信用衍生品定价的传染模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信用衍生品是20世纪90年代出现的一种从其他资产(如贷款、债券或其他金融资产)衍生而来的金融产品,它将信用风险从市场风险中分离出来,并使信用风险变得可以交易和管理,从根本上改变了传统的信用风险管理模式。上个世纪的亚洲金融危机和2007年的美国次贷危机说明传染风险对信用衍生品转移、重组和转换信用风险尤为重要,因此,我们需要通过优化模型不断地对信用衍生品深入研究,从而使理论成果可以更好地指导实践。本文主要研究带有交易对手风险和利率风险的债券、信用违约互换(Credit Default Swap,简称CDS)和异质组合CDO的定价问题。
     本文按两条线来研究债券和CDS定价的传染模型,一条线是公司的违约与无违约期限结构是否有关,在不同的利率模型下考虑有交易对手风险的债券和CDS的定价问题;另一条线是在原生―丛生和环形违约两种框架下将模型拓展。前两章对信用衍生品的背景和概念作了介绍,总结了信用资产间关于相关性的三种约化模型和描述传染风险的三种方法,也就是计算有传染风险的资产的违约时间联合分布的方法。第三章详细介绍了短期利率和远期利率两种模型,并着重讨论了三种短期利率模型,推导出一些重要的结果。第四章和第五章按照上面两条线对债券和CDS进行定价,得到了其价格的显式表示,并做了数值模拟。第六章研究异质参考组合的CDO的定价,同时也给出了算例。第七章是对本文研究的总结及一些展望。本文在已有成果的基础上,基于违约强度过程对信用衍生品的定价进行研究,主要得到了如下新的结果:
     第一、将Jarrow和Yu (2001)的模型进行推广。Jarrow和Yu引入了交易对手风险的概念,与以往的强度模型不同,解决了传统的结构化方法和约化方法所忽略的问题。他们提出了原生-丛生模型和环形违约模型,并在原生-丛生框架下研究了债券和CDS的定价,其中的无风险利率服从Vasicek模型。我们将模型推广,一方面,若公司违约和短期利率无关,短期利率服从其它仿射过程(如CIR模型和Hull-White模型),分别在原生-丛生和环形违约框架下给出了债券和两方违约的信用违约互换(CDS)的显式价格。另一方面,若公司违约和宏观因子利率相关,同样在上述两种框架下考虑利率服从不同仿射扩散过程,分别给出了债券和CDS的显式价格。
     第二、将Bai,Hu和Ye(2007)的模型进行推广。Bai,Hu和Ye首次提出衰减模型,考虑交易对手对违约影响的衰减效应。本文在原生-丛生和环形违约框架下分别研究可违约债券和CDS的定价,模型中短期利率满足仿射扩散过程。Bai,Hu和Ye (2007,2008)讨论了利率为常数和服从Vasicek模型的信用衍生品定价的衰减模型。本文考虑短期利率服从其它仿射模型(如CIR模型和Hull-White模型)的情形,利用Park(2008)的方法得到了有关随机利率的几个重要的随机微分方程,并利用它们研究公司违约和宏观因子利率相关时,带有衰减效应的债券和CDS的定价。其中在环形违约框架下,为了得到其显式价格,我们利用测度变换的方法计算公司的条件生存概率。
     第三、本文将上述两种模型进一步推广。前面的模型中短期利率都服从扩散过程,为了使模型更全面、更真实地反映实际市场,我们进一步考虑短期利率的跳扩散(Jump-diffusion)模型。同时,也考虑了交易对手风险对债券和CDS定价的影响。公司的违约与短期利率是有关的,在原生-丛生和环形违约框架下,本文分别得到了与利率相关的几个结果,进而推导出债券和CDS的显式价格,还对债券价格和CDS的价格做了数值模拟。
     第四、研究了带传染风险的异质组合的担保债务凭证(Collateralized Debt Obligations,简称CDO)的定价。CDO定价的关键是对参考资产组合违约损失的估计,已有的大多数违约损失模型都假设资产组合是同质的,如部分条件独立模型和Copula模型。受单资产信用衍生品风险模型的启发,本文将Bai,Hu和Ye (2007)的传染模型应用于CDO定价中,给出CDO各层的解析价格。CDO参考组合由两类无息债券组成,两类债券的发行公司间存在某种传染风险。另外,Zheng和Jiang(2009)提出一种违约相关的因子传染模型,模型的参考资产池中包含几类相互条件独立的资产组合,同一类中风险资产的违约具有传染性,作者运用总风险函数构造法计算出了违约时间的联合分布,并在同一类组合中资产违约概率和传染率都相等的前提下(同质假设)给出篮子CDS价格的解析表达式。从而启发我们将这种模型应用于CDO定价中,给出了与前面不同的异质组合的CDO价格。最后还给出了CDO的算例,数值模拟出各层的价格。
Credit derivatives were the financial assets derived from the loan, the bond or other assetsin 1990s. They separated the credit risk from market risk and made the credit risk be tradeableand manageable. The traditional management mode was changed. The financial crisis in thelast century and the occurrence of American subprime mortgage crisis further showed that thecontagious risk was important for transferring and reorganizing the credit risk. Therefore, weneed the fair valuation of credit derivatives and make the theory more helpful. The study on theirpricing is fundamental. This thesis focuses on the pricing of bonds and credit default swaps withcounterparty risk and the pricing of Collateralized Debt Obligations with heterogeneous portfolio.
     We study the pricing of bonds and credit default swaps from two aspects. One is that thedefaults of the assets depend on the short interest rate or not and the other is that we considerthe pricing respectively in the primary-secondary framework and looping default framework. Thefirst two chapters introduce the setting and notions of credit derivatives, the three correlated modeland three methods of computing the joint distribution of default times in the contagious model.Chapter 3 introduces the short interest rate and the forward interest rate in details. We take moreimportance on three types of the short interest rate: Vasicek model, CIR model and Hull-Whitemodel which are used in the following chapters. Chapter 4 and Chapter 5 discuss the pricing ofbonds and CDS from the two aspects above and give their explicit prices. Chapter 6 consider thepricing of CDO with heterogeneous portfolio and give an example. In this paper, we obtain somenew results by the intensity-based approach of default event as following: In this thesis, the mainresults are obtained with .
     Firstly, we extend the models in Jarrow and Yu (2001). They proposed the counterparty riskwhich was different from the traditional intensity-based model and solved the problems ignoredby the traditionally structural model and reduced-form model. They introduced primary-secondarymodel and priced bonds and CDS with Vasicek interest rate. We extend their models and considerother interest rate following diffusion processes. On the one hand, we price bonds and CDS whenthe defaults of firms are independent of the default-free term structure. On the other hand, wederive the prices of bonds and CDS when the defaults of firms depend on the default-free termstructure.
     Secondly, we extend the models in Bai, Hu and Ye (2007). They firstly introduced the conta- gious model with attenuation effect. We price bonds and CDS respectively in primary-secondarymodel and looping default model. Bai, Hu and Ye (2007,2008) only considered the interest rate asa constant and the Vasicek diffusion process. We discuss the other diffusion processes. By usingthe methods in Park (2008), we obtain some important differential equations on the interest rateand price bonds and CDS with a hyperbolic attenuation effect.
     Thirdly, we further generalize the above models and is extended by adding a hyperbolic at-tenuation effect. We consider the interest rate satisfying jump-diffusion process and obtain somenew results. Moreover, We obtain one explicit solution for bonds and CDS in the similar modelabove. Meanwhile, we make use of Matlab and Monte-Carlos simulation to get the price curves oftheir.
     At last, we study the contagious model of pricing CDO with heterogeneous portfolio. Thekey of pricing CDO is to valuate the credit risk of the reference assets. Until now, many results arebased on the homogeneous assumption, such as the conditionally independent model and Copulamodel. In this thesis, we apply the hyperbolic attenuation model of two parties in Bai, Hu andYe (2007) to price CDO and obtain the analytic form of CDO tranche’s price. In addition, weconsider the contagious model in Zheng and Jiang(2009). They only discussed the pricing of CDSwith many assets. We apply a comparatively simple model to the reference portfolio and obtainthe analytic price of CDO. Moreover, we give the example and the pricing curve of each tranche.
引文
[1] Jarrow, R.A., Yu, F.,Counterparty risk and the pricing of defaultable securities. Journal ofFinance, 2001 56(5): 1765-1799.
    [2] Bai, Y.F., Hu, X.H., Ye, Z.X., A model for dependent default with hyperbolic attenuationeffect and valuation of credit default swap. Applied Mathematics and Mechanics (EnglishEdition), 2007, 28(12): 1643-1649.
    [3]白云芬,信用风险传染模型和信用衍生品的定价.上海交通大学博士学位论文, 2008.
    [4] Park, H.S.: The survival probability of mortality intensity with jump-diffusion. Journal ofthe Korean Statistical Society, 2008, 37: 355-363.
    [5] Zheng, H., Jiang, L.S., Basket CDS pricing with interacting intensities. Finance Stoch.,2009, 13: 445-469.
    [6]范希文,孙建,信用衍生品理论与实务-金融创新中的机遇与挑战.中国经济出版社,2010.
    [7]张晓峰,信用违约互换定价的研究.上海交通大学硕士学位论文, 2010.
    [8]胡新华,叶中行,信用风险管理和信用衍生证券定价理论和应用. Workingpaper, 2007.
    [9]杨文瀚,王燕,信用风险管理新工具-信用衍生产品.统计与决策, 2005, 1:103-104.
    [10]史永东,赵永刚,信用衍生产品定价理论文献综述.世界经济, 2007, 30(11):80-96.
    [11]曾梓梁,吴鸣,国际信用衍生品市场的新动态与新进展.银行家, 2008, 4:81-83.
    [12]郝刚,张维,熊熊,信用衍生品定价及潜在风险研究综述.西南交通大学学报(社会科学版), 2008, 9(1):6-12.
    [13]吴建刚,中国衍生品市场概况与未来发展.金融与经济, 2009, 11:47-50.
    [14]罗剑,后危机时代全球衍生品市场发展趋势及中国竞争策略研究.新金融, 2010,5:31-36.
    [15]刘琼,郭晓军,信用衍生品定价理论回顾.现代商业, 2010, 26:49-50.
    [16] Harrison M., D. Kreps, Martingales and multiperiod securities markets. Journal of Eco-nomic Theory, 1979, 20:381-408.
    [17] Harrison, M., S. Pliska. Martingales and stochastic integrals in the theory of continuoustrading. Stochastics Processes and Their Applications, 1981, 11: 215-260.
    [18] Brennan M.J., E.S. Schwartz. Analyzing convertible bonds. Journal of Financial and Quan-titative Analysis, 1980, 15: 907-929.
    [19] Duffie J. D., K. J. Singleton. Modeling term structures of defaultable bonds. Review ofFinancial Studies, 1999, 12: 687-720.
    [20] Jarrow R.A., S.M.Turnbull. Pricing derivatives on financial securities subject to credit risk.Journal of Finance, 1995, 50: 53-85.
    [21] Berd, A.M., Recovery swaps. Journal of Credit Risk, 2005, 1(3): 61-70.
    [22] Liu, J., Naldi, M., Pedersen, C.M., An introduction to recovery products. Lehman BrothersQuantitative Credit Research Quarterly, 2005, 2005-Q3: 47-56.
    [23] Friedman, C., Huang, J., Sandow, S., Estimating conditional probability distributions ofrecovery rates: a utility-based approach. In Recovery Risk: The Next Challenge in CreditRisk Management, Altman, E., Resti, A., Sironi, A. (eds). Risk Books: London, 2005.
    [24] Ho¨cht, S., Zagst, R., Pricing credit derivatives under stochastic recovery in a hybrid model.Appl. Stochastic Models Bus. Ind., 2010, 26: 254-276.
    [25] Merton R. C. On the pricing of corporate debt: The risk structure of interest rates. Journalof Finance, 1974, 29: 449-470.
    [26] Black F., M. Scholes. The pricing of options and corporate liabilities. Journal of PoliticalEconomy, 1973, 81:637-54 .
    [27] Black F., J.C. Cox, Valuing corporate securities: Some effects of bond indenture provi-sions. Journal of Finance, 1976, 31: 351-367.
    [28] Longstaff, F.A., Schwartz, E.S., A simple to valuing risky and ?oating rate debt. Journalof Finance, 50 (1995), 789-819.
    [29] Zhou,C.S., A jump-diffusion approach to modeling credit risk and valuing defaultable Se-curities. Federal Reserve Board, Washington. D.C., 1997.
    [30] Steve, A.K., Amir, F.A., Using Brownian bridge for fast simulation of jump-diffusion pro-cesses and barrier options. Journal of Derivatives, 2002, 43-54.
    [31] Zhang, D., Roderick V.N., First passage time for multivariate jump-diffusion stochasticmodels with applications in finance. Manuscript submitted to DCDS, 2007, 1-10.
    [32] Kou, S.G., Wang, H., First passage times of a jump diffusion process. Adv. Appl.Prob.,2003, 35: 504-531.
    [33] Kou, S. G., Petrella, G., and Wang, H., Pricing path-dependent options with jump risk viaLaplace transforms. Kyoto Economic Review, 2005, 74: 1-23.
    [34] Jarrow R., D. Lando & S. Turnbull. A Markov model for the term structure of creditspreads. Review of Financial studies, 1997, 10: 481-523.
    [35] Lando D. On Cox processes and credit risky securities. The Review of Derivatives Re-search, 1998, 2(2): 99-120.
    [36] Duffie, D.,Pan, J., Singleton, K. ,Transform Analysis and Asset Pricing for Affine JumpDiffusions. Econometrica, 2000, 68: 1343-1376.
    [37] Duffie, D., Filipovic, D., Schachermayer, W., Affine Processes and Applications in Fi-nance. Annals of Applied Probability, 2003, 13: 984-1053.
    [38] Brody, D.C., Hughston, L.P. and Macrina, A.: Beyond hazard rates: a new framework forcredit-risk modelling. Working paper, King’s College London and Imperial College Lon-don (Version: July 7, 2005). Available at www.mth.kcl.ac.uk/ˉnmath/publications and atwww.defaultrisk.com.
    [39] Artzner P., F. Delbaen. Default risk insurance and incomplete markets, Math. Finance1995, 5:187-195.
    [40] Dellacherie, C., P. A. Meyer Probabilit′es et Potentiels. Chapitres 5‘a 8: Th′eorie desMartingales, Vol.1385 of Actualit′es Scientifiques et Industrielles. Paris: Hermann, 1980.
    [41] Giesecke, K., Correlated default with incomplete information. Journal of Banking and Fi-nance, 2004a, 28: 1521-1545.
    [42] Giesecke, K., Goldberg, L., Sequential defaults and incomplete information. Journal ofRisk, 2004b, 7: 1-26.
    [43] Guo,X., Jarrow,R., Zeng,Y., Information reduction in credit risks. 2005, available athttp://www.defaultrisk.com.
    [44] Giesecke,K., Default and information. Journal of Economic Dynamics & Control, 2006,30: 2281-2303.
    [45] Duffie D., M.Schroder & C. Skiadas. Recursive valuation of defaultable securities and thetiming of resolution of uncertainty. Ann. Appl. Prob., 1996, 6: 1075-1090.
    [46] Bielecki, T.R., Rutkowski, M., Credit Risk Modelling: Intensity Based Approach. TheNortheastern Illinois University, Working paper, 2000.
    [47] Bielecki T.R., M. Rutkowski. Credit Risk: Modelling, Valuation and Hedging. Springer-Verlag, Berlin, 2002.
    [48] Bluhm, C., Overbeck, L., Wagner, C., An introduction to credit risk modeling. New York:CHAPMAN & HALL/CRC, 2003.
    [49] Elizalde, A., Credit Risk Models I: Default Correlation in Intensity Models. Lon-don:King’s College, working paper, 2005. available at www.abelelizalde.com.
    [50] Li,D.X.On Default Correlation: A Copula function Approach. Journal of Fixed Income,2000, 9: 43-54.
    [51] Schonbucher, P.J., Taken to the limit: Simple and not-so-simple loan loss distributions.Wilmott magazine, 2004.
    [52] Schloegl, L., O’Kane, D., A note on the large homogeneous portfolio approximation withthe Student-t copula. Finance and Stochastics, to appear ,2005.
    [53] Moosbrucker,T., Pricing CDOs with Correlated Variance Gamma Distributions. Working-paper, University of Cologne, 2006.
    [54] Baxter, M., Dynamic modelling of single-name credits and CDO tranches. Working paper,Nomura Fixed Income Quant Group, 2006.
    [55] Gregory,J.,Credit Derivatives: The Definitive Guide.Risk Book, 2003.
    [56] Schonbucher,P.J., Credit Derivative Pricing Models.Wiley, New York, 2003.
    [57] Martin, R., Thompson, K., Browne, C., Taking to the saddle. Risk, June, 2001, 91-94.
    [58] Merino, S., Nyfeler, M., Calculating portfolio loss. Risk, August, 2002, 82-86.
    [59] Gregory, J., Laurent, J.P., I will survive. Risk, June, 2003, 103-107.
    [60] Debuysscher, A., Szego, M., The Fourier transform method - technical document.Workingpaper, Moody’s Investors Service, International Structured Finance Group, 2003.
    [61] Mina, J., Stern, E., Examples and applications of closed-form CDO Pricing. Workingpaper,RiskMetrics Group, 2003.
    [62] Das, S.R., Duffie, D., Kapadia, N., Saita, L., Common failings: how corporate defaults arecorrelated. J. Finance, 2007, 62: 93-117.
    [63] BCBS (Basel Committee on Banking Supervision): Studies on credit risk concentration.Workingpaper, 2006. http://www.bis.org/publ/bcbswp15.pdf.
    [64] Davis M., V. Lo. Modelling Default Correlation in Bond Portfolios. In Carol Alexander,editor, Mastering Risk Volume 2: Applications, 141-151. Financial Times Prentice Hall,2001.
    [65] Leung, S.Y., Kwork, Y.K., Credit default swap valuation with counterparty risk. KyotoEconomic Review, 2005, 74(1): 25-45.
    [66] Collin-Dufresne P., R.S. Goldstein & J. Hugonnier. A general formula for valuing default-able securities. Econometrica, 2004, 72(5):1377-1407.
    [67] Yu, F., Correlated Defaults in Reduced-Form Models. Workingpaper, University of Cali-fornia, Irvine, 2003.
    [68] Yu, F., Correlated Defaults and the Valuation of Defaultable Securities. Workingpaper,University of California, Irvine, 2004.
    [69] Yu, F., Correlated defaults in intensity-based models. Math. Finance, 2007, 17: 155-173.
    [70] Shaked,M., Shanthikumar, J.G., The multivariate hazard construction. Stoch. Process.Appl., 1987, 24: 241-258.
    [71] Leung, K. S., Kwok, Y. K., Contagion models with interacting default intensity processes.ICCM, II, 1-4, 2007.
    [72] Leung, K. S., Kwok, Y. K., Counterparty Risk for Credit Default Swaps: Markov ChainInteracting Intensities Model with Stochastic Intensity. Asia-Pacific Finan Markets, 2009,16: 169-181.
    [73] Jorion,P., Zhang, J., Credit Contagion from Counterparty Risk, Workingpaper, Universityof California at Irvine, University of Missouri at St. Louis, 2008.
    [74] Duffee, G. Estimating the price of default risk. Review of Financial Studies, 1999, 12:197-226.
    [75] Lu, Z. L., Default Contagion in Intensity-Based Models. B.Sc., Peking University, Workingpaper, 2008.
    [76] Schonbucher, P.J. and Schubert, D., Copula-dependent default risk in intensity models,Working paper, 2000.
    [77] Norros, I., A compensator representation of multivariate life length dis- tributions, withapplications, Scandinavian Journal of Statistics, 13:99-112, 1986.
    [78] Kusuoka, S., A remark on default risk models, Adv. Math. Econom., 1:69-82, 1999.
    [79] Herbertsson, A. and Rootzbn, II., Pricing kth-to-default swaps under default contagion: thematrix-analytic approach, Working paper, Nov. 2006.
    [80]洪永淼,林海,中国市场利率动态研究-基于短期国债回购利率的实证分析.中国金融学年会, 2004.
    [81] Merton, R.C., Theory of rational option pricing. Bell Journal of Economics and Manage-ment Science, 1973, 4: 141-183.
    [82] Vasicek, O., An equilibrium characterization of the term structure. Journal of FinancialEconomics, 1977, 5: 177-188.
    [83] Cox, J.C., Ingersoll, J.E., Ross, S.A., An analysis of variable rate loan contracts. Journalof Finance, 1980, 35: 389-403.
    [84] Cox, J.C., Ingersoll, J.E., Ross, S.A., A theory of the term structure of interest rates. Econo-metrica, 1985, 53: 385-407.
    [85] Brennan, M.J., Schwartz, E.S., Savings bonds, retractable bonds, and callable bonds. Jour-nal of Financial Economics, 1977, 3: 133-155.
    [86] Dothan, U.L., On the term structure of interest rates. Journal of Financial Economics, 1978,6: 59-69.
    [87] Constantinides, G.M., Ingersoll, J.E., Optimal bond trading with personal taxes. Journal ofFinancial Economics, 1984, 13: 299-335.
    [88] Schaefer, S., Schwartz, E.S., A two-factor model of the term structure: an approximateanalytical solution. Journal of Financial and Quantitatiue Analysis, 1984, 19: 413-424.
    [89] Longstaff, F.A., A nonlinear general equilibrium model of the term structure of interestrates. Journal of Financial Economics, 1989, 23: 195-224.
    [90] Hull, J., White, A., Pricing interest-rate derivative securities. Review ofFinancial Studies,1990, 3: 573-592.
    [91] Black, F., Karasinski, P., Bond and option pricing when short rates are lognormal. FinancialAnalysts Journal (July/August), 1991, 52-59.
    [92] Longstaff, F.A., Schwartz, E.S., Interest-rate volatility and the term structure: A two-factorgeneral equilibrium model. Journal of Finance, Forthcoming, 1992.
    [93] Dai, Q., Singleton, K., Term Structure Dynamics in Theory and Reality. Review of Finan-cial Studies, 2003, 16: 631-678.
    [94]谢赤,吴雄伟,基于Vasicek模型和CIR模型中的中国货币市场利率行为实证分析.中国管理科学, 2002, 3:22-25.
    [95] Chan, K.C., Karolyi,A.G., Longstaff, F.A., Sanders, A.B., An Empirical Comparisonof Alternative Models of the Short-Term Interest Rate. The Journal of Finance, 1992,XLVII(3): 1209-1227.
    [96] Hansen, L.P., Large sample properties of Generalized Method of Moments estimators.Econometrica, 1982, 50: 1029-1054.
    [97] Jamshidian, F., An exact bond option formula. Journal of Finance, 1989, 44: 205-209.
    [98] Gibson, R., Schwartz, E.S., Stochastic convenience yield and the pricing of oil contingentclaims. Journal of Finance, 1990, 45: 959-976.
    [99]范龙振,上交所债券利率期限结构与两因子Vasicek模型.复旦学报(自然科学版),2003, 5:773-778.
    [100] Dunn, K.B., McConnell, J.J., Valuation of GNMA mortgage-backed securities. JournalofFinance, 1981, 36: 599-616.
    [101] Ramaswamy, K., Sundaresan, S.M., The valuation of ?oating-rate instruments. Journal ofFinancial Econonzics, 1986, 17: 251-272.
    [102] Sundaresan, S.M., Valuation of swaps. Columbia University, Working paper, 1989.
    [103] Marsh, T.A., Rosenfeld, E.R., Stochastic processes for interest rates and equilibrium bondprices, Journal of Finance, 1983, 38: 635-646.
    [104] Brennan, M.J., Schwartz, E.S.,Analyzing convertible bonds, Journal of Financial andQuantitative Analysis, 1980, 15: 907-929.
    [105] Courtadon, Georges, The pricing of options on default-free bonds. Journal ofFinancia1 andQuantitative Analysis, 1982, 17: 75-100.
    [106] Cox, John C., Notes on option pricing I: constant elasticity of variance diffusions. StanfordUniversity, Working paper, 1975.
    [107]叶中行,林建忠,数理金融-资产定价与金融决策理论.科学出版社, 2004.
    [108]叶中行,王桂兰,林建忠,金融数学-衍生产品定价引论.北京:人民邮电出版社, 2006.
    [109] Choi, Y., Wirjanto, T., An analytic approximation formula for pricing zero-coupon bonds.Finance Research Letters, 2007, 4: 116–126.
    [110] Tangman, D.Y., Thakoor, N., Dookhitram, K., Bhuruth, M., Fast Approximationsof Bond Option Prices under CKLS Models. Finance Research Letters, 2011, doi:10.1016/j.frl.2011.03.002.
    [111] Shimko, D., Bounds of Probability, Risk, 1993, 6: 33-37.
    [112] Hull J., A. White. Pricing interest rate derivative securities. Review of Financial Studies,1999, 3: 573-592.
    [113] Yang, X.F., Yu, J.P., Li, S.H., Pricing model of interest rate swap with a bilateral defaultrisk. Journal of Computational and Applied Mathematics, 234 (2010) 512-517.
    [114] Cox, J.C., Ingersoll, J.E., Ross, S.A., An analysis of variable rate loan contracts, Journalof Finance, 1980, 35: 389-403.
    [115] Cox, J.C., Ingersoll, J.E., Ross, S.A., A theory of the term structure of interest rates. Econo-metrica, 1985, 53: 385–407.
    [116] Mallier, R., Alobaidi, G., Interest rate swaps under CIR. Journal of Computational andApplied Mathematics, 2004, 164-165,543-554.
    [117] Beliaeva, N., Nawalkha, S., Pricing American interest rate options under the jump-extended constant-elasticity- of-variance short rate models. Journal of Banking & Finance,2011, doi: 10.1016/j.jbankfin.
    [118] Heath, D., Jarrow, R., Morton, A., Bond pricing and the term structure of interest rates: Anew methodology for contingent claims valuations, Econometrica, 1992, 60: 77-105.
    [119] Davis M., V. Lo. Infectious defaults. Quantitive Finance, 1999, 1: 382-387.
    [120] Leung K.S. Essays on exotic option pricing and credit risk modeling. Ph.D Dissertation,Hong Kong University, 2006.
    [121] Shreve S.E. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.Springer, New York, 2004.
    [122] Jarrow, R.A., Lando, D., Yu, F.: Default risk and diversification: theory and empericalimplications. Mathematical Finance, 2005, 15(1): 1-26.
    [123]刘小莉,信贷组合中两组相关性的联合度量研究―违约相关性和信用风险与利率风险相关性.生产力研究, 2006, 7:85-87.
    [124]朱霞,刘松林,利率市场化背景下商业银行利率风险管理.金融理论与实践, 2010,2:40-43.
    [125] Chance, D.M., Default risk and the duration of zero coupon bonds. Journal of Finance,1990, 45(1):265-274.
    [126] Jarrow, R. A., Yildirim, Y., Valuing default swaps under market and credit risk correlation.The Journal of Fixed Income 2002, 11(March):7-19.
    [127] Acharya, V.V., Carpenter, J.N., Corporate bond valuation and hedging with stochastic inter-est rate and endogenous bankruptcy. The Review of Financial Studies, 2002, 15(5):1355-1383.
    [128] Tchuindjo, L., Closed-form solutions for pricing credit-risky bonds and bond options. Ap-plied Mathematics and Computation 217 (2011) 6133–6143.
    [129] Das, S.R., The surprise element: jumps in interest rates [J]. Journal of Econometrics. 2002,106: 27-65.
    [130]林海,郑振龙,中国利率期限结构:理论及应用.中国财经出版社, 2004.
    [131] Johannes, M., The Statistical and Economic Role of Jumps in Continuous-Time InterestRate Models. The Journal of Finance, 2004, 59(1): 227-260.
    [132] Cao, Y., Chi, G.T., Cheng, Y.Q., Forecasting jump size of interest rate with orderedProbit model. E -Business and E -Government (ICEE), 2011, ISBN: 978-1-4244-8691-5doi:10.1109/ICEBEG.2011.5881522
    [133] Hull, J.,White, A., Valuation of a CDO and an nth to Default CDS Without Monte CarloSimulation. Journal of Derivatives, 2004, 12(2):8-23.
    [134] Hull, J.,White, A., The Valuation of Correlation-Dependent Credit Derivatives Using aStructural Model. Journal of Credit Risk, 2010, 6(3):99-132.
    [135] Gordy, M.B., A risk-factor model foundation for ratings-based bank capital rules. Journalof Financial Intermediation, 2003, 12:199-232.
    [136] Duffie, D., Saita, L., Wang, K., Multi-period corporate default prediction with stochasticcovariates. Journal of Financial Economics, 2007, 83(3):635-665.
    [137] Hanson, S.J., Pesaran, M.H., Schuermann, T., Firm heterogeneity and credit risk diversifi-cation. Journal of Empirical Finance, 2008, 15: 583-612.
    [138] Pra, P.D., Tolotti, M., Heterogeneous credit portfolios and the dynamics of the aggregatelosses. Stochastic Processes and their Applications, 2009, 119: 2913-2944.
    [139] Shannon, C., A, Mathematical Theory of Communication. Bell Syst. Tech.J., 1948,27:379-423, 623-656.
    [140] McMillan, B., The Basic Theorem of Information Theory. Ann. Math. Statist, 1953,24:196-219.
    [141] Breiman, L., The Individual Ergodic Theorem of Information Theory. Ann. Math. Statist,1957, 28:309-811.
    [142] Breiman, L., A Correction to”The Individual Ergodic Theorem of Information Theory”.Ann. Statist, 1960, 31:809-810.
    [143] Chung, K.L., A note on the ergodic theorem of information theory. Ann. Math. Stat., 1961,32:612-614.
    [144] Cover, T.M., Thomas, J.A., Elements of Information Theory. Wiley: New York, 1991.
    [145] Chang, H.S., On ordinal comparison of policies in Markov reward processes.J.Optim.Theory Appl., 2004, 122(1): 207-217.
    [146] Chang, H.S., On convergence rate of the Shannon entropy rate of ergodic Markov chainsvia sample-path simulation. Statistics and Probability Letters, 2006, 76: 1261-1264.
    [147] Isaacson, D., Madsen, R., Markov Chains Theory and Applications. Wiley: New York,1976.
    [148]杨卫国.非齐次马氏链熵率存在定理.数学的实践与认识,1993,2: 86-90.
    [149]杨卫国,娄喜娟.可列非齐次马氏链熵率存在定理.河北建筑科技学院学报,1997,14(3): 53-57.
    [150]刘文,杨卫国.关于有限马氏链相对熵密度和随机条件熵的一类极限定理.应用数学学报,1995,18(2): 234-247.
    [151]张巍,不对称信息与风险投资―一个博弈分析框架.东北财经大学硕士学位论文,2002.
    [152]金永红,不对称信息下的风险投资契约安排问题研究.上海交通大学博士后学位论文, 2004.
    [153]叶中行,《信息论基础(第二版)》.高教出版社, 2007.
    [154]叶中行,周煦,徐云,投资组合的增长率及其极限定理.上海交通大学学报, 2005,39(6):1020-1024.
    [155]白云芬,叶中行,序列投资中的强偏差定理.上海交通大学学报, 2008, 42(12): 2056-2059.
    [156]叶中行,白云芬,信息论和股市.中国电子学会第十四届信息论学术年会论文集,2007, 879-882,广州.
    [157] Hu, Y., Ye, Z.X., Wang, L., Analytic Solution for Optimal Portfolio to Track the FinancialIndex. Proc of International Conference on Applied Statistics, Qingdao, China, 2009,July24-29.
    [158]张仁彦,李荣健,运用信息论探索金融风险形成的原因.审计文汇, 2000, 2:26-28.
    [159]黄佳军,蒋海.金融集聚、信息缺陷与金融风险形成机制分析.南方金融, 2010, 11:31-35.
    [160] Wang, A.J., Ye, Z.X., Credit Risky Securities Valuation under a Contagion Modelwith Interacting Intensities. Journal of Applied Mathematics, 2011, 20 pages,doi:10.1155/2011/158020.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700