7:44-51.
    [42]周德培译.地铁抗震设计准则[J].世界隧道.1995,2:36-45.
    [43]川岛一彦.地下构筑物の耐震设计[M].日本:鹿岛出版会,1994.
    [44] ShuklaDK,RizzoPC,Stephenson DE. Earthquake load analysis of unnel sand shaftsproceeding of the7th World Conference on Earthquake Engineering.1980,8:20-28.
    [45] B.J.Siyahi,G.Bilge. A pseudo-static stability analysis in normally consolidated soilslopes subjected to earthquakes. Technical Journal of Turkish Chamber of CivilEngineers,1998,9:1525-1552.
    [46] Cundall PA. A Computer Model for Simulating Progress Large Seale Movement in BlockSystems. Proceedings of the Symposium of the International Society of Rock Mechanics.Nancy,France,1971
    [47]国家基本建设委员会建筑科学研究院,四川省建筑工程局建筑科学研究所.工业与民用建筑抗震设计规范(TJ11-74).北京:中国建筑工业出版社,1974.
    [48]中华人民共和国交通部.公路工程抗震设计规范(JTJ004-89)[S].北京:人民交通出版社,1989.
    [49]重庆交通科研设计院.公路桥梁抗震设计细则(JTG/TB02-01-2008)[S].北京:人民交通出版社,2008.
    [50]朱文正,刘健新.公路桥梁防落梁系统研究现状述评[J].广州大学学报(自然科学版).2005,04:347-356.
    [51]刘健新,赵国辉.“5·12”汶川地震典型桥梁震害分析[J].建筑科学与工程学报.2009,02:92-97
    [52]何蕴龙,陆述远,段亚辉.岩石边坡地震作用计算方法研究[J].长江学院院报.1998,15:35-38.
    [53]汪茜.地震作用下顺层岩质边坡变形破坏机理研究.[D].长春:吉林大学,2010.
    [54]袁炳祥,谌文武,梁收运等.青藏铁路沿线活动断裂带对地质选线的影响[J].西北地震学报.2009,31:121-125.
    [55]韩康.艰险山区地震区铁路选线初步研究[J].铁道工程学报.2009,2:6-9.
    [56] Massam BryanH,Skelton Ian. Application of Three Plan Evaluation procedures to aHighway Alignment Problem. Transportation Research Record.1986:54-58.
    [57]赵杰,陈强编译.基于GIS的公路定线多尺度评价方法[J].中外公路.2001,21(8):25-28.
    [58] Kalamaras G.S.,Brino.L.,Carrlerl G,et al. Application of Multicriteria Analysis toSelect the Best Highway Alignment. Tunnelling and Underground SpaeeTeclinology.2000,15:415-420.
    [59] Manoj K. Jha. Ph.D. Using a GIS for Automated Decision Making in Highway CostAnalysis.Transportation Research Board80th Annual Meeting January7-11,2001.Washington,D.C. Paper No.01-3484.
    [60]裴玉龙,刘广萍.路线方案比选的AHP方法[J].东北公路.2001,3:19-20.
    [61]高传东.山区灾害多发区段道路选线的理论与方法[D].成都:西南交通大学,2003.
    [62]宋金利.基于GIS公路选线方案设计和优选的研究[D].北京:北京交通大学,2008.
    [63]叶亚丽.公路智能选线与决策支持系统研究及开发[D].西安:长安大学,2010.
    [64]四川省交通厅公路规划勘察设计研究院.5.12汶川地震灾区高速公路和国省干线公路恢复重建工程调查、检测、评估[R].成都:四川省交通厅公路规划勘察设计研究院,2008.
    [65]李天斌.汶川特大地震中山岭隧道变形破坏特征及影响因素分析[J].工程地质学报,2008,16(6):742-750.
    [66] Sharma S, Judd W R. Underground opening damage from earthquakes[J].Eng. Geol.1991, Vol.30(3,4):263-276.
    [67]许金良,贾兴利,杨宏志.公路震害空间数据库的设计[J].长安大学学报,2012,32(5):29-33.
    [68] Gao Y,Alexander J,Tipping R. Karst database development in Minnesota:design and dataassembly[J].Environmental Geology,2005,47(8):1072-1082.
    [69] Devillers R,Bedard Y,Jeansoulin R. Multidi mensional man-agement of geospatial dataqualityinformationfor its dynamic use within GIS[J].Photogrammetric Engineering andRemote Sensing,2005,71(2):205-215.
    [70]刘恩林. Geodatabase模型在空间数据库建立与信息采集中的应用研究[D].长沙:中南林业科技大学,2007.
    [71]许金良,李超,杨宏志.中国公路自然区划空间数据库的设计[J].交通运输工程学报,2008,(01):47-52.
    [72]杨宏志,李超,许金良.中国公路自然区划GIS研究[J].重庆交通大学学报(自然科学版),2010,(03):407-412.
    [73]许金良,牛玉欣,杨宏志,韩跃杰.公路自然区划地理信息系统优化设计[J].长安大学学报(自然科学版),2011,(01):36-39.
    [74]王海波.云计算中数据库的关键问题研究与实现[D].长春:吉林大学,2011.
    [75]李晔,姚祖康.基于地理信息系统的公路设施空间数据库概念模型[J].中国公路学报,2000,(03):9-11.
    [76]贾兴利,许金良,杨宏志.基于空间连接的公路震害数据属性关联[J].武汉理工大学学报,2011,33(12):51-54.
    [77] Nikos M. Multiway Spatial Joins[D]. University of Hong Kong,2001.
    [78] Wan D B. Incremental Rening Spatial Joins for Interactive Queries in GIS[D].Department of Computer Science University of Denver,2008.
    [79]潘红岩.基于栅格的空间连接和查询优化研究[D].哈尔滨:哈尔滨理工大学,2010.
    [80]张华.时空数据集的连接处理与优化方法研究[D].南京:河海大学,2006.
    [81]张道军,任娜,刘越岩.基于空间位置的属性数据连接方法研究[J].测绘通报,2011,(02),63-65.
    [82] Zimbrao G, Souza J M. A Raster Approximation for Processing of SpatialJoins[C].Proceedings of the24th International Conference on Very Large Databases.San Francisco,CA,USA: Morgan Kaufmann Publishers Inc,1998,:558-569.
    [83] Zhu H, Sue J, Ibarra H. Towards Spatial Joins for Polygons[C].IEEE Computer Society.11th Int. Workshop on Database and Expert Systems Applications. Green with.2000,336-412.
    [84]交通部公路司.新理念公路设计指南[M].北京:人们交通出版社,2005.
    [85]聂承凯,孙永红.公路工程地质选线与方案综合设计[J].公路,2003,11(11):79-80.
    [86]钱进,刘厚健,俞祁浩等.青藏高原冻土工程地质特性与选线原则探讨[J].工程地质学报,2009,17(4):508-515.
    [87]唐正光,徐则民,吴华金等.公路路基地质灾害与选线设计[J].公路交通科技,2011,7:66-68.
    [88]葛根荣.大理至瑞丽铁路的防灾减灾选线原则[J].路基工程,2006(5):46-48.
    [89]陈永胜.高速公路安全设计基础理论及关键技术研究[D].北京:北京工业大学.2001
    [90]郭显惠.高速公路交通安全设计与评价研究[D].西安:长安大学.2011
    [91]李赞勇.公路安全设计体系研究[D].西安:长安大学.2010
    [92]杜智民.基于RS、GIS的高速公路生态系统与景观设计研究[D].西安:长安大学.2009
    [93]汉斯·洛伦茨(德).公路线形与环境设计[M].北京:人民交通出版社,1984
    [94]梁立杰.生态公路理念及其评价体系研究[D].西安:长安大学.2004
    [95]倪彩虹.黄河三角洲生态公路设计研究[D].西安:长安大学.2011
    [96]伊元荣,海米提·依米提,王涛等.主成分分析法在城市河流水质评价中的应用[J].干旱区研究,2008,25(4):497-501.
    [97]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    [98]万金保,曾海燕,朱邦辉.主成分分析法在乐安河水质评价中的应用[J].中国给水排水,2009,25(16):104-108.
    [99]汤国安,杨昕.ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006.
    [100]李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].北京:科学出版社,2006.
    [101]贾兴利,许金良,杨宏志等.基于GIS的地表破碎指数计算[J].重庆大学学报,2012,35(2):126-130.
    [102]冯娜娜,高良敏,卓利玲.主成分分析法在煤矿塌陷水域水质评价的应用[J].安徽理工大学学报,2012,32(2):54-58.
    [103]鲍必赛,楼晓俊,李隽颖等.主成分分析在震动信号目标识别算法中的应用[J].华中科技大学学报,2012,40(7):24-28.
    [104]江迎.基于云模型和GIS_RS的坝堤溃决风险分析及灾害损失评估研究[D].武汉:华中科技大学,2012.
    [105] T.L.Saaly.The Analytic Hierarchy Proccss[M]. Printed by Thomass Saaty U.S.A,1988.
    [106]许树柏.层次分析法原理[M].天津:天津大学出版社,1988.
    [107]樊胜军.层次分析法在建设工程评标中的应用[D].西安:西安建筑科技大学,2003.
    [108]李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究和发展,1995,32(6):16-21.
    [109]李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].北京:科学出版社,2005.
    [110]王树良.基于数据场与云模型的空间数据挖掘和知识发现[D].武汉:武汉大学,2002.
    [111]王洪利,冯玉强.基于云模型标度判断矩阵的改进层次分析法[J].中国管理科学,2005,13:32-37.
    [112]刘常昱,李德毅.正态云模型的统计分析[J].信息与控制,2005,34(2):236-239.
    [113]廖轩吾.集集地震诱发之山崩[D].台湾:国立中央大学,2000.
    [114]王秀英,聂高众,马牧军.地震滑坡灾害评估中地震影响因素的联合应用[J].地震学报.2012,(01).
    [115]韩金良,吴树仁,何淑军等.5.12汶川8级地震次生地质灾害的基本特征及其形成机制浅析[J].地学前缘.2009,(03).
    [116]侯喜禄,杜呈样.不同植被类型小区的径流泥沙观测分析[J].水土保持通报.1990,10(2).
    [117]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报.2008,12.
    [118] JTG/T M21-2011公路工程估算指标[S].北京:人民交通出版社,2011.
    [119]潘玉利,程珊珊.运行速度和发动机油耗预测模拟技术研究[J].公路交通科技.2004.21(5):96-99.
    [120]吴宇航,程珊珊,潘玉利.道路时间费用预测模型研究[J].公路交通科技.2001.18(2):90-93.
    [121] JTG B03-2006公路建设项目环境影响评价规范[S].北京:人民交通出版社,2006.
    [122] SL190-2007土壤侵蚀分类分级标准[S].北京:中国水利水电出版社,2007.
    [123]王浣尘.可能度和满意度在多目标决策中的应用[J].信息与控制,1981:8-13.
    [124]王浣尘.采用可能度和满意度的多目标决策方法[J].系统工程理论与实践,1982:14-23.
    [125]徐泽水.不确定性多属性决策方法及应用[M].北京:清华大学出版社.2004.8.
    [126]蒋尚华,徐南荣.基于目标达成度和目标综合度的交互式多目标决策方法[J].系统工程理论与实践.1999(1):9-14.
    [127]徐泽水.基于方案达成度和综合度的交互式多属性决策法[J].控制与决策.2002.17(4):435-438.
    [128]刘树林,邱苑华.多属性决策理论基础研究[J].系统工程理论与实践,1998,18(l):38-43.
    [129]徐玖平,吴巍编著.多属性决策的理论与方法[M].北京:清华大学出版社,2007.
    [130] Kulatilake PHSW, Wu TH. The density of discontinuity traces in sampling windows[J].Int.Jour, of Rock Mechanics and Mining Sciences,1984,21:345-347.
    [131] Andersson J, Shapiro AM, Bear J. A stochastic model of fractured rock conditioned bymeasured information. Water Resources Research,1984,20:79-88.
    [132] Dershowitz WS, Einstein HH. Characterizing rock joint geometry with joint systemmodel [J].Rock Mechanics and Rock Engineering,1988,21(1):21-51.
    [133] Sahimi M.. Flow phenomena in rocks: from continuum models to fractals, percolation,cellular automata and simulated annealing[J]. Reviews of Modem Physics,1993,65(4):1393-1534.
    [134] Chaoshui X,Peter D. A new computer code for discrete fracture network modeling[J].Computer&Geosciences,2010,36:292-301.
    [135] Kuhlmeyer R L, J. Lysmer. Finite Element Method Accuracy for Wave PropagationProblems. J. soil Mech&Foundations Div, ASCE,1973,99:421~427.
    [136] Cundall P.A.UDEC—A generalized District Element Program for Modeling JointedRoc. European Research Office,U.S.Army.1980.
    [137]焦玉勇.三维离散单元法及其应用[D].武汉:中国科学院武汉岩土力学研究所,1998.
    [138]鲁军,张楚汉,王光纶等.岩体动静力稳定分析的三维离散元数值模型[J].清华大学学报(自然科学版).1996,36:98~104.
    [139]金峰,贾伟伟,王光纶.离散元一边界元动力耦合模型[J].水利学报.2001,(2):24~28.
    [140]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483~490.
    [141]雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学.2006,27(10) p:1694~1695.
    [142]乌兰.三维离散元法计算仿真软件的研究[D].吉林大学2007
    [143]吴琼.复杂节理岩体力学参数尺寸效应及工程应用研究[D].中国地质大学2012
    [144]冯文凯,何川,石豫川等.复杂巨型滑坡形成机制三维离散元模拟分析[J].岩土力学.2009,30(4):1122-1126
    [145]贾洪彪,马淑芝,唐辉明等.岩体结构面网络三维模拟的工程应用研究[J].岩石力学与工程学报.2002,21(7);976-979.
    [146]贾洪彪,唐辉明,刘佑荣等.岩体结构面三维网络模拟理论与工程应用[M].北京:科学出版社,2008.
    [147]李同录,罗世毅,何剑等.节理岩体力学参数的选取与应用[J].岩石力学与工程学报.2004,23(13):2182-2186.
    [148]周维垣,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报.1992,14(5):1-11.
    [149]何满潮,薛延河.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报.2001,20(2):225-229.
    [150]周创兵,陈益峰,姜清辉.岩体表征单元体与岩体力学参数[J].岩土工程学报.2007,29(8):1135-1142.
    [151]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [152] J. Lysmer and R. L. Kulemeyer. Finite Dynamic Model for Infinite Media. Journal ofEngineering Mechanics Division, ASCE.1969,95(4):759~877.
    [153]R.R.Kunar andJ.Marti.A Non-reflecting Boundary for ExplicitCalculations.Computational Methods for Infinite Domain Media-Structure Interaction,ASME.AMD46,1981,183~204.
    [154]李宁等.岩体节理刚度系数的现场声波测试,应用力学学报,1998,15(3):119~123.
    [155]胡卸文,黄润秋,施裕兵,吕小平,朱海勇,汪雪瑞.唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J].岩石力学与工程学报,2009,28(1):181~189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700