不同IL-15基因转染对NCI-H446细胞免疫生物学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肿瘤是严重威胁人类生命健康的重大疾病,免疫功能与肿瘤的发生发展密切相关。随着对肿瘤发生、发展和治疗的研究,尤其是细胞与分子水平的研究逐步深入,转染抗瘤相关细胞因子基因,已成为探索肿瘤免疫的新热点。肿瘤免疫主要是细胞免疫,CD8~+细胞毒T细胞(CD8~+CTL)和NK细胞是细胞免疫的主体抗瘤细胞。IL-15是1994年发现,与IL-2有许多重叠生物活性的细胞因子;是能显著提高CD8~+CTL细胞和NK细胞增殖和杀瘤活性,而备受关注的抗瘤细胞因子。虽然已有一些关于IL-15基因转染肿瘤细胞对其在动物体内成瘤影响的报道,但原型IL-15基因转染的研究未达到预期的抗瘤效果,曾怀疑是其长信号肽影响分泌所致;转染促其分泌信号肽的改型IL-15基因研究也未达到预期结果。由于已知:CD8~+CTL杀瘤识别的抗原,需要肿瘤细胞表面的HLA I类分子提呈;CD8~+CTL的杀瘤功能活化,需要肿瘤细胞表面HLA II类分子提呈抗原激活的CD4~+Th细胞辅助;NK细胞杀瘤,需要肿瘤细胞对其杀伤敏感;肿瘤细胞表达NK细胞活化性受体NKG2D的配体MICA,可活化NK细胞对肿瘤细胞的杀伤;IFN-γ能活化CD8~+CTL细胞和NK细胞,并能促进HLA I类和II类分子表达。为此,本研究在已成功构建三种不同IL-15基因转染NCI-H446细胞(TC)模型基础上,研究不同IL-15基因转染,对NCI-H446细胞的HLA I类和II类分子及MICA基因表达、NK杀伤敏感性、诱导T细胞杀瘤和IFN-γ分泌的影响,从基因转染对肿瘤细胞免疫生物学特性改变的角度,揭示其肿瘤免疫的意义,为IL-15基因转染的抗瘤研究提供新的实验和理论依据。方法:
     1以野生株NCI-H446细胞(WC)为对照,分别检测不同IL-15基因转染对NCI-H446细胞的HLA I类和II类分子表达(直接免疫荧光FCM法)及对NK杀伤敏感性(MTT法)的影响。
     2在有或无实验选定无独立诱导PBMC增殖作用剂量IL-2存在下,分别
Objective: Tumor threatens seriously the life and health of human. The immunofunction has a close relation with the generation and development of tumor. The anti-tumor cytokine gene transfections have become the new focus on exploring tumor immunity. CD8~+CTL and NK cells are important anti-tumor effectors. IL-15 shares similar biological activities with IL-2, and promotes the proliferation and anti-tumor effects of CD8~+CTL and NK cells greatly. Although the effect of IL-15 gene transfections on tumor had been reported, it was not satisfied. It was doubted that the inhibitory effect of the long signal peptide on IL-15 secretion was involved, but the modified IL-15 gene transfections with signal peptide that can increase IL-15 secretion was not satisfied either. It was known that the tumor antigen recognized by CD8~+CTL was presented by HLA I molecules on surface of tumor cells, the activation killing tumor of CD8~+CTL needed help of CD4~+Th activated by tumor antigen which was presented by HLA II molecules on the surface of tumor cells, NK cells only killed sensitive tumor cells, MICA(the ligand of NK cell activatory receptor NKG2D) expressed on tumor cells could activate the tumor-killing function of NK cells, and IFN-γcould activate CD8~+CTL and NK cells and up-regulate the expression of HLA I and HLA II molecules. Therefore, based on the three models of IL-15 gene transfective NCI-H446 cells (TC), we studied the effects of different IL-15 gene transfections into NCI-H446 on the expression of HLA I, HLA II and the MICA mRNA, on the NK sensitivity, on the inducing T cells to kill tumor cells, and on the IFN-γsecretion. So it would reveal implication of tumor immunity, and provide experimental and theoretic evidence in point of immunobiological characteristics of tumor cells changed by IL-15 gene transfections.
     Methods:
引文
1 Fehniger TA, Cooper MA, Caligiuri MA. IL-2 and IL-15 : immunotherapy for cancer. Cytokine Growth Factor Rev, 2002, 13(2): 169~183
    2 党娜娜, 范桂香, 朱勇, 等. IL-2 和 IL-15 协同调节 T 细胞的增殖和LAK 细胞的杀伤活性. 免疫学杂志, 2003, 19(3): 175~177
    3 Yoshihara K, Yajima T, Kubo C, et al. Role of interleukin 15 in colitis induced by dextran sulphate sodium in mice. Gut, 2006, 55(3): 334~341
    4 Diab A, Cohen AD, Alpdogan O, et al. IL-15: targeting CD8+ T cells for immunotherapy. Cytotherapy, 2005, 7(1): 23~35
    5 Hazama S, Noma T, Wang F, et al. Tumor cells engineered to secrete IL-15 augment anti-tumor immune responses in vivo. Br J cancer, 1999, 80(9): 1420~1426
    6 Yoshida Y, Tasaki K, Miyauchi M, et al. Impaired tumorigenicity of humanpancreatic cancer cells retrovirally transduced With IL-12 or IL-15 gene. Cancer Gene Ther, 2000, 7(2): 324~331
    7 Orengo AM, Di Carlo E, Comes A, et al. Tumor Cells Engineered With IL-12 and IL-15 Genes Induce Protective Antibody Responses In nude mice. J Immunol, 2003, 171(2): 569~575
    8 Meazza R, Gaggero A, Neglia F, et al. Expression of two IL-15 mRNA isoforms in human tumors does not correlate with secretion: role of different signal peptides. Eur J Immunol, 1997, 27(5): 1049~1054
    9 Suzuki K, Nakazato H, Matsui H, et al. NK cell-mediated anti-tumor immune response to human prostate cancer cell, PC-3: immunogene therapy using a highly secretable form of IL-15 gene transfer. J Leukoc Biol, 2001, 69(4): 531~537
    10 Decker WK, Xing D, Li S, et al. Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help. Vaccine, 2006, 24(16): 3203~3216
    11 Pouniotis DS, Apostolopoulos V, Pietersz GA. Penetratin tandemly linked to a CTL peptide induces anti-tumour T-cell responses via a cross-presentation pathway. Immunology, 2006, 117(3): 329~339
    12 Yokouchi H, Chamoto K, Wakita D, et al. Tetramer-blocking assay for defining antigen-specific cytotoxic T lymphocytes using peptide-MHC tetramer. Cancer Sci, 2006, 97(2): 148~154
    13 Bubenik J. MHC class I down-regulation: tumour escape from immune surveillance? Int J Oncol, 2004, 25(2): 487~491
    14 Seliger B. Strategies of tumor immune evasion. BioDrugs, 2005, 19(6): 347~354
    15 Bubenik J. MHC class I down regulation, tumour escape from immune surveillance and design of therapeutic strategies. Folia Biol (Praha) , 2005, 51(1): 1~2
    16 张征峥, 王润田, 王 丽, 等. 三种不同 IL-15 基因转染 NCI-H446 细胞模型的建立与鉴定. 免疫学杂志, 2005, 21(4): 331~333, 337
    17 Wan YL, Zheng SS, Jia CK, et al. Expression of 4-1BB molecule on peripheral blood T cells in liver transplanted patients and its clinical implication Hepatobiliary Pancreat. Dis Int, 2003, 2(1): 38~43
    18 Meazza R, Luigi P, Patrizia N, et al. Gene transfer of a secretable form of IL-15 in murine adenocarcinoma cells: effects on tumorigenicity, metastatic potential and immune response. Int J Cancer, 2000, 87(4): 574~581
    19 Shen YQ, Cui LX, He W, et al. Antitumor effects of human IL-15 gene modified lung cancer cell line. Chinese Journal of Cancer Research, 1997, 9(4): 240~244
    1 Gelbard A, Garnett CT, Abrams SI, et al. Combination Chemotherapy and Radiation of Human Squamous Cell Carcinoma of the Head and Neck Augments CTL-Mediated Lysis. Clin Cancer Res, 2006, 12(6): 1897~1905
    2 Van Hall T, Wolpert EZ, van Veelen P, et al. Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med, 2006, 12(4): 417~424
    3 Liu K, Caldwell SA, Greeneltch KM, et al. CTL Adoptive Immunotherapy Concurrently Mediates Tumor Regression and Tumor Escape. J Immunol, 2006, 176(6): 3374~3382
    4 Yajima T, Nishimura H, Sad S, et al. A novel role of IL-15 in early activation of memory CD8+CTL after reinfection. J Immunol, 2005, 174(6): 3590~3597
    5 Roychowdhury S, May KF Jr, Tzou KS, et al. Failed adoptive immunotherapy with tumor-specific T cells: reversal with low-dose interleukin 15 but not low-dose interleukin 2. Cancer Res, 2004, 64(21): 8062~8067
    6 Decker WK, Xing D, Li S, et al. Double loading of dendritic cell MHC class I and MHC class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help. Vaccine, 2006, 24(16): 3203~3216
    7 Pouniotis DS, Apostolopoulos V, Pietersz GA. Penetratin tandemly linked to a CTL peptide induces anti-tumour T-cell responses via a cross-presentation pathway. Immunology, 2006, 117(3): 329~339
    8 Xiang J, Huang H, Liu Y. A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol, 2005, 174(12): 7497~7505
    9 张征峥, 王润田, 王丽, 等. 三种不同IL-15基因转染NCI-H446细胞模型的建立与鉴定. 免疫学杂志, 2005, 21(4): 331~333, 337
    10 丁军颖, 王润田, 张征峥, 等. 不同 IL-15 转染对 NCI-H446 HLA-I 和HLA-II 表达及 NK 敏感性的影响. 免疫学杂志, 2005, 21(6): 468~470
    11 吴雄文, 梁智辉, 主编. 实用免疫学实验技术. 湖北: 科学技术出版社,第一版, 2002: 241~242
    12 Wan YL, Zheng SS, Jia CK, et al. Expression of 4-1BB molecule on peripheral blood T cells in liver transplanted patients and its clinical implication Hepatobiliary Pancreat. Dis Int, 2003, 2(1): 38~43
    13 Koido S, Hara E, Torii A, et al. Induction of antigen-specific CD4- and CD8-mediated T-cell responses by fusions of autologous dendritic cells and metastatic colorectal cancer cells. Int J Cancer, 2005, 117(4): 587~595
    14 Dorothee G, Vergnon I, El Hage F, et al. In situ sensory adaptation of tumor-infiltrating T lymphocytes to peptide-MHC levels elicits strong antitumor reactivity. J Immunol, 2005, 174(11): 6888~6897
    15 金礼吉, 张红梅, 戴峰, 等. 端粒酶RNA 基因在白细胞中表达的研究. 生物医学工程学杂志, 2003, 20(12): 76~78
    16 郑云郎. 机体献血后的自身调节及营养补充. 生物学教学, 2005, 30(1): 64~65
    17 Gravisaco MJ, Mongini C, Alvarez E, et al. IL-2, IL-10, IL-15 and TNF are key regulators of murine T-cell lymphoma growth. Int J Mol Med, 2003, 12(4): 627~632
    18 Onu A, Pohl T, Krause H, et al. Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol, 1997, 158(1): 255~262
    19 Araki A, Hazama S, Yoshimura K, et al. Tumor Secreting high levels of IL-15 induces specific immunity to low immunogenic colon adenocarcinoma via CD8+ T cells. Int J Mol Med, 2004, 14(4): 571~576
    20 Meazza R, Lollini PL, Nanni P, et al. Gene transfer of a secretable form of IL-15 In murine adenocarcinoma cells: effects on tumorigenicity, metastatic potential and Immune response. Int J Cancer, 2000, 87(4): 574~581
    21 Kimura K, Nishimura H, Hirose K, et al. Immunogene therapy of murine fibrosarcoma using IL-15 gene with high translation efficiency. Eur J Immunol, 1999, 29(5): 1532~1542
    22 Yoshimuta T. Gene therapy for murine lung cancer using an adenoviral vector expressing Interleukin-15. Kurume Med J, 2004, 51(3-4): 225~233
    23 Tasaki K, Yoshida Y, Miyauchi M, et al. Transduction of murine colon carcinoma cells with IL-15 gene induces antitumor effect in immunocompetent and immunocompromised hosts. Cancer Gene Therapy, 2000, 7(2): 255~261
    24 Hazama S, Noma T, Wang F, et al. Tumor cells engineered to secrete IL-15 augment anti-tumor immune responses in vivo. Br J Cancer, 1999, 80(9): 1420~1426
    25 Shen YQ, Cui LX, He W, et al. Antitumor effects of human IL-15 gene modified lung cancer cell line. Chinese Journal of Cancer Research, 1997, 9(4): 240~244
    1 颜卫华. NK 细胞受体研究进展. 国外医学免疫学分册, 2002, 25(4): 191~194
    2 池永斌. NK 细胞中的信号传导. 国外医学免疫学分册, 2005, 28(2): 89~93
    3 张彩, 田志刚, 侯桂华, 等. 肿瘤细胞 HLA-I 类分子表达对 NK 抗性的影响及 IFN-γ 的调节作用. 中华肿瘤杂志, 2001, 23(5): 369~372
    4 Bene L, Bodnar A, Damjanovich S, et al. Membrane topography of HLA I, HLA II, and ICAM-1 is affected by IFN-gamma in lipid rafts of uveal melanomas. Biochem Biophys Res Commun, 2004, 322(2): 678~683
    5 张惠珍, 张笑人, 王颖, 等. 肿瘤细胞 HLA 分子的表达及 IFN-γ 的调控作用. 细胞与分子免疫学杂志, 2001, 17(5): 497~498
    6 Kelly MN, Kenneth BG, Litjen T, et al. IFN-γ activated primary murine astrocytes express B7 costimulatory molecules and prime native antigen-specific T cells. J Immunol, 1997, 158(2): 614~621
    7 Le JM, Hau JC. Production of soluble HLA class I molecules by IFN-gamma-induced colon adenocarcinoma cells. Int J Cancer, 1995, 60(4): 576~581
    8 Lum, Lohrengel B, Hilken G, et al. Woodchuck gamma interferon up-regulates major histocompatibility complex class I transcription but is unable to deplete wood-chuck hepatitis virus replication intermediates and RNAs in persistently infected woodchuck primary hepatoytes. J Virol,2002, 76(1): 58~67
    9 Ibrahim E C, Guettra N, Lacombe M J, et al. Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma. Cancer Res, 2001, 61(18): 6838~6845
    10 Eason D D, Coppla D, Livingston S, et al. Loss MHC II inducibility in hyperplastic tissue in RB-defective mice. Cancer Lett, 2001, 17(2): 209~214
    11 于晓红, 刘祥麟, 马洁羽, 等. 人肺腺癌细胞 γ-干扰素基因的转染及特性分析. 浙江大学学报, 2004, 33(2): 125~128
    12 Salesse S, Lagarde V, Ged C, et al. Retroviral coexpression of IFN-alpha and IFN-gamma gene and inhibitory effects in chronic myeloid leukemia cells. Interferon Cytokine Res, 2000, 20(6): 577~587
    13 丁军颖, 王润田, 张征峥, 等. 不同 IL-15 转染对 NCI-H446 HLA-I 和HLA-II 表达及 NK 敏感性的影响. 免疫学杂志, 2005, 21(6): 468~470
    14 Armeanu S, Bitzer M, Lauer UM, et al. Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res, 2005, 65(14): 6321~6329
    15 Clayton A, Tabi Z. Exosomes and the MICA-NKG2D system in cancer. Blood cells Mol Dis, 2005, 34(3): 206~213
    16 Jamieson AM, Diefenbach A, Mc Mahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity, 2002, 17(1): 19~29
    17 龚卫娟, 范丽安. MICA 基因研究进展. 国外医学遗传学分册, 2001, 24(4): 184~188
    18 Zou Y, Bresnahan W, Taylor RT, et al. Effect of human cytomegalovirus on expression of MHC class I-related chains A. J Immunol, 2005, 174(5): 3098~3104
    19 Qi J, Peng P, Dai MH, et al. Cytotoxicity of MICA-reactive V delta 1gamma delta T cells towards epithelial tumor cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2004, 26(1): 1~7
    20 张征峥, 王润田, 王丽, 等. 三种IL-15基因转染NCI-H446细胞模型的建立与鉴定. 免疫学杂志, 2005, 21(4): 331~333, 337
    21 张园园, 王青青, 王建莉, 等. NK受体KIR生物学功能的研究进展. 免疫学杂志, 2005, 21(3): 262~264
    22 Stefan Bauer, Veronika Groh, Jun Wu, et al. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science, 1999, 285(5428): 727~729
    23 陈佳, 洪水声, 刘兰英. NKG2D 免疫受体及其配体的作用. 生物技术, 2005, 15(2): 95~97
    24 许秀芳. HLA-E. 国外医学免疫学分册, 2002, 25(5): 234~237
    25 Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood, 2003, 102(4): 1389~1396
    26 Salih HR, Rammensee HG, Steinle A, et al. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol, 2002, 169(8): 4098~4102
    27 McCoy L, Tsunoda I, Fujinami RS. Multiple sclerosis and virus induced immune responses: Autoimmunity can be primed by molecular mimicry and augmented by bystander activation. Autoimmunity, 2006, 39(1): 9~19
    28 Ma XT, Xu B, An LL, et al. Vaccine with beta-defensin 2-transduced leukemic cells activates innate and adaptive immunity to elicit potent antileukemia responses. Cancer Res, 2006, 66(2): 1169~1176
    29 Shimizu K, Adachi K, Teramoto A. Growth hormone enhances natural killer cell activity against glioma. J Nippon Med Sch, 2005, 72(6): 335~340
    30 颜卫华, 范丽安. NK 细胞受体 KIR2DL4 的结构与功能. 免疫学杂志, 2003, 19(3): S53~56
    31 潘博, 陈益和, 朱立平, 等. NK细胞受体与相关配体. 中国医学科学院学报, 2002, 24(6): 650~652
    32 Zhang C, Zhang J, Sun R, et al. Opposing effect of IFN-gamma and IFN-alpha on expression of NKG2 receptor: negative regulation ofIFN-gamma on NK cells. Int Immunopharmacol, 2005, 5(6): 1057~1067
    1 Diefenbach A, RauletDH. Innate immune recognition by stimulatory immunoreceptors. Curr Opin Immunol, 2003, 15(1): 37~44
    2 Jamieson AM, Diefenbach A, Mc Mahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity, 2002, 17(1): 19~29
    3 Bahram S, M izuki N, Inoko H, et al. Nucleotide sequence of the human MHC class I MICA gene. Immnogenetics, 1996, 44(1): 80~81
    4 Fukami-Kobayashi K, Shiina T, Anzai T, et al. Genomic evolution of MHC class I region in primates. Proc Natl Acad Sci U S A, 2005, 102(26): 9230~9234
    5 Dimasi N, Moretta L, Biassoni R. Structure of the Ly49 family of natural killer (NK) cell receptors and their interaction with MHC class I molecules. Immunol Res, 2004, 30(1): 95~104
    6 龚卫娟, 范丽安. MICA 基因研究进展. 国外医学遗传学分册, 2001, 24(4): 184~188
    7 Guo ZH, Fan LA. Progress in research of MIC gene family. Foreign Med Genet, 1998, 21(6): 293~297
    8 Zhang Y, Lazaro AM, Lavingia B, et al. Typing for all known MICA alleles by group specific PCR and SSOP. Hum Immunol, 2001, 62(6): 620~631
    9 Stephens H. MICA and MICB genes: can the enigma of their polymorphism be resolved. Trends Immunol, 2001, 22(7): 378~385
    10 赵久达, 耿排力. MICA 基因研究进展及与疾病的关系. 国外医学.遗传学分册, 2005, (5): 64~68
    11 Nassima F, Philippe P, Laurent L, et al. MICA haplotypic diversity. Immunogenetics, 1999, 49(6): 557~560
    12 马庆, 陈亮, 郭晓俊, 等. 中国南方汉族人群 MICA-TM 基因座等位基因分布. 临床输血与检验, 2004, 6(4): 241~243
    13 冯明亮, 张景怡, 谢军华, 等. 广东汉族人群 MICA 和 MICB 微卫星多态性分布. 中华医学遗传学杂志, 2004, 21(3): 294~296
    14 Ota M, Katsuyama Y, Mizuki N, et al. Trinucleotide repeat polymorphism with in exon 5 of the MICA gene(MHC class I chain-related gene A): allele frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kaza, Khastan, Iranian, Saudi, Arabian, Greek and Italian. Tissue Antigen, 1997, 49(5): 448~454
    15 龚卫娟, 范丽安, 杨珏琴, 等. MICA 基因第 2、3 和 4 外显子多态性与血清阴性脊柱关节病关联研究. 中华风湿病学杂志, 2002, 6(4): 246-8
    16 肖翠英, 张思仲, 程璐, 等. 中国四个人群中 MICA 基因多态性研究, 中华医学遗传学杂志, 2000, 17(6): 424~428
    17 郭忠慧, 许玲娣, 范丽安, 等. 上海汉族人群 MICA 基因第 5 外显子微卫星多态性研究. 中华医学遗传学杂志, 2000, 17(5): 332~335
    18 张彩, 许晓群, 张建华, 等. MHC I 类样分子(MICA)在部分肿瘤组织和肿瘤细胞系中的表达及临床意义. 中国肿瘤临床, 2005, 32(21):1208~1211
    19 Groh V, Rhinehart R, Secrist H, et al. Broad tumor-associated expression and recognition by tumor-derided γδT cells of MICA and MICB. Proc Natl Acad Sci USA, 1999, 96(12): 6879~6884
    20 Seliger B, Abken H, Ferrone S. HLA-G and MICA expression in tumors and their role in anti-tumor immunity. Trends Immunol, 2003, 24(2): 82~87
    21 Cerwenka A, Lanier L. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigen, 2003, 61(5): 335~343
    22 He Y, Li YP, Li SF, et al. Effect of hypoxia/reoxygenation (H/R) onexpression of MICA and MICB in human hepatocytes. Sichuan Da Xue Xue Bao Yi Xue Ban, 2005, 36(2): 157~160
    23 Stefan Bauer, Veronika Groh, Jun Wu, et al. Activation of NK Cells and T Cells by NKG2D, a Receptor for Stress-Inducible MICA. Science, 1999, 285(5428): 727~729
    24 何英, 李幼平, 李胜富, 等. 缺氧再给氧损伤对人肝细胞 MHC I 分子相关抗原表达变化的影响. 四川大学学报(医学版), 2005, 36(2): 157~160
    25 Raffaghello L, Prigione I, Airoldi I, et al. Downregulation and/or release of NKG2D ligands as immune evasion strategy of human neuroblastoma. Neoplasia, 2004, 6(5): 558~568
    26 Salih HR, Rammensee HG, Steinle A, et al. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol, 2002, 169(8): 4098~4102
    27 Zou Y, Bresnahan W, Taylor RT, et al. Effect of human cytomegalovirus on expression of MHC class I-related chains A. J Immunol, 2005, 174(5): 3098~3104
    28 Friese MA, Wischhusen J, Wick W, et al. RNA interference targeting transforming growth factor-beta enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness, and abrogates tumorigenicity in vivo. Cancer Res, 2004, 64(20): 7596~7603
    29 Jinushi M, Takehara T, Tatsumi T, et al. Expression and role of MICA and MICB in human hepatocellular carcinomas and their regulation by retinoic acid. Int J Cancer, 2003, 104(3): 354~361
    30 张彩, 田志刚, 王郡甫, 等. 膜型/分泌型 MICA 对 NK 细胞受体NKG2D的相反调节效应及其对NK细胞受体谱的影响. 中华微生物学和免疫学杂志, 2004, 24(2): 107~111
    31 Qi J, Zhang J, Zhang S, et al. Immunobilized MICA could expand human Vdelta1 gamma delta T cells in vitro that displayed major histocompatibility complex class I chain-related A- dependent cytotoxicity to human epithelial carcinomas. Scand J Immunol, 2003, 58(2): 211~220
    32 班贵宏, 褚嘉祐, 冒长峙, 等. MICA 基因与系统性红斑狼疮关系的研究. 中华医学遗传学杂志, 2002, 19(4): 298~301
    33 Marin ML, Savioli CR, Yamamoto JH, et al. MICA polymorphism in a sample of the Sao Paulo population, Brazil. Eur J Immunogenet, 2004, 31(2): 63~71
    34 Lo SS, Lee Y J, Wu CW, et al. The increase of MICA gene A9 allele associated with gastric cancer and less schirrous change. Br J Cancer, 2004, 90(9): 1809~1813
    35 Chung-Ji L, Yann-Jinn L, Hsin-Fu L, et al. The increase in the frequency of MICA gene A6 allele in oral squamous cell carcinoma. J Oral Pathol Med, 2002, 31(6): 323~328
    36 Kennedy C, Naipal A, Gruis NA, et al. MICA gene polymorphism is not associated with an increased risk for skin cancer. J Invest Dermatol, 2002, 118(4): 686~691
    37 马凌娣, 蒋纪恺. 自然杀伤细胞受体家族 NKG2D 研究进展. 国外医学﹒生理、病理科学与临床分册, 2003, 23(4): 425~427
    38 Gilfillan S, Ho EL, Cella M, et al. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat Immunol, 2002, 3(12): 1150~1155
    39 Germain C, Larbouret C, Cesson V, et al. MHC class I-related chain A conjugated to antitumor antibodies can sensitize tumor cells to specific lysis by natural killer cells. Clin Cancer Res, 2005, 11(20): 7516~7522
    40 Maasho K, Opoku-Anane J, Marusina AI, et al. NKG2D is a costimulatory receptor for human naive CD8+T cells. J Immunol, 2005, 174(8): 4480~4484
    41 Sconocchia G, Lau M, Provenzano M, et al. The antileukemia effect of HLA-matched NK and NK-T cells in chronic myelogenous leukemia involves NKG2D-target-cell interactions. Blood, 2005, 106(10): 3666~3672
    42 Busche A, Goldmann T, Naumann U, et al. Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression ofmajor histocompatibility complex class I chain-related gene A. Hum Gene Ther, 2006, 17(2): 135~146
    43 Andre P, Castriconi R, Espeli M, et al. Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol, 2004, 34(4): 961~971
    44 Zhang C, Zhang J, Sun R, et al. Opposing effect of IFNgamma and IFNalpha on expression of NKG2 receptor: negative regulation of IFNgamma on NK cells. Int Immunopharmacol, 2005, 5(6): 1057~1067
    45 Clayton A, Tabi Z. Exosomes and the MICA-NKG2D system in cancer. Blood cells Mol Dis, 2005, 34(3): 206~213
    46 Salih HR, Antropius H, Gieseke F, et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia . Blood, 2003, 102(4): 1389~1396
    47 Vivier E, Tomasello E, Paul P. Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol, 2002, 14(3): 306~311
    48 Long EO. Versatile signaling through NKG2D. Nat Immunol, 2002, 3(12): 1119~1120
    49 Watson NF, Spendlove I, Madjd Z, et al. Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer, 2006, 118(6): 1445~1452
    50 Girlanda S, Fortis C, Belloni D, et al. MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells Costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res, 2005, 65(16): 7502~7508
    51 Molinero LL, Fuertes MB, Girart MV, et al. NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes. J Immunol, 2004, 173(9): 5583~5590
    52 Romanski A, Bug G, Becker S, et al. Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia. Exp Hematol, 2005, 33(3): 344~352
    53 Carbone E, Neri P, Mesuraca M, et al. HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood, 2005, 105(1): 251~258
    54 Diefenbach A, Tomasello E, Lucas M, et al. Selective association with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nature Immunol, 2002, 3(12): 1142~1149
    55 Diefenbach A, Jensen ER, Jamieson AM, et al. Rae 1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature, 2001, 413(6852): 165~171
    56 Eleme K, Taner SB, Onfelt B, et al. Cell surface organization of stress-inducible proteins ULBP and MICA that stimulate human NK cells and T cells via NKG2D. J Exp Med, 2004, 199(7): 1005~1010
    57 Wiemann K, Mittrucker HW, Feger U, et al. Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol, 2005, 175(2): 720~729
    58 Cerwenka HJ, Baron JL, Lanier LL. Ectopic expression of retinoic acid early inducible-1gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA, 2001, 98(20): 11521~11526
    59 Groh V, Wu J, Yee C, et al. Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature, 2002, 419 (6908): 734~738
    60 Qi J, Peng P, Dai MH, et al. Cytotoxicity of MICA-reactive V delta 1gamma delta T cells towards epithelial tumor cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2004, 26(1): 1~7
    1 Onu A, Pohl T, Krause H, et al. Regulation of IL-15 secretion via the leader peptide of two IL-15 isoforms. J Immunol, 1997, 158(1): 255~262
    2 Lollini PL, Palmieri G, De Giovanni C, et al. Expression of interleukin 15 (IL-15) in human rhabdomyosarcoma, osteosarcoma and Ewing's sarcoma. Int J Cancer, 1997, 71(5): 732~736
    3 Zambricki E, Shigeoka A, Kishimoto H, et al. Signaling T-cell survival and death by IL-2 and IL-15.Am J Transplant, 2005, 5(11): 2623~2631
    4 Grabstein KH, Eisenman J, Shanebeck K, et al. Cloning of a T cell growthfactor that interacts with the beta chain of the interleukin-2 receptor. Science, 1994, 264(5161): 965~968
    5 Meazza R, Gaggero A, Neglia F, et al. Expression of two interleukin-15 mRNA isoforms in human tumors does not correlate with secretion: role of different signal peptides. Eur J Immunol, 1997, 27(5): 1049~1054
    6 李文新, 张学光. IL-15 与自身免疫病. 中国医学科学院学报, 2003, 25(2): 228~232
    7 Tejman-Yarden N, Zlotnik M, Lewis E, et al. Renal cells express a functional interleukin-15 receptor. Nephrol Dial Transplant, 2005, 20(3): 516~523
    8 Mortier E, Bernard J, Plet A, et al. Natural, proteolytic release of a soluble form of human IL-15 receptor alpha-chain that behaves as a specific high affinity IL-15 antagonist. J Immunol, 2004, 173(3): 1681~1688
    9 Nishiwaki T, Ina K, Goto H, et al. Possible involvement of the interleukin-15 and interleukin-15 receptor system in a heightened state of lamina propria B cell activation and differentiation in patients with inflammatory bowel disease. J Gastroenterol, 2005, 40(2): 128~136
    10 Baranda L, de la Fuente H, Layseca-Espinosa E, et al. IL-15 and IL-15R in leucocytes from patients with systemic lupus erythematosus. Rheumatology (Oxford), 2005, 44(12): 1507~1513
    11 Chen J, Niu H, He W, et al. Antitumor activity of expanded human tumor-infiltrating gammadelta T lymphocytes. Int Arch Allergy Immunol, 2001, 125(3): 256~263
    12 Yoshihara K, Yajima T, Kubo C, et al. Role of interleukin 15 in colitis induced by dextran sulphate sodium in mice. Gut, 2006, 55(3): 334~341
    13 Mortier E, Quemener A, Vusio P, et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J Biol Chem, 2006, 281(3): 1612~1619
    14 Lorenzen I, Dingley AJ, Jacques Y, et al. The structure of the interleukin-15alpha receptor and its implications for ligand binding. J BiolChem, 2006, 281(10): 6642~6647
    15 Vamosi G, Bodnar A, Vereb G, et al. IL-2 and IL-15 receptor alpha-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc Natl Acas Sci USA, 2004, 101(30): 11082~11087
    16 Van Belle T, Grooten J. IL-15 and IL-15Ralpha in CD4+T cell immunity. Arch Immunol Ther Exp (Warsz), 2005, 53(2): 115~126
    17 Friedmann MC, Migone TS, Russell SM, et al. Different interleukin 2 receptor β-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc Natl Acad Sci USA, 1996, 93(5): 2077~2082
    18 Lu J, Giuntoli RL 2nd, Omiya R, et al. Interleukin 15 promotes antigen independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes. Clin Cancer Res, 2002, 8(12): 3877~3884
    19 Diab A, Cohen AD, Alpdogan O, et al. IL-15: targeting CD8+T cells for immunotherapy. Cytotherapy, 2005, 7(1): 23~35
    20 Takeuchi E. Induction by Interleukin-15 of human killer cell against lung cancer cell lines and its regulatory mechanisms. Jpn J Cancer Res, 1996, 87(12): 1251~1258
    21 Gravisaco MJ, Mongini C, Alvarez E, et al. IL-2, IL-10, IL-15 and TNF are key regulators of murine T-cell lymphoma growth. Int J Mol Med, 2003, 12(4): 627~632
    22 Kim DK, Kim JH, Kim YT, et al. The comparison of cytotoxic T-lymphocyte effects of dendritic cells stimulated by the folate binding protein peptide cultured with IL-15 and IL-2 In solid tumor. Yonsei Med J, 2002, 43(6): 691~700
    23 Brentjens RJ, Latouche JB, Santos E, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and Interleukin-15. Nat Med, 2003, 9(3): 279~286
    24 Cooper MA, Fehinger TA, Turner SC, et al. Human natural killer cells: a unique Innate Immunoregulatory role for the CD56(bright) subset. Blood,2001, 97(10): 3146~3151
    25 伍参荣, 谢朝晖, 贺双腾, 等. 七味白术散对 HRV 感染乳鼠 NK、IFN-γ、IL-4 的影响. 中国中医药信息杂志, 2002, 9(4): 23~24
    26 Perez SA, Mahaira LG, Demirtzoglou FJ, et al. A potential role for hydrocortisone in the positive regulation of IL-15-activated NK-cell proliferation and survival. Blood, 2005, 106(1): 158~166
    27 Endsley JJ, Endsley MA, Estes DM. Bovine natural killer cells acquire cytotoxic/effector activity following activation with IL-12/15 and reduce Mycobacterium bovis BCG in infected macrophages. J Leukoc Biol, 2006, 79(1): 71~79
    28 Yajima T, Nuishimura H, Wajjwalku W, et al. Overexpression of Interleukin-15 In vivo enhances antitumor activity against MHC class I-negative and –positive malignant melanoma through augmented NK activity and cytotoxic T-cell response. Int J Cancer, 2002, 99(4): 573~578
    29 Fehniger TA, Suzuki K, Ponnappan A, et al. Fatal leukemia in interleukin-15 transgenic mice follows early expansions in NK and memory-phenotype CD8+T cells. J Exp Med, 2001, 193(2): 219~231
    30 Gays F, Martin K, Kenefeck R, et al. Multiple cytokines regulate the NK gene complex-encoded receptor repertoire of mature NK cells and T cells. J Immunol, 2005, 175(5): 2938~2947
    31 d'Ettorre G, Andreotti M, Carnevalini M, et al. Interleukin-15 enhances the secretion of IFN-gamma and CC chemokines by natural killer cells from HIV viremic and aviremic patients. Immunol Lett, 2006, 103(2): 192~195
    32 Evans R, Fuller JA, Christianson G, et al. IL-15 mediates anti-tumor effects after cyclophosphamide injection of tumor-bearing mice and enhances adoptive immunotherapy: the potential role of NK cell subpopulations. Cell Immunol, 1997, 179(1): 66~73
    33 Kobayashi H, Carrasquillo JA, Paik CH, et al. Differences in pharmacokinetics and biodistribution, between interleukins 2 and 15. FASEB J, 1999, 13(1): A1143~1157
    34 Kobayashi H, Carrasquillo JA, Paik CH, et al. Differences ofbiodistribution, pharmacokinetics, and tumor targeting between interleukins 2 and 15. Cancer Res, 2000, 60(13): 3577~3583
    35 Leclercq G, Debacker V, de Smedt M, et al. Differential effects of interleukin-15 and interleukin-2 on differentiation of bipotential T/natural killer progenitor cells. J Exp Med, 1996, 184(2): 325~336
    36 Munger W. DeJoy SQ, Jeyaseelan R Sr, et al. Studies evaluating the antitumor activity and toxicity of interleukin-15, a new T cell growth factor: comparison with interleukin-2. Cell Immunol, 1995, 165(2): 289~293
    37 Lewko WM, Smith TL, Bowman DJ, et al. Interleukin-15 and the growth of tumor derived activated T-cells. Cancer Biother, 1995, 10(1): 13~20
    38 Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer.Cytokine Growth Factor Rev, 2002,13(2): 169~183
    39 Demirci G, Li XC. IL-2 and IL-15 exhibit opposing effects on Fas mediated apoptosis. Cell Mol Immunol, 2004, 1(2): 123~128
    40 Yoshimuta T. Gene therapy for murine lung cancer using an adenoviral vector expressing Interleukin-15. Kurume Med J, 2004, 51(3~4): 225~233
    41 Tasaki K, Yoshida Y, Miyauchi M, et al. Transduction of murine colon carcinoma cells with IL-15 gene induces antitumor effect in immunocompetent and immunocompromised hosts. Cancer Gene Ther, 2000, 7(2): 255~261
    42 Hazama S, Noma T, Wang F, et al. Tumor cells engineered to secrete IL-15 augment anti-tumor immune responses in vivo. Br J Cancer, 1999, 80(9): 1420~1426
    43 Yoshida Y, Kentaro T, Motohiro M, et al. Impaired tumorigenicity of human pancreatic cancer cells retrovirally transduced with IL-12 or IL-15 gene. Cancer Gene Ther, 2000, 7(2): 324~331
    44 Araki A, Hazama S, Yoshimura K, et al. Tumor Secreting high levels of IL-15 induces specific immunity to low immunogenic colon adenocarcinoma via CD8+T cells. Int J Mol Med, 2004, 14(4): 571~576
    45 Meazza R, Lollini PL, Nanni P, et al. Gene transfer of a secretable form of IL-15 In murine adenocarcinoma cells: effects on tumorigenicity, metastatic potential and Immune response. Int J Cancer, 2000, 87(4): 574~581
    46 Bamford RN, DeFilippis AP, Azimi N, et al. The 5’ untranslated region, signal peptide, and the coding sequence of the carboxyl terminus of IL-15 participate In Its multifaceted translational control. J Immunol, 1998, 160(9): 4418~4426
    47 Di Carlo E, Meazza R, Basso S, et al. Dissimilar anti-tumour reactions induced by tumour cells engineered with the interleukin-2 or interleukin-15 gene in nude mice. J Pathol, 2000, 191(2): 193~201
    48 Kimura K, Nishimura H, Hirose K, et al. Immunogene therapy of murine fibrosarcoma using IL-15 gene with high translation efficiency. Eur J Immunol, 1999, 29(5): 1532~1542
    49 Lasek W, Basak G, Switaj T, et al. Complete tumor regressions induced by vaccination with IL-12 gene-transduced tumour cells in combination with IL-15 in a melanoma model in mice. Cancer Immunol Immunother, 2004, 53(4): 363~372
    50 Croce M, Meazza R, Orengo AM, et al. Sequential immunogene therapy with interleukin-12 and interleukin-15-engineered neuroblastoma cells cures metastatic disease in syngeneic mice. Clin Cancer Res, 2005, 11(2): 735~742
    51 Di Carlo E, Comes A, Basso S, et al. The combined action of IL-15 and IL-12 gene transfer can induce tumor cell rejection without T and NK cell Involvement. J Immunol, 2000, 165(6): 3111~3118
    52 Orengo AM, Di Carlo E, Comes A, et al. Tumor Cells Engineered with IL-12 and IL-15 Genes Induce Protective Antibody Responses In nude mice. J Immunol, 2003, 171(2): 569~575
    53 Yadavalli GK, Chien JW, Wener KM, et al. Interleukin 12 and interferon-gamma synthetic deficiency is associated with dendritic cell cytopenia after cardiac surgery. Shock, 2005, 24(1): 26~33
    54 Comes A, Di Carlo E, Musiani P, et al. IFN-gamma-independent synergistic effects of IL-12 and IL-15 induce anti-tumor immune responses in syngeneic mice. Eur J Immunol, 2002, 32(7): 1914~1923
    55 Kishida T, Asada H, Itokawa Y, et al. IL-21 and IL-15 genetic transfer synergistically augments therapeutic antitumor immunity and promotes regression of metastatic lymphoma. Mol Ther, 2003, 8(4): 552~558
    56 Garcia-Lora A, Algarra I, Garrido F. MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol, 2003, 195(3): 346~355.
    57 王知力, 董宝玮. 免疫细胞在恶性肿瘤免疫治疗中应用的研究. 医学综述, 2004, 10(12): 705~707
    58 Zhang J, Sun R, Wei H, et al. Characterization of Interleukin-15 gene-modified human natural killer cells: Implication for adoptive cellular Immunotherapy. Haematologica, 2004, 89(3): 338~347
    59 Tourkova IL, Yurkovetsky ZR, Gambotto A, et al. Increased function and survival of IL-15-transduced human dendritic cells are mediated by up-regulation of IL-15 Rα and Bcl-2. J Leukoc Biol, 2002, 72(5): 1037~1045
    60 Vera M, Razquin N, Prieto J, et al. Intratumeral Injection of Dendritic Cells Transduced By an SV40-Based Vector Expressing Interleukin-15 Induces Curative Immunity Mediated by CD8+T Lymphocytes and NK cells. Mol Ther, 2005, 12(5): 950~959
    61 丁军颖, 王润田, 张征峥, 等. 不同 IL-15 转染对 NCI-H446 HLA-I 和HLA-II 表达及 NK 敏感性的影响. 免疫学杂志, 2005, 21(6): 468~470
    62 Shen YQ, Cui LX, He W, et al. Antitumor effects of human IL-15 gene modified lung cancer cell line. Chinese Journal of Cancer Research, 1997, 9(4): 240~244

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700