热电联产系统冷源领域节能及耦合机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
改革开放以来,随着我国城市化水平的提高和居民生活条件的不断改善,我国热电联产事业得到了迅速的发展,然而对这一体系的研究尚不够完善。2008年我国热电联产的装机容量比2007年增加8.71%,但供热量反而比2007年减少3.83%;2009年热电联产的装机容量比2008年增加24.87%,年供热量仅增加3.4%,这说明一些供热机组的供热能力并未发挥出来。“节能减排,科学发展”是当前我国经济发展过程中的一项重要举措,热电联产不但是国内外公认的有效节能措施,也是改善城市环境质量的重要手段,更是低碳经济发展的必由之路,为此对热电联产进行深入研究提出新的目标。
     本文首先将传统的热电厂总热效率公式进行改进,将公式中的分子表示为热电联产机组纯凝工况运行时的发电量、抽汽工况运行时的供热量和由于供热而损失的发电量3部分组成。该公式不但将热电联产机组在非供热期和供热期的两种运行情况同时反映出来,并且还指出了提高供热机组总热效率的3个途径,明确了供热机组与纯凝机组的区别。供热机组的先进性应体现在提高机组的供热能力,并且在机组提供相同供热量的情况下,机组能够多发电。热电联产的研究应是对冷源领域的科学研究。将供热机组、热网加热器、供热热网系统、热用户和室外环境组成的总能系统建立为热电联产系统,分析各子系统的自身特性和与其它子系统之间的耦合机理,对热电联产系统进行全工况研究,由此针对不同容量的供热机组提出不同的运行方案。
     以热网加热器为热电联产系统联合特性研究的切入点,考虑热网加热器内换热管壁厚对其传热性能的影响,根据传热学的基本理论,对换热管的内、外侧壁温进行迭代计算,准确计算热网加热器的传热系数K。建立热网加热器的数学模型,得到不同回水温度下,热网加热器供热抽汽量与饱和蒸汽压力的性能曲线;再结合热网系统性能得到热网加热器性能曲线,即随着热负荷的增加,热网加热器所需的抽汽流量和抽汽压力也随之提高。将热网加热器性能和汽轮机低压缸性能联合得到热电联产系统联合特性,即汽轮机中压缸排汽压力呈“V”字型变化,供热机组的无节流工况(中压缸排汽压力、低压缸进汽压力和热网加热器抽汽压力都相等)为机组运行时中压缸排汽压力的最低点;并根据无节流工况特点提出最佳冷凝热网加热器——使热电联产系统的无节流工况的压力达到中压缸允许的最低排汽压力时的热网加热器,并对其具体的计算方法进行详细介绍。热电联产系统联合特性的提出,为热电联产系统中能量的合理匹配及系统优化指明了方向。
     开展供热机组的变工况功率计算,准确计算出不同供热参数下,机组的发电功率,也就是可计算出机组由于对外供热抽汽而减少的发电功率的量化,并将热电联产系统联合特性与供热机组的变工况特性结合,编制热电联产系统变工况计算程序。已知室外温度的变化,可求得热网的供、回水温度,热负荷的需求,热网加热器的主要参数以及汽轮机的各段参数,并提供该工况下汽轮机的热平衡图。为热电联产冷源领域研究能够实现节能增效提供可靠的数据依据。
     根据能量梯级利用原理和热电联产联合特性提出供热系统运行的新模式——供热系统串联布置的方案。在应用过程中对该方案进行优化,提出非对称式串联供热布置方式,即两台供热机组串联布置,分段加热热网水,并采取增加高温段热网加热器换热面积的方法降低供热抽汽压力,减小供热抽汽对机组发电量的影响。以200MW供热机组为例,非对称式串联供热布置方式比传统并联布置方式,在额定工况下,机组可增加发电功率约1万kW。并针对目前我国300MW供热机组中低压分缸压力过高的问题,将溴化锂吸收式热泵应用于该机组的供热过程中,回收机组排入凝汽器的余热,两台机组采用串联布置的供热模式,提高机组的供热能力和发电功率。
Since the reform and opening-up, the cogeneration utilities in China has been rapidly developed with the increase of urbanization and the continuous improvement of living conditions. However, the study on this system is still imperfect. Comparing to those in 2007, the installed capacity of the combined heat and power in 2008 increased by 8.71%, while the heat supply decreased by 3.83%; and in 2009 the installed capacity of the combined heat and power increased by 24.87%, while the heat supply increased by only 3.83%, compared to those in 2008. These indicated that the heating ability of some heating units is not in full play. "Energy conservation and pollution reduction, Science development" is an important measure for China's economic development at present. Combined heat and power is not only an effective energy-saving measure recognized at home and abroad, but also is an important method to improve the urban environmental quality. Moreover, it is the only way to develop the low-carbon economy. These proposed new goals for the further study of the combined heat and power.
     In this paper, traditional overall thermal efficiency formula of the power plant is improved. The numerator is composed of 3 parts, which are power generation at condensing runtime of the units, heat load during the heat-supply and the loss of generation produced by the heat-supply. The improved formula demonstrates the running conditions of the combined heat and power units during both the heating period and the off-heating period; it also provides three methods for improving the fuel utilization factors of the heating units; and the difference between the heating units and the condensing units can be definite according to the formula. The advance of the heating units should not only be demonstrated in increasing the heating ability of the heating units but also in generating as much as possible when the heating load is not changed. The research direction of the combined heat and power is the cold source. The total energy system, which is composed by the heating units, the heat exchanger for heating network, the heating network system, the heat users and the outdoor environment, is established as the combined heat and power system. The characteristics of the subsystems and the coupling mechanism between them are analyzed and the full conditions of the CHP are researched. Therefore, different running schemes are proposed for the heating unites with different capacities.
     The cut-in point of the combining characteristic research of the CHP system is the hot water heater for heating network. The heat transfer coefficient K can be computed accurately by means of the iterative computations for the wall temperature of the heat exchanger tubes according to the basic theory of heat transfer and the influence of the wall thickness on the heat transfer performance of heat exchanger tubes in the hot water heater for heating network. The performance curve under different backwater temperatures can be obtained by establishing the mathematical model of the hot water heater for heating network, which is denoted by the amount of heating extraction and the saturated vapor pressure. Combined with the thermal-system performance of the heating network, performance curve of the hot water heater for heating network can be obtained. The flow and the pressure of the extraction steam needed by the hot water heater for heating network are increasing with the increase of the heat load. The combined performance curve of the CHP system can be obtained by combining the performance of the hot water heater for heating network with that of the low pressure casing, the "V" style variation occurs in the variation process of intermediate pressure casing exhaust pressure, it is obtained that equilibrium without throttling of heating units is the minimum exhaust pressure of intermediate pressure casing when the units are operating (the back pressure of intermediate pressure casing is equal to inlet pressure of the low pressure casing and equal to the extraction pressure of the hot water heater for heating network); The optimum cooling source hot water heater for heating network, which makes the pressure of the CHP system under the condition without throttling reach the minimum pressure allowed by the intermediate casing, is proposed according to the performance of equilibrium without throttling; and then its calculation method is introduced detailedly. The combined performance of CHP is proposed, which points out the development direction for the energy reasonable match and the system optimization of the CHP system.
     The off-design equilibrium performance calculation of the heating units is developed to calculate the electricity production of the units under the different heating conditions, that quantizes the loss of generated output caused by the extraction steam of units for external heat-supply; and then the off-design calculation of the CHP system is programmed through combining the combined performance of the CHP system and the off-design performance of the heating units. Provided with the variation of the outdoor temperature, the supply and return water temperature of the heating network, the heat load demand, the main parameters of the hot water heater for heating network and the parameters of each section of the turbine can be obtained accurately and the heat balance chart of the turbine is provided under the operating equilibrium. It provides the reliable data criterion to achieve the aim of energy saving and efficiency improvement for the cooling source field of the CHP.
     The new operating models of the heating system that are series arrangement of heating system are proposed according to the theory of stepwise use of energy and combined performance of the CHP. The asymmetric series arrangement of heating system is proposed by optimizing the scheme in the application process; two heating units are in parallel arrangement; the heating network water is sectionalized heated, and at the same time, the heat exchange area of the hot water heater for heating network at high-temperature section are increased and the extraction pressure of the heating units are decreased, so the influence of the heating extraction on the electricity production of the units is decreased. Take the 200MW heating units for example; the generating power of the heating units in asymmetric series arrangement can increase about 10,000 kW more than that in the traditional parallel arrangement under the rated condition. At present, in our country, the pressure used to distinguish the intermediate pressure casing and low pressure casing is too high for the 300MW heating units, the lithium bromide absorption pumps are used in the heating-supply process of the units to recover the waste heat discharged into the condenser by units. The new heating model that two units are in series arrangement can increase the heat efficiency and the heating capacity of the units.
引文
[1]Li CZ, Shi YM, Huang XH. Sensitivity analysis of energy demands on performance of CCHP system [J]. Energy Conversion and Management,2008,(49):3491-3497.
    [2]Lazzarin RM, Gasparellat A. New ideas for energy utilization in combined heat and power with cooling:Ⅱ. Applications[J]. Applied Thermal Engineering,1997,5(17):479-500.
    [3]孙奉仲,杨祥良,高明等编著.热电联产技术与管理[M].北京:中国电力出版社,2007:18-45.
    [4]Hernandez-Santoyo J, Sanchez-Cifuentes A. Trigeneration: an alternative for energy savings [J]. Applied Energy,2003, (76):219-227.
    [5]Beer JM. High efficiency electric power generation:The environmental role [J]. Progress in Energy and Combustion Science.2007, (33):107-134.
    [6]Piacentino A, Cardona F. An original multi-objective criterion for the design of small-scale polygeneration systems based on realistic operating conditions [J]. Applied Thermal Engineering,2008, (28):2391-2404.
    [7]Ong'iro A, Ugursal VI, Taweel AM, et al. Thermodynamic simulation and evaluation of a steam CHP plant using ASPEN PLUS [J]. Applied Thermal Engineering,1996, (16):263-271.
    [8]Burtl GM, Elders IM, Galloway SJ, et al. Assessment of highly distributed power systems using an integrated simulation approach[J]. Power and Energy,2008,(222):657-668.
    [9]Marik K, Schindler Z, Stluka P. Decision support tools for advanced energy management [J]. Energy,2008, (33):858-873.
    [10]Houwing M, Ajah AN, Heijnen PW, et al. Uncertainties in the design and operation of distributed energy resources:The case of micro-CHP systems [J]. Energy,2008, (33):1518-1536.
    [11]Smith MA, Few PC, Twidells JW. Technical and operational performance of a small-scale, combined heat-and-Power (CHP) plant[J]. Energy,1995(20): 1205-1214.
    [12]Gupta MK, Kaushik SC. Exergy analysis and investigation for various feed water heaters of direct steam generation solar -thermal power plant [J]. Renewable Energy.2010,10(35):1228-1235.
    [13]Kanoglu M, Dincer I. Performance assessment of cogeneration plants [J]. Energy Conversion and Management,2009,50:76-81.
    [14]杨旭中,郭晓亮,康慧编著.热电联产规划设计手册[M].北京:中国电力出版社,2009:57-79.
    [15]Aikens CH. Facility Location Models for Distribution Planning [J]. European Journal of Operational Research.1985,22:263~279.
    [16]Monteiro E, Moreira NA, Ferreira S. Planning of micro-combined heat and power systems in the Portuguese scenario[J]. Applied Energy,2009, (86):290-298.
    [17]丹麦经济与商务事务部,Bendt Bendtsen月麦区域供热:百年经验.区域供热,2005,4(1):27-39.
    [18]丹麦能源发展及对我国的启示.节能与环保,2007,8(2):4-6.
    [19]Blanco-Marigorta AM, Sanchez-Henriquez MV, Pena-Quintana JA. Exergetic comparison of two different cooling technologies for the power cycle of a thermal power plant [J]. Energy,2010,1-7.
    [20]Zaleta-Aguilar A, Correas-Uson L, Kubiak-Szyszka J, et al. Concept on thermoeconomic evaluation of steam turbines [J]. Applied Thermal Engineering, 2007, (27):457-466.
    [21]Sahoo PK. Exergoeconomic analysis and optimization of a cogeneration system using evolutionary programming [J]. Applied Thermal Engineering,2008, 10(28):1580-1588.
    [22]Regulagadda P, Dincer I, Naterer GF. Exergy analysis of a thermal power plant with measured boiler and turbine losses [J]. Applied Thermal Engineering,2010,30:970-976.
    [23]Hamed OA, Al-Washmi H A, Al-Otaib HA. Thermoeconomic analysis of a power/water cogeneration plant [J]. Energy,2006, (31):2699-2709.
    [24]Alvarado S, Gherardelli C. Exergoeconomic optimization of a cogeneration plant [J]. Energy.1994,19(12):1225-1233.
    [25]Silveira JL, Tuna CE, Lamas WQ, et al. A contribution for thermoeconomic modelling:A methodology proposal [J]. Applied Thermal Engineering.2010, (30):1734-1740.
    [26]Ishida M, Ji J. Graphical exergy study on single stage absorption heat transformer [J]. Applied Thermal Engineering.1999, (19):1191-1206.
    [27]周少祥,胡三高.总能系统与能源利用的统一性的性能评价指标体系[J].动力工程,2001,21(1):1069-1077.
    [28]Bandyopadhyay S, Varghese J, Bansal V. Targeting for cogeneration potential through total site integration [J]. Applied Thermal Engineering.2010,3(30):6-14.
    [29]周少祥,胡三高,程金明.能源利用的环境影响评价指标的统一化研究[J].工程热物理学报,2006,27(1):5-8.
    [30]Li H, Fu L, Geng KC, Jiang Y. Energy utilization evaluation of CCHP systems [J]. Energy and Buildings.2006, (38):253-257.
    [31]Kanoglu M, Dincer I. Performance assessment of cogeneration plants [J]. Energy Conversion and Management.2009,10(50):76-81.
    [32]薛志峰,刘晓华,付林,等.一种评价能源利用方式的新方法[J].太阳能学报,2006,27(4):349-355.
    [33]郭家宝.热电联产机组燃料成本分摊和节能效益评价方法探讨[J].中国电力2003,36(3):78-80.
    [34]刘殿海,杨勇平,杨昆,等.分布式量系统的综合评价[J].工程热物理学报, 2005,26(3):382-384.
    [35]Fu L, Zhao XL, Zhang SG, et al. Performance study of an innovative natural gas CHP system [J]. Energy Conversion and Management,2010, (52):321-328.
    [36]付林,江亿,张世钢.基于Co-ah循环的热电联产集中供热方法[J].清华大学学报(自然科学版),2008,48(9):1377-1380,1412.
    [37]Puigjaner L. Process integration with combined heat and power(CHP) [J]. Applied Thermal Engineering,1997(17):1015-1034.
    [38]Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems [J]. Energy,2009(34):2175-2183.
    [39]Savola T, Keppo I. Off-design simulation and mathematical modeling of small-scale CHP plants at part loads [J]. Applied Thermal Engineering,2005 (25):1219-1232.
    [40]Carcasci C, Facchini B. A numerical method for power plant simulations [J]. Journal of Energy Resources Technology,1996(118):36-43.
    [41]Harvey S, Carcasci C, Berntsson T. Gas turbines in district heating combined heat and power systems:influence of performance on heating costs and emissions [J]. Applied Thermal Engineering,2000 (12):1075-1103.
    [42]Sundberg G, Henning D. Investments in combined heat and power plants: influence of fuel price on cost minimised operation [J]. Energy Conversion and Management,2002(43):639-650.
    [43]Sundberg G, Karlsson BG. Interaction effect in optimising a municipal energy system [J]. Energy,2000(25):877-891.
    [44]Benonysson A, Bohm B, Ravn HF. Operational optimization in a district heating system [J]. Energy Conversion and Management,1995 (36):297-314.
    [45]Haghifam MR, Manbachi M. Reliability and availability modeling of combined heat and power (CHP) systems [J]. Electrical Power and Energy Systems,2010: 1-9.
    [46]严俊杰,李勤道,刘继平,等.热网加热器运行性能对供热机组经济性影响的定量分析[J].热力发电,2001,(4):36-38.
    [47]Chuang CC, Sue DC. Performance effects of combined cycle power plant with variable condenser pressure and loading [J]. Energy,2005,1(30):1793-1801.
    [48]杨承,杨泽亮,蔡睿贤.基于全工况性能的冷热电联产系统效率指标比较[J].中国电机工程学报,2008,28(2):8-13.
    [49]张晓晖,陈钟颀.热电冷联产系统的能耗特性.中国电机工程学报,2007,27(5): 93-98.
    [50]张晓东,王加璇,高波,等.关于汽轮发电机组热经济学边际成本的研究[J].中国电机工程学报,2003,23(5):140-143.
    [51]Katsigiannis PA, Papadopoulos DP. A systematic computational procedure for assessing small-scale cogeneration application schemes [C]. POWERENG2007 International Conference on Power Engineering-Energy and Electrical Drives Proceedings, Setubal, Portugal,2007.
    [52]Boljevic S, Noel B. Impact of combined heat and power plant on thermal and electrical energy supply for small and medium size enterprises [C].42nd International Universities Power Engineering Conference, Brighton, England,2007.
    [53]David VE, Klein M. High Efficiency Combined Heat and Power Solutions [C]. EIC Climate Change 2006 Conference, Canada,2006.
    [54]田玉卓,闫全英,赵秉文.供热工程[M].北京:机械工业出版社,2008:255-256.
    [55]徐二树,宋之平,彭峰,等.200MW热电联产机组的能耗分析[J].华北电力大学学报,2002,29(1):85-90.
    [56]Kalinin EK, Dreitser GA. Heat Transfer Enhancement in Heat Exchangers [J]. Advances in Heat Transfer.1998, (31):159-332.
    [57]张建业,徐述.热电联产项目中机组的选型及参数确定方法[J].电力设备,2008,9(1):23-25.
    [58]金家东,湛波,张宝库.大型热网加热器性能分析[J].黑龙江电力,1999,21(6):57-58.
    [59]刘国军,王鸿昌,孔令勤.大型热网加热器设计运行经验[J].电站系统工程,1999,15(6):24-26.
    [60]付胜宗.大型固定管板式热网加热器的设计与制造[J].东方电气评论,1998,12(4):230-232.
    [61]钱颂文.《换热器设计手册》[M].北京:化学工业出版社,2002:59.
    [62]邱丽霞.热力发电厂[M].北京:中国电力出版社,2008:234-235.
    [63]章熙民,任泽霈.传热学[M].北京:中国建筑工业出版社,2002:276.
    [64]徐大懋,邓德兵,王世勇,陈伟.汽轮机的特征通流面积及弗留格尔公式改进[J].动力工程学报,2010,30(7);473-477.
    [65]徐大懋.汽轮机及其系统技术讲座:第九章透平机组特征通流面积及其应用[R].北京:华北电力大学
    [66]Lund H. Implementation of Energy-Conservation Policies:the Case of Electric Heating Conversing in Denmark [J]. Applied Energy,1996,64(4):117-127.
    [67]Aikens CH. Facility Location Models for Distribution Planning [J]. European Journal of Operational Research,1985,22:263-279.
    [68]李红华.提高对多种品位能量利用的认识,促进能量高效利用[J].节能,2007,7(1): 14-16.
    [69]Franco A, Casarosa C. On some perspectives for increasing the efficiency of combined cycle power plants[J]. Applied Thermal Engineering,2002, (22): 1501-1518.
    [70]Gustavsson L, Johansson B. Cogeneration:One way to use biomass efficiently[J]. Heat Recovery Systems and CHP,1994,14(2):117-127.
    [71]周少祥,胡三高,程金明.能源利用的环境影响评价指标的统一化研究[J].工热物理学报,2006,27(1):5-8.
    [72]周少祥,宋之平.论能源利用的评价基准[J].工热物理学报,2008,29(8):1267-1271.
    [73]林汝谋,金红光,蔡睿贤.燃气轮机总能系统及其能的梯级利用原理[J].燃 气轮机技术,2008,28(1):1-12.
    [74]Casisi M, Pinamonti P, Reini M. Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems[J]. Energy,2009,34(12):2175-2183.
    [75]金红光,张国强,高林,林汝谋.总能系统理论研究进展与展望[J].机械工程学报,2009,45(3):39-48.
    [76]葛莉瑶,胡三高,徐鸿.合理用能原则及两类应用的分析[J].华北电力技术,2005, (6):30-32.
    [77]Mago PJ, Fumo N, Chamra LM. Performance analysis of CCHP and CHP systems operating following the thermal and electric load. International Journal of Energy Research,2009,33(9):852-864.
    [78]Savola T, Fogelholm CJ. MINLP optimisation model for increased power production in small-scale CHP plants[J]. Applied Thermal Engineering,2007, 27(1):89-99.
    [79]Haghifam MR, Manbachi M. Reliability and availability modelling of combined heat and power (CHP) systems [J]. Electrical Power and Energy Systems,2010: 1-9.
    [80]纪军,刘涛,金红光.热力循环及总能系统学科发展战略思考[J].中国科学基金,2007,6:327-332.
    [81]Kuosa M, Kaikko J, Koskelainen L. The impact of heat exchanger fouling on the optimum operation and maintenance of the Stirling engine[J]. Applied Thermal Engineering,2007,27(10):1671-1676.
    [82]薛志峰,刘晓华,付林,江亿.一种评价能源利用方式的新方法[J].太阳能学报,2006,27(4):349-355.
    [83]Bassily AM. Modeling, numerical optimization and irreversibility reduction of a dual-pressure reheat combined-cycle [J]. Applied Energy,2005,2(81):127-151.
    [84]丁学俊.多压凝汽器的应用与最优化设计.华东电力,1994,22(4):11-14.
    [85]曹志猛,徐慧芳,肖汉才,罗可.600 MW超临界机组采用双压凝汽器的研究[J].长沙理工大学学报(自然科学版),2007,4(4):60-63.
    [86]谭欣星,周文涛.多压凝汽器供热的研究[J].长沙理工大学学报(自然科学版),2008,5(4):48-52.
    [87]Zhi MX, Shan RY. A Design Optimization of Multi-pressure Condensers [J]. AES of ASME,1995,35:441-447.
    [88]胡玉清,马先才.我国热电联产领域现状及发展方向[J].黑龙江电力,2008,30(1): 79-80.
    [89]胡洪华,居文平,黄廷辉.大型电站双背压凝汽器优化运行的研究和实践[J].热力发电,2003,(3):8-11.
    [90]Salam B, McNeil DA, Burnside BM. Pressure drop measurements in a low pressure steam condenser with a horizontal bundle of staggered tubes[J]. Applied Thermal Engineering,2004, (24):1365-1379.
    [91]郜时旺,杨沫,何坚忍,危师让.多背压凝汽器熵产分析[J].中国电机工程 学报,1998,18(4):349-355.
    [92]徐志明,杨善让,杨沫.多背压凝汽器的优化[J].中国电机工程学报,1994,14(4): 14-18.
    [93]何坚忍.串并联供热装置:中国,200520020735.7[P].2006.07.12.
    [94]Al-Rabghi OM, Beirutty M, Akyurt M, at el. Recovery and utilization of waste heat[J]. Heat Recovery Systems and CHP,1993,13(5):463-470.
    [95]Casci C, Gaia M. Heat pump enhanced gas turbine cogeneration [J]. Energy, 1984,9(7):555-564.
    [96]双良节能.国内最大余热回收热泵系统正式投入运营[EB/OL]. Jiangyin: 2010[2011-03-06]. http://www.shuangliang.com/new_show.asp?id=123.
    [97]陈东,谢继红.热泵技术及其应用[M].北京:化学工业出版社,2006:200-216.
    [98]Malinowska W, Malinowski L. Parametric study of exergetic efficiency of a small-scale cogeneration plant incorporating a heat pump [J]. Applied Thermal Engineering.2003, (23):459-472.
    [99]Kato Y, Sasaki Y, Yoshizawa Y. Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system [J]. Energy,2005, (30) 2144-2155.
    [100]Minea V, Chiriac F. Hybrid absorption heat pump with ammonia/water mixture Some design guidelines and district heating application [J]. International Journal of Refrigeration.2006,6(29):1080-1091.
    [101]谢鸣,朱振军,赵肃铭,等.凝汽式汽轮机低真空供热参数的确定[J].热能动力工程,1994,9(1):32-36.
    [102]高岩,付林,燕达,等.利用电厂循环冷却水的暖通空调方案比选[J].暖通空调,2007(1):52-54.
    [103]Song ZP. Total energy system analysis of heating [J]. Energy(Oxford),2000, 25(9):807-822.
    [104]沈士一,庆贺庆,康松等.汽轮机原理[M].北京:中国电力出版社,2006:164-174.
    [105]中国动力工程学会.火力发电设备技术手册第二卷汽轮机[M].北京:机械工业出版社,2007:4-34-4-36.
    [106]Florides GA, Kalogirou SA, Tassou SA, et al. Design and construction of a LiBr-water absorption machine [J]. Energy Conversion and Management, 2003, (44):2483-2508.
    [107]吴业正.制冷原理及设备[M].西安:西安交通大学出版社,1997:141-180.
    [108]Sun DW. Thermodynamic design data and optimumdesign maps for absorption refrigeration systems[J]. Applied Thermal Engineering,1997,17(3): 211-221.
    [109]Chen L. Irreversible absorption heat-pump and its optimal performance [J]. Applied Energy,2005,81(1):55-71.
    [110]Shin Y, Seo JA, Cho HW, et al. Simulation of dynamics and control of a double-effect LiBr-H2O absorption chiller [J]. Applied Thermal Engineering, 2009,(29):2718-2725.
    [111]王磊,陆震.澳化锂溶液h-ξ图的扩展[J].流体机械,2001,29(7):58-60.
    [112]贾明生.溴化锂水溶液的几个主要物性参数计算方程[J].湛江海洋大学学报,2002,22(3):52-58.
    [113]Patek J, Klomfar J. Solid-liquid phase equilibrium in the systems of LiBr-H2O and LiCl-H2O[J]. Fluid Phase Equilibria,2006, (25):138-149.
    [114]Kaita Y. Thermodynamic properties of lithium bromide-water solutions at high temperatures [J]. International Journal of Refrigeration,2001, (24):374-390.
    [115]Kaynakli O. The first and second law analysis of a lithium bromide/water coil absorber [J]. Energy,2008, (33):804-816.
    [116]Patek J, Klomfar J. A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range [J]. International Journal of Refrigeration,2006, (29):566-578.
    [117]Arzoz D, Rodriguez P, Izquierdo M. Experimental study on the adiabatic absorption of water vapor into LiBr-H2O solutions [J]. Applied Thermal Engineering,2005, (25):797-811.
    [118]Liu XH, Jiang Y, Xia JJ, et al. Analytical solutions of coupled heat and mass transfer processes in liquid desiccant air dehumidifier/ regenerator [J]. Energy Conversion and Management,2007, (48):2221-2232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700