不同基因型稻米营养保健品质及其利用技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对不同基因型水稻糙米的营养保健成分辅酶Q10、黄酮和氨基酸、维生素、矿物质以及发芽糙米中黄酮、γ-氨基丁酸等进行研究。主要结果如下:
     一、不同基因型稻米营养保健品质研究
     1、糙米辅酶Q10
     采取HPLC法对糙米中CoQ10的含量进行测定,并对测定技术进行了优化。用该技术测定了100个品种(种质资源)的辅酶Q10含量,变化范围为0.30±0.03 mg/kg~5.36±0.04mg/kg,品种之间糙米辅酶Q10含量呈极显著差异。含量最高的为4B233(5.36±0.04mg/kg),是最低含量的178.67倍,是平均含量的1.40倍,是恢复系蜀恢527(1.32±0.03 mg/kg)的4.06倍、镇恢084(0.77±0.15 mg/kg)的6.96倍、圭630(0.72±0.06 mg/kg)的7.44倍。国内第一次系统研究报道糙米辅酶Q10的测定研究。
     2.糙米黄酮
     测定了24个黑米、红米、常规白米的水稻品种中的糙米和糙米皮(米糠)中的黄酮含量,结果表明,品种之间黄酮含量呈极显著差异。含量最高的品种是闽紫香2号(MZX2 ,3867mg/kg),是平均数的3.70倍,是最低的63倍,是推广品种“佳禾早占”的50.0倍。早季水稻品种糙米中黄酮含量介于37~680 mg/kg之间,平均为252 mg/kg。米糠中黄酮含量介于276~6100 mg/kg之间,平均为1999 mg/kg。晚季水稻品种糙米中黄酮含量介于61~5867mg/kg之间,平均为1212 mg/kg。米糠中黄酮含量介于605~51123 mg/kg之间,平均为9911 mg/kg。品种之间糙米黄酮含量呈极显著差异。早、晚季米糠中黄酮含量均高于糙米。
     3.糙米氨基酸、维生素、矿物质
     对8个早籼杂交稻组合的糙米、精米氨基酸含量进行了研究。各组合的糙米氨基酸含量呈极显著差异。糙米氨基酸含量最高的是组合T优78150,比平均值高4.39%,比最少含量品种增加10.02%,比对照组合优I66增加4.41%。8个品种间糙米和精米的氨基酸总量分别为8.012~8.945%,6.976~7.748%,糙米必需氨基酸总量为2.842%~3.086%,精米为1.741%~2.698%,两者均呈极显著差异。糙米加工成精米的氨基酸含量损失严重。
     对20个水稻品种的糙米和精米的维生素B1、B2含量进行研究。品种间糙米与精米的维生素B1、B2含量都存在显著差异。糙米维生素B1含量最高的是京福1A/R41-496,含量为1.59%,比平均数增加40.71%,比最低含量增加72.83% ,比推广种优I66增加72.83%;维生素B2最高的是粤丰A/R41-135,含量为0.63%,比平均数增加10.14%,比最低含量的品种增加21.15% ,比推广种优I66增加16.67%。糙米维生素B1含量在1.59~0.92 mg/kg之间,维生素B2含量在0.63~0.51mg/kg之间;精米维生素B1含量在1.07~0.45mg/kg之间,维生素B2含量在0.43~0.35mg/kg之间。糙米经过加工成为精米后,维生素B1的含量降低3.19%~62.55%,维生素B2的含量降低22.89%~44.44%。
     20个水稻品种糙米中6种矿质元素的平均含量排序为:Ca>Mn>Fe>Zn>Cu>Se,其平均含量分别是:Ca为320.859、Mn为144.45、Fe为64.514、Zn为33.399、Cu为17.597、Se为0.077 mg/kg ;精米中6种矿质元素的平均含量排序为:Ca>Mn>Zn>Fe>Cu>Se,其平均含量分别为71.103、10.008、8.321、5.790、1.674、0.020 mg/kg。糙米中各元素含量均明显高于精米,差异最大的是Mn,糙米Mn中的含量是精米中的14.43倍,其次是Fe(11.14倍),第三是Cu(10.51倍),Ca、Zn、Se依次为4.51、4.01、3.85倍。
     不同基因型的糙米与精米中均还有黄酮和辅酶Q10,品种之间呈极显著差异。糙米的氨基酸、维生素、矿物质含量都极显著高于精米,且品种间含量呈极显著差异。
     二、高γ-氨基丁酸高黄酮香紫糯品种选育及其利用技术研究
     1、高黄酮黑糯香型“闽紫香2号(MZX2)”选育
     以总黄酮含量高达2052~3346mg/kg的闽紫香1号为亲本,Co60辐射培育农艺性状好、营养保健品质含量高的的“闽紫香2号”,克服闽紫香1号子母穗不均匀的缺点,主穗与分蘖穗均匀,提高了结实率和千粒重,产量可达501.22kg/667m2,,比对照闽紫香1号高16%。同时闽紫香2号的主穗、分蘖穗的结实率、千粒重和整精米率均较平衡,库源流协调,产量提高。
     闽紫香2号具有闽紫香1号较好的品质性状。闽紫香2号的直链淀粉(1%)、蛋白质(11.43%)、总氨基酸(9.13%)、黄酮(3963.89mg/kg)、Fe(46.82 mg/kg)、Zn(23.21 mg/kg)、Ca含量(157.85 mg/kg),与闽紫香1号相比均有所改善。不同年份闽紫香2号的黄酮含量测定保持较高的含量:2005年3963.89 mg/kg,2006年3867.0mg/kg,2008年4671.82±7.90 mg/kg。
     DNA指纹鉴定结果表明培育成的闽紫香2号是新种质。
     发芽糙米加工工艺技术有利于提高闽紫香系列发芽糙米产品综合品质的提高。
     2. MZX2发芽糙米利用与品质研究
     以闽紫香1号、闽紫香2号、福建省生产上应用的品种组合甬优6号、佳辐占、东南201、汕优63和福建市场销售的丰源978、吉林黑米等10个水稻品种(品系)为材料,研究米糠、精米、糙米和发芽糙米的γ-氨基丁酸含量差异。结果表明,闽紫香2号2008年、2007年收获稻谷加工的发芽糙米γ-氨基丁酸含量,居前两位,含量分别是89.15±1.43mg/kg、80.33±0.80mg/kg,闽紫香1号为61.66±1.13mg/kg,居第三位。闽紫香2号γ-氨基丁酸含量比平均值(50.97 mg/kg)增加74.91%,比市场销售发芽糙米HM(45.76±1.34mg/kg)提高94.82%,比含量最低的FY978(20.82±0.60mg/kg)提高328.19%。
     同一品种,不同收获季节对γ-氨基丁酸合成造成影响,闽紫香2号2007年收获的糙米做成发芽糙米比2008年收获的含量下降10.98%;同一品种,不同加工处理方法γ-氨基丁酸含量差异显著,发芽糙米>糙米>精米,10个品种间平均γ-氨基丁酸含量分别是:50.9840mg/kg、13.7250 mg/kg和5.2390 mg/kg。
     以闽紫香1号、闽紫香2号、甬优6号、吉林黑米和佳辐占为材料,研究米糠、精米、糙米和发芽糙米中的黄酮、蛋白质、氨基酸、IP6、膳食纤维、还原糖的含量。
     紫闽香2号发芽糙米中黄酮含量达到8603.82mg/kg,是佳辐占发芽糙米的4.5倍,是对照市场销售HM发芽糙米(655.11 mg/kg)的13.13倍。闽紫香1号发芽糙米含量达6463.78 mg/kg。高黄酮发芽糙米研究为国内首次报道。
     对五个品种发芽糙米中蛋白质和氨基酸进行分析,结果表明:不同品种蛋白质含量、氨基酸总量、必需氨基酸总量不同,品种间存在显著差异,最高的都是闽紫香2号;蛋白质含量、氨基酸总量、必需氨基酸总量均呈现发芽糙米粉>糙米粉>精米粉;精米中,第一限制性氨基酸赖氨酸闽紫香2号含量最高,达0.55±0.04%,发芽后,各品种的赖氨酸含量提高,闽紫香2号提高最多,提高19.57%。
     对维生素、还原糖、膳食纤维等营养成分的分析,结果表明发芽糙米维生素B1是精米的1.7倍,维生素B2是精米的2.7倍,膳食纤维是精米的7.08倍。
     米糠作为稻谷碾米加工过程中的主要副产物,占整个糙米的8%~10%,本研究表明具有很高的营养价值,以闽紫香2号为例,其米糠中GABA、蛋白质、总氨基酸、必需氨基酸、赖氨酸、VB1、VB2、还原糖、黄酮、膳食纤维等含量分别是精米的4.15倍、1.71倍、1.65倍、1.69倍、2.18倍、2.81倍、3.24倍、11.62倍、115.33倍、18.00倍。
     闽紫香2号发芽糙米的食用价值与CK即福建省优质品种“佳辐占”的商品大米比较,其发芽糙米的GABA、蛋白质、总氨基酸、必需氨基酸、赖氨酸、VB1、VB2、还原糖、黄酮、膳食纤维等含量分别是CK的21.13倍、1.38倍、1.88倍、1.97倍、2.20倍、4.16倍、7.54倍、50.94倍、392.87倍和12.00倍。
Nourishing compositions conenzymeQ10 (hereafter abbreviated as CoQ10), flavone, amino acid, vitamin and mineral in brown rice with different genotypes and flavone,γ-aminobutyric acid etc in system germinated brown rice were studied in this paper. Main findings are as follows:
     ⅠStudy on nourishing quality of rice varieties with different genotypes
     1. Co Q10 in brown rice
     High performance liquid chromatography(HPLC) was employed to determine content of CoQ10 in brown rice, and the testing technology was optimized in the meantime. Content of CoQ10 in 100 varieties(germplasm resources) was determined by HPLC, range of which is 0.30±0.03 mg/kg~5.36±0.04mg/kg, very significant differences of CoQ10 content were found in brown rice of various varieties. The one with highest content of CoQ10 (5.36±0.04mg/kg) is 4B233, content of which is 178.67 times of the lowest, and is 1.40 times, 4.06 times, 6.96 times, 7.44times of mean, restorer Shuhui527(1.32±0.03 mg/kg), Zhenhui084(0.77±0.15 mg/kg), Gui630(0.72±0.06 mg/kg) respectively. It is the first time to report the determination and systematical study of CoQ10 in brown rice in China.
     2. Flavone in brown rice
     Flavone content in brown rice and rice bran of 24 rice varieties including black rice, red rice and conventional white rice was determined, very significant difference of flavone content among various varieties was illustrated in the results. Variety with highest content of flavone is Minzixiang2(MZX2, 3867mg/kg), content of which is 3.70, 63.0,50.0 times of mean, the lowest and CK“Jiahezaozhan”,respectively. Flavone content in brown rice of early season rice varieties is within 37~680 mg/kg, the mean is 252 mg/kg. Flavone content in rice bran is within 276~6100 mg/kg, the mean is 1999 mg/kg. Flavone content in brown rice of late season rice varieties is within 61~5867 mg/kg, the mean is 1212 mg/kg. Favone content in rice bran is within 605~51123 mg/kg, the mean is 9911 mg/kg. Very significant difference of flavone content in rice bran was found among various varieties. Flavone content in rice bran of early and late season rice varieties are both higher than that in brown rice.
     3. Amino acid, vitamin and minerals in brown rice
     Amino acid content in brown rice and polished rice of 8 early hybrid rice combinations was studied. Very significant differences of amino acid content in brown rice were found in every combination. Combination with the highest amino acid content in brown rice is T You78150, whose amino acid content is 4.39% higher than the mean, and increases 10.02%, compares to variety with lowest amino acid content, and is 4.41% more than CK You I 66. Total amino acid content in brown rice and polished rice of 8 rice varieties are 8.012~8.945%, 6.976~7.748%, respectively. Total content of essential amino acid in brown rice is 2.842%~3.086%, of which in polished rice is 1.741%~2.698%, very significant differences were found in both kinds. Content of amino acid was lost seriously in rice processing, during brown rice was made into polished rice.
     Content of vitamin B1, B2 in brown rice and polished rice of 20 rice varieties was studied. Significant differences of Content of vitamin B1, B2 in brown rice and polished rice were found in various rice varieties. Brown rice with highest vitamin B1 content (1.59%) is variety Jingfu1A/R41-496, which increases 40.71%, 72.83%, 72.83%, compares with the mean , variety with lowest vitamin B1 content, CK variety You I 66, respectively; Variety with highest content of vitamin B2 is YuefengA/R41-135, increases 16.67%, compares with extended variety You I 66. Content of vitamin B1 in brown rice is within 1.07~0.45mg/kg, vitamin B2 is within 0.63~0.51mg/kg; Content of vitamin B1 in polished rice is within 1.07~0.45mg/kg, and vitamin B2 is within 0.43~0.35mg/kg, content of vitamin B2 decreases 22.89%~44.44%.
     Order of the mean contents of 6 mineral elements in brown rice of 20 rice varieties is Ca>Mn>Fe>Zn>Cu>Se, the mean contents of Ca, Mn, Fe, Zn, Cu, Se are 320.859 mg/kg, 144.45 mg/kg,64.514 mg/kg,33.399 mg/kg,17.597 mg/kg,0.077 mg/kg, accordingly; Order of the mean contents of 6 mineral elements in polished rice of 20 rice varieties is Ca>Mn>Zn>Fe>Cu>Se, the mean contents of which are 71.103mg/kg, 10.008 mg/kg,8.321 mg/kg,5.790 mg/kg,1.674 mg/kg,0.020 mg/kg, accordingly. Content of every element in brown rice is higher than that in polished rice apparently, element of maximum content difference is Mn, which is 14.43 times of that in polished rice, next is Fe(11.14 times), third is Cu(10.51 times), Ca, Zn, Se is 4.51 times, 4.01 times, 3.85 times, respectively.
     Flavone and CoQ10 were also found in brown rice and polished rice with different genotypes, and very significant difference was found among varieties. Contents of amino acid, vitamin, minerals all higher than those in polished rice apparently, and very significant difference was also found among varieties.
     ⅡBreeding and utilization technology study on fragrant black glutinous rice variety which has high content ofγ-aminobutyric acid and flavone
     1. Breeding on fragrant black glutinous rice“Minzixiang2(MZX2)”that has high flavone content
     MZX1, whose total flavone is as high as 2052~3346mg/kg, was employed as parent to breed“MZX2”which has fine agronomic traits and high quality of nutrition and health by Co60 radiating. Main spike and tillering panicles of“MZX2”is regular, seed setting rate and 1000-grain weight were improved, yield of 501.22kg/667m2 can be reached, 16% higher than standard“MZX1”. In the mean time, equilibrium of seed setting rate, 1000-grain weight and whole polished rice rate between main spike and tillering panicles in“MZX2”also can be reached , and source-sink-flow coordinately, yield was improved correspondingly.
     Preferable quality traits of“MZX1”were kept in“MZX2”. Compares with“MZX1”, contents of amylase(1%), protein(11.43%), total amino acid(9.13%), flavone(3963.89mg/kg ), Fe(46.82 mg/kg)、Zn(23.21 mg/kg)、Ca(157.85 mg/kg) all were improved. Tested flavone contents in“MZX2”of different years were kept in a high level: 3963.89 mg/kg year 2005, 3867.0mg/kg year 2006, 4671.82±7.90 mg/kg year 2008. after processed into germinated brown rice, flavone content in which is 8603.82±17.96 mg/kg, and is the highest content, compares with tested varieties, and is 13.13 times of that in market-sale germinated brown rice CK1-HM(white rice variety, germinated brown rice 655.11 mg/kg).
     New-bred“MZX2”is a new germplasm that showed in DNA fingerprint identification result.
     In order to improve the comprehensive quality of“MZX”series germinated rice products ,the germinated brown rice processing technology was also studied .
     2. Utilization and quality study on“MZX”germinated brown rice
     “Minzixiang1”,“Minzixiang2”“Yongyou6”,“Jiafuzhan”,“Dongnan 201”,“Shanyou63”those applied in yield in Fujian province and seeds“Fengyuan978”,“Jilin Black Rice”etc sold on market of Fujian province together were employed as testing materials to study gamma aminobutyric acid (GABA) contents differences in rice bran, polished rice, brown rice and germinated brown rice. Results shows that the top two samples with highγ-aminobutyric acid content varieties are germinated brown rice of“MZX2”planted in year 2007 and year 2008, contents of which are 89.15±1.43mg/kg, 80.33±0.80mg/kg, accordingly, the third is“MZX1”(61.66±1.13mg/kg). Content of γ-aminobutyric acid in“MZX2”is 74.91% more than the mean (50.97mg/kg), and is 94.82% more than that in market sale germinated rice HM(45.76±1.34mg/kg), and is 328.19% more than FY978(20.82±0.60mg/kg)which has the lowestγ-aminobutyric acid content.
     Impact onγ-aminobutyric acid synthesiscan be found in the same variety planted in different seasons, when“MZX2”brown rice harvested in year 2007 be processed into germinated brown rice, content ofγ-aminobutyric acid decreases 10.98%, compares with that harvested in year 2008. Significant difference onγ-aminobutyric acid content also can be found in the same rice variety with various processing methods: germinated brown rice>brown rice>polished rice, the mean contents ofγ-aminobutyric acid among 10 rice varieties are 50.9840mg/kg, 13.7250 mg/kg and 5.2390 mg/kg, respectively.
     Five rice varieties of MZX1, MZX2, Yongyou6, Jilin Black Rice and Jiafuzhan were taken as testing materials to study contents of flavone, protein, amino acid, IP6, dietary fiber and reducing sugar in rice bran, polished rice, brown rice and germinated brown rice.
     Content of flavone in“MZX2”germinated brown rice is as high as 8603.82mg/kg, which is 4.5 times of that in Jiafuzhan germinated brown rice, and is 13.13 times of that in CK, market-sale germinated brown rice (HM ,655.11mg/kg). Flavone content in“MZX1”germinated brown rice is as high as 6463.78 mg/kg. It is the first time to report germinated brown rice with high flavone content in China
     Protein and amino acid contents in germinated brown rice of 5 rice varieties were studied, results shows that: contents of protein, total content of amino acid and essential amino acid were found differently among various rice varieties, significant difference can also be found among different rice varieties, the one with top contents of compositions mentioned above is“MZX2”; content of protein, total contents of amino acid and essential amino acid all were presented as :germinated brown rice>brown rice>polished rice ; Among polished rice, the highest content of first restrictive amino acid-lysine was found in“MZX2”,as high as 0.55±0.04% . After germination, content of lysine in every variety was improved, the one improved most is“MZX2”, 19.57% increased.
     Analysis on nourishing compositions vitamin, reducing sugar,, dietary fiber etc.Results shows that, vitamin B1 in germinated brown rice is 1.7 times of that in polished rice, and vitamin B2 is 2.7 times of that in polished rice, dietary fiber is 7.08 times of that in polished rice.
     As main byproduct from the process of rice milling, rice bran accounts for 8%~10% of whole brown rice, results showed in this study indicates that, rice bran has a high nourishing value,“MZX2”was taken as an example, contents of its GABA, protein, total amino acid, essential amino acid, lysine, vitamin B1,B2, reducing sugar, flavone, dietary fiber etc in rice bran are 4.15times,1.71 times,1.65 times,1.69 times,2.18 times,2.81 times,3.24 times,11.62 times,115.33 times,18.00 times of those in polished rice, respectively.
     Edible value of“MZX2”germinated brown rice was compared with CK, which has high commercial quality rice variety“Jiafuzhan”in Fujian province, contents of GABA, protein, total amino acid, essential amino acid, lysine, vitamin B1,B2, reducing sugar, flavone, dietary fiber etc in which are 21.13 times, 1.38 times, 1.88 times, 1.97 times, 2.20 times, 4.16 times, 7.54 times, 50.94 times, 392.87 times and 12.00 times of those in CK.
引文
[1]郑金贵.农产品品质学[M].厦门大学出版社.2004
    [2]中华人民共和国农业部.中华人民共和国农业行业标准:食用籼米NY/T 595-2002[S].北京:中国标准出版社,2002
    [3]中华人民共和国农业部.中华人民共和国农业行业标准:食用粳米NY/T594—2002[S].北京:中国标准出版社,2002
    [4]国家质量技术监督局.中华人民共和国国家标准,优质稻谷GB/T17891-1999[S].北京:中国标准出版社,1999
    [5]稻米的品质及其改良.植物育种学[M].北京农业大学出版社,1988
    [6]Cheong JL. Effects of slow-release fertilizer application on rice grain quality at different culture methods[J]. Korean JCrop Sci, 1996,3 (2): 286-294
    [7]袁继超,刘丛军,俄胜哲,等.施氮量和穗粒肥比例对稻米营养品质及中微量元素含量的影响[J].植物营养与肥料学报, 2006,12 (2): 183-187
    [8]黄升谋,邹应斌.水稻强弱势籽粒核酸和蛋白质含量的差异[J].植物生理学通讯, 2004,40 (1): 51-53
    [9]胡繁荣、段智英,张琳琳等.稻米功能性成分育种研究进展[J].核农学报,2004,18(5):364-367
    [10]王忠华.稻米功能性成分的生理活性及其产品开发[J].核农学报,2005,(3):241-244
    [11] Juliano BO, Perez CM, Gomez KA. Variability in protein content of rice. Kalikasan[J]. 1972, 1 (1): 74-81
    [12]闵绍楷,申宗坦,熊振民.水稻育种学[M].中国农业出版社,1996
    [13]朱智伟,杨炜,林榕辉.不同类型稻米的蛋白营养价值[J].中国水稻科学,1991,5(4):157-162
    [14]白满秀,孙彦芳.粮油食品营养卫生[M].中国食品出版社,1989
    [15] Cagapang G.B, Perdo A.A, and Juliano B.Q Changes in saltsoluble proteins of rice during grain development. Phytochemistry , 1976,15:1425-1429
    [16] Eggum B O, Julliano, and Maningat C C .Protein and energy utilization of rice milling fractions by rats[J]. Qual Plant Food Hum Nair,1982,31:371-376
    [17]朱斌昕.大米中的蛋白质含量、品质及分布[J].中国粮油学报,1987,2:2-6
    [18]应存山主编.中国稻种资源[M].北京:中国农业出版社,1993
    [19]王根庆.不同稻类品种蛋白质和氨基酸含量差异的研究[J].华北农学报,1991,6(2):7-12
    [20] Hegsted DM, Juliano BO. Difficulties in assessing thenutritional quality of rice proteins[J]. J Nutr,1974,104 (5): 772-781
    [21]张小明,石春海,吴建国.杂交稻米必需氨基酸含量与亲本的关系[J].中国水稻科学,2003,17(1):91-94
    [22] Schadffer G W.Sharpe F T. Electrophoretic profiles and amino acid composition of rice endosperm proteins of a mutant with enhanced lysine and total protein after backcrosses for germplasm improvement[J]. Theor Appl Tenet,1997,95,:230-235
    [23] Grusak M A,Dellapenna D.Improving the nutrient composition of plants to enhance human nutrition and health[J]. Ann Review of Plant Physiology and plant Mol Bio,1999,50:133-161
    [24]王为民,赵倩,于静娟等.水稻转高赖氨酸蛋白质基因(sb401)植株的获得及种子中蛋白质和氨基酸的含量分析[J].作物学报,2005,31(5):603-607.
    [25]钱咏文刘钩赞何昆明.不同品种稻米维生素B1、B2品质分析[J].作物学报,1991,1(17):58-63
    [26]朱文适.贵州黑糯米的营养成分[J].贵州农学院丛刊,1988,8(2):132-139
    [27]南钟洁,全东兴,周规,等.吉林特种稻特征特性与开发利用[J].延边大学农学学报,2000,22(1):60-62
    [28]韩龙植,南钟洁,孙强.吉林省特种稻优异新品种研究进展[J].中国优异稻种资源,北京:中国农业出版社,1997:152—154
    [29]赵则胜.初论功能性稻米[J].上海农业学报,2002,18(增刊):1-4
    [30]韩龙植,南针浩,全东兴.特种稻种质创新与营养特性评价[J].植物遗传资源学报2003,4(3):207-213
    [31]伍时照,杨军,何秀英,等.华南地区部分优质和特种稻米氨基酸及矿质元素含量的研究[J].华南农业大学学报,1996,17(3):19—24
    [32]王金英,江川,郑金贵.水稻米糠中矿质营养品质的研究[J].江西农业学报,2002,14(4):37-42
    [33]吕文英.米类食品中锌、铁、钙锰、铜等元素含量测定与研究[J].微量元素与健康研究,2000,17(4):46-47
    [34]孟凡花,魏幼璋.水稻中铁的含量及其生物有效性研究进展[J].西北农林科技大学学报,2004,32(2):73-77
    [35]刘巧泉,姚泉洪,王红梅,等.转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量[J].遗传学报,2004,31(5):518-524
    [36]江良荣,李义珍,王侯聪,等.稻米营养品质的研究现状及分子改良途径[J].分子植物育种,2004,(1):113-121
    [37]Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I, Engineering the Provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000, 287: 303-305.
    [38]赵则胜.上农香糯,红香玉,上农黑糯,乌贡1号,巨胚稻6601与上农绿米[J].作物研究(国际水稻年专刊),2004,(4):281
    [39]何瑞林,李春.五彩米及其鉴别方法[J].中国稻米,2001,(1):39
    [40]赵则胜,戚家华,陈永清等.特种稻米的开发[M].上海:上海教育出版社,2003
    [41]张建明,朴钟泽,陆家安等.中国特种稻的研究利用现状与前景[J].上海农业学报,2002,18(增刊):53-57
    [42]黎杰强,朱碧岩,陈敏清.特种稻米营养分析.华南师范大学学报(自然科学版),2005,(1):95-98,112
    [43]赖来展,张名位,陈春洪等.黑优粘糙米粉的研制[J].广东农业科学,1995(5):14-16
    [44]黄玉.黑米的药理作用[J].广西医学院学报.1986,8(13):37-39
    [45]徐飞等.紫黑米提高贫血大鼠血红蛋白作用的研究[J].营养学报(天津),1989(2):104-106
    [46]黄玉.黑米的药理作用[J].广西医学院学报.1986,8(13):37-39
    [47]魏振承,张名位,池建伟,等.引进巨胚稻与普通稻的米质和营养成分分析比较[J].植物遗传资源学报,2005,6(4):386~389
    [48]张名位,赖来展,杨雄.中国黑米种质资源的评价与利用研究进展[J].湖北农学院学报,1995,15(4):309-317
    [49]江良荣,李义珍,王侯聪等.稻米营养品质的研究现状及分子改良途径[J].分子植物育种,2004,2(1):113-121
    [50] French D,Whistler R D, BeMiller J N, et al. Organization of starch granules in starch Chemistry and Technology[J]. Academic Press Orlando, 1984, 184-242.
    [51]Shimada H, Tada Y, Kawasaki T, Fujimura T, et al. Antisense regulation of the rice WAXY gene expression using a PCR amplified fragment of the rice genome reduces the amylase content in grain starch[J]. Theor Appl Genet,1986, 665-672
    [52]段晓岚,陈善葆.外源DNA导入水稻引起性状变异[J].中国农业科学,1985.18(3):6-10.
    [53]洪亚辉,萧浪涛,董延瑜.玉米DNA导入水稻选育高蛋白品系[J].湖南农业大学学报.2000,26(1):28-30
    [54]蒋家焕,刘峰,许明等.高赖氨酸蛋白基因遗传转化水稻的研究[J].福建农林大学学报(自然科学版),2006,35(6):615-618
    [55] Sakiko Takahashi,Yuki Ogiyama, Hiroaki Kusano. Metabolic engineering of coenzyme Q by modification of isoprenoid side chain in plant[J]. FEBS Letters, 2006,580:955-959
    [56] Klein T M, Kornstein L, Sanford J C.Genetic transformation of maize cells by particle bombardment[J].Plant Physiol, 1989, 91:440-444.
    [57] Lucca P , Hurrell R , Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains[J].Theor Appl Genet, 2001 ,102:392-397
    [58] Gatta , Baisakh N, Oliva N, Torrizo L , et al . Bioengineered‘golden’indica rice cultivars withβ2carotene metabolism in the endosperm with hygromycin and mannose selection systems[J]. Plant Biotechnology Journal , 2003 , (2):81-90
    [59]金增辉.发芽糙米与糙米发芽[J].粮食与油脂,2001.108(12):8-10
    [60]刘月好,任力民.米粮的营养价值及在食品中的应用[J].粮食加工.2004, 2:18-20
    [61]周素梅.发芽糙米系列产品的生产及效益分析[J].加工技术.2006,6:35-36
    [62]金增辉. 21世纪的健康主食—发芽糙米[J].中国保健食品,2005,7:13-16
    [63]徐莉珍,李远志,常虹.发芽糙米的结构与生理功能[J].中国中部地区农产品加工产学研研讨会论文集——粮油加工.2007,81-84
    [63]张群,单扬,吴耀辉等.发芽糙米一稻谷加工的新一代产品[J].食品科学,2004,(6).
    [64]王宁,李远志,肖南.发芽糙米的营养价值及其开发[J].农产品加工(学刊),10:109-111
    [65]李红玫.利用发芽糙米酿制营养味噌的技术[J].中国酿造,2004,2:26-27.
    [66]谢黎虹,罗玉坤,陈能.红米和黑米的营养功效研究进展[J].西部粮油科技,2003,6:35-37
    [67]郑艺梅,何瑞国,郑琳,等.糙米发芽过程中营养成分及植酸含量变化的研究[J].中国粮油学报,2006,21(5):1-4
    [68] Takayo saikusa,Toshiroh horino,Yutaka mori.Accumulation of aminobutyric acid in the rice germ during water soaking[J].Biosei Biotech Biochem,1994,58(12):2 291—2292.
    [69]张晖,姚惠源,姜元荣.γ-氨基丁酸的功能性及其在稻米制品中的富集利用[J].粮食与饲料工业,2002,8:41-43.
    [70]张琳琳,舒小丽,卢怀江,等.富含γ-氨基丁酸降压功能稻米研究进展[J].核农学报,2006,20(3):218-221
    [71] T.Saikusa.Distribution of Free Amino Acid in the Rice Kemd and Kernel Fraction and the Efect of Water soaking on the Distribution[J].J Agr.Food Chem,1994.42:1122-1125.
    [72]张群,单杨,吴跃辉.糙米浸泡过程中γ一氨基丁酸的变化[J].粮食与饮料工业2006,11: 6-7,12
    [73]衫下,朋子.The Research and Development of Rice Germ Enriched With GABA[J].食品与开发(13刊),2001,36(6):10-11
    [74]黄迪芳.糙来萌发工艺及发芽糙米功能饮料的研究[M].江南大学.2005
    [75]王传梁,陈坤杰.富硒发芽糙米加工工艺的研究[J].粮油加工与食品机械,2006,7:62-64,68
    [76]许仁溥.发芽糙米开发[J].粮食与油脂,20Ol,104(8):37-38
    [77]黄寿恩.功能性发芽糙米制品市场前景看好[J].食品与机械,2004,2:50-51
    [78]孙向东,任红波,姚鑫淼.糙米发芽期间生理活性成分γ-氨基丁酸变化规律研究[J].粮油加工与食品机械,2006,1:63-68
    [79]张继武,郑艺梅,曾国蒙.富钙发芽糙米的研制[J].食品和发酵工业,2005,31(10):54-56
    [80]郭晓娜,朱永义.发芽糙米糊化特性研究[J].粮食与油脂,2004,2:10-12
    [81]姚森,郑理,赵思明,等.发芽条件对发芽糙米中γ-氨基丁酸含量的影响[J].农业工程学报,2006,22(12):211-215
    [82]李时珍.本草纲目[M].北京:人民卫生出版社,1982,1462-1470.
    [83]孟凡刚,潘治利,等.发芽糙米浸泡工艺的研究[J].吉林粮食高等专科学校学报,2003,18(4):7-10
    [84]杨明毅,袁红奇,杨春华,等.发芽糙米的生理活牲化工艺研究与控制[J].粮油食品科技,2003,5:24-25
    [85]黄迪芳,陈正行,邵瑜.糙米发芽工艺的研究[J].粮油加工,2004,11:7-9
    [86]王珩,王传梁,陈坤杰.滚筒式发芽糙米加工设备及工艺研究[J].粮油加工,2007.01:63-65
    [87]郑艺梅,郑琳,华平.不同干燥方式对发芽糙米品质的影响[J].研究与探讨,2005,12:55-56
    [88]郑艺梅,王明才,华平.发芽糙米微波干燥工艺研究[J].粮食和饲料工业,2005,11:1-2
    [89]王仲礼,赵晓红.糙米的营养价值及其新型食品开发应用[J].中国稻米,2005,5:47-48
    [90]王定昌,赖荣婷.糙米酵素的功能与开发[J].粮油食品科技,2001,1:2-3,7
    [91]金增辉.全糙米米粉加工[J].粮食与油脂,2002,8:37-38
    [92]康彬彬,陈团伟,陈绍军,等.高γ一基丁酸稻米品种的筛选[J].山地农业生物学报,2007,26(6):471~475
    [93]肖层林.地方陆稻品种品质性状的研究[J].农业科技译从,1990,19(1):4-8
    [94]余刚哲.稻米化学加工贮存[M].北京:中国商业出版社。1994.2,30,57
    [95]周惠明.早稻资源的开发与利用[J].粮食与饲料工业,1999,(1):10-11,20
    [96] Xu Q G.Studies of the demerrences of amino acid contents in rice varieties and relationship between the amino acid content and genetic code numbers[J].Journal of human Agricultural college,1990.16(3):221-225
    [97] Chen H S.Wu P L,Gao C S.studies On amino acids contend of rice protein[J].Seed,1986,(4):13-19
    [98] Tccson E S。Eamama B v,LontokL P.et a1.Studies on the extraction and composition of rice endosperm glutelin and pro1amin[J].Cerca1 chen,197l.48:168-180
    [99]孙建和.米糠在家禽日粮中的应用[J].国外畜牧学:猪与禽,1995,(5):4-8
    [100] Mc Keuzie K S,Rutgcr J N.Genetic analysis of amylose content,alkali.Spreading score and grain dimemions in rice[J].Crop Sci,1983,23:3O6-3l3
    [101] Kumsr I,Khush G S.Genetic analysis of different amylose content levels in Rice[J].Crop Sci,1987,27:1167-1172.
    [102]傅翠真,朱智伟,凌锦书,等.中国优质稻米品质的初步研究[J].中国营养学报,1987。2:54-59
    [103]施木田,蔡秋红,杨仁崔.早籼稻米的蛋白质含量及其氨基酸组成[J].福建农业大学学报,1995,24(3):358-362
    [104]熊善柏、董汉萍、赵思明等.稻米加工与维生素损失[J].粮食与油脂,2001(5):2-3
    [105]姚惠源.世界稻米加工业发展趋势与我国未来10年的发展战略[J].粮油加工与食品机械,2003,12:18-21,27
    [106]姚惠源,周素梅,王立,等.米糠与米糠蛋白质的开发与利用[J].无锡轻工大学学报,2002,5:313-316
    [107]符文英,陈俊.稻米营养品质研究综述[J].海南大学学报自然科学版,1997,15(1):67-70
    [108]吕艳燕.稻谷精加工及营养强化[J].中国稻米,2004,2:37-39
    [109]金增辉.回归型营养米加工出探[J].粮食与饲料工业,2002,9:11-12
    [110]王为民,卧铺倩,于静娟,等.水稻营养品质的改良[J].中国生物工程杂志,2004,24(5):30-33
    [111]巫幼,徐润琪.稻米的收获及产后处理损失因素分析[J].粮食流通技术,2004,2:13-16,23
    [112]董汉萍,周旭东,熊善柏,等.蒸谷米的湿热处理与工艺优化[J].粮食与饲料工作,1999,12:16-18
    [113]侯振江,周秀艳.微量元素与疾病[J].微量元素与健康研究.2004,21(6):16-17
    [114]郑建仙.功能性食品(第三卷)[M].北京:中国轻工业出版社,1999:355-428
    [115]郑金贵.农产品的品质----营养与保健[J].福建农业科技,1998(增刊):11-15
    [116]韩龙植,南钟浩,全东兴,曹桂兰.特种稻种植创新与营养特性评价[J].植物遗传资源学报,2003,4(3):207-213
    [117] 2004中国统计年鉴.http://www.stats.gov.cn./tjsj/ndsj/yb2004-c/indexch.htm
    [118]张名位.特种稻米及其加工技术[M].北京:中国轻工业出版社,2000:28-354
    [119]周崇松,刘文宏,范必威,罗丽.川稻中铜铁锌锰四种微量元素的研究[J].广东微量元素科学,2003,10(10):56-59
    [120]江川,王金英,郑金贵.稻米矿质营养元素含量受种植环境的影响研究[J].福建农业学报,2004,19(1):1-6
    [121]王金英,江川,郑金贵。不同色稻的精米与米糠中矿质元素的含量[J].福建农林大学学报(自然科学版),2002,31:409-413
    [122]蒋彬.精米中微量元素铁铜锰锌的含量差异[J].邵通师范高等专科学校学报,2002,24(2):45-48
    [123]陈俊杰,李裕林.黄酮类化合物的HNMR研究[J].波谱学杂志, 1994, 11 (3) : 123 - 126.
    [124]张鞍灵.王株清,高锦明.黄酮类化合物分布及开发利用[J].西北林学院学报, 2000, 15 (1) : 59 - 74
    [125]李勇,高明侠,李新民.银杏及叶中黄酮类化合物生理功效的研究进展[J].食品科技, 2001 (5) : 7l-74
    [126]叶文峰.天然黄酮类化合物以及在食品中的应用[J].宜春师专学报, 2000, 22 (5) : 9-12
    [127]姚新生.天然药物化学(第二版) [M].北京:人民卫生出版社,1996
    [128]胡春.黄酮类化合物的抗氧化性质[J].中国油脂, 1996, 21(4) : 18-21
    [129]谷利伟,翁新楚.食用天然抗氧化剂研究进展[J].中国油脂,1997, 22 (3) : 37-39
    [130]毛雪石,徐世平.黄酮类化合物的抗肿瘤活性[J].国外医学药分册, 1995, 22 (2) : 92 - 96
    [131]孙玲,张名位,池建伟,等.黑米资源的黄酮含量及其与粒形性状的相关性[J].湖北农学院学报,2000,20(1):1-5
    [132]史劲松,许正宏.辅酶Q10生产应用研究进展及产业展望[J].中国科技成果,2003,5:26-29
    [133]张雪崧,孙庆元.辅酶Q10的开发在医疗保健中的应用前景[EB/OL].www.paper.edu.cn
    [134] Kamet M et al.辅酶Q10在食物中的分布及含量[J].中国生化药物杂志,1992 (2):73-74
    [135]吕欣,庞海河,史权等.环境影响因子对玉米芽中辅酶Q10含量的影响[J].植物研究,2004,24:201-203
    [136]王春林.中国大豆辅酶的提取、分离和鉴定[J].中国医药工业杂志,1996,27:102-105
    [137] Yuangang Zu,Chunjian Zhao,Chunying Li,Lin Zhang. A rapid and sensitive LC-MS/MS method for determination of coenzyme Q10 in tobacco (Nicotiana tabacum L.) leaves[J].Journal of Separation Science,2006,29: 1607-1612
    [138]郑金贵.作物优异种质资源及其品质相关基因克隆研究的若干进展[J].福建农林大学学报(自然科学版), 2007,36(2):138-142
    [139]汪茂田,谢培山,王忠东等.天然有机化合物提取分离与结构鉴定[M].北京:化学工业出版社,2004:5-22
    [140]朱秀灵,车振明,唐洁等.采用超声波法提高胡萝卜汁中的β-胡萝卜素含量[J].食品与发酵工业[J],2004,30:17-20
    [141]江平,何代平,许国旺.血浆辅酶Q o的高效液相色谱快速测定[J].分析测试学报,2006,25(2):1O6一108
    [142]张名位,郭宝江,彭仲明籼型黑米粒形性状的遗传效应及其与矿质元素含量的遗传相关性[J].遗传学报,2002,29(8):688-695
    [143]莫惠栋.谷物作物胚乳性状的遗传控制的鉴别[J].遗传学报,1995,22(2):I26-132.
    [144]郭益全,谢顺景.稻谷粒粒形性状之遗传研究[J].中华农业研究,1982,3I(3):177-186.
    [145]张名位,彭仲明,徐运启.黑米品质性状的相关性研究[J].广东农业科学,1993 (5):32-35
    [146]李清华,林玲娜.黄酮以及稻米黄酮的研究与开发现状[J].福建稻麦科技,2004,22(4)45-47
    [147]王丰,程方民.从籽粒灌浆过程讨论水稻粒间品质差异形成的生理机制[J].种子.2004 23(1)31-35
    [148]段俊,田长恩,梁承业,等.水稻结实过程中不同部位谷粒中内源激素的动态变化[J].植物学报.1999,41(1):75-79
    [149]王余龙,姚文礼,李昙云,等.水稻不同粒位籽粒的结实能力[J].作物学报.1995,21(4):434-441
    [150]谢光辉,杨建昌,王志琴,等.水稻籽粒灌浆特性及其籽粒生理活性的关系[J].作物学报.2001,27(5):557-566
    [151]古汉明,王鸿昌,王燕君.保健型特种稻黑软占的选育[J].广东农业科学.2004,6:23-26
    [152]胡繁荣段智英张琳琳等,稻米功能性成分育种研究进展[J],核农学报2004,18(5):364~367
    [153]杨仁崔,张书标,黄荣华,等.高秆隐性杂交稻(e一杂交稻)的育种技术[J].中国农业科学.2002.35(31):233-237
    [154]郑金贵.农产品保健品质改良的若干研究动态[J].福建农业大学学报.2000,29(1):1-6
    [155]程旺大,张国平,姚海根.密穗型水稻品种的籽粒灌浆特性研究[J].作物学报. 2003,29(6):841-846
    [156]王余龙,山本由穗,姚友礼,等.水稻籽粒受容活性及其控制.江苏农学院学报.1994,15(1):21-26
    [157]王余龙,蒋建中,何杰升,等.水稻颖花根活量与籽粒灌浆结实的关系[J].作物学报.1992,18(2):81-88
    [158]黄锦文,梁义元,梁康迳,等.不同类型水稻籽粒灌浆的生理生化特性研究[J].中国生态农业学报,2003,11(11):10-13
    [159]杨建昌,朱庆森,王志琴,等.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报,1997,23(1):82-88
    [160]张群,单杨,吴越辉.糙米在浸泡过程中其主要营养物质含量变化的研究[J].粮油加工,2006,(1):69~70.78
    [161]顾振新,陈志刚,汪志君,等.糙米与稻谷的发芽活力及发芽期间主要物质含量比较[J].中国粮油学报,2004,19(2):8-10
    [162]王维坚,马中苏,孟凡刚,等.发芽糙米浸泡工艺的研究.吉林粮食高等专科学校学报,2003,18(4):7-10
    [163]黄建韶,杨明毅,张洪.富含γ氨基丁酸发芽糙米生产工艺的研究[J].山西食品工业,2005,(1):2-5
    [164]郭小娜,朱永义.糙米发芽工艺参数的研究[J].粮食与饲料工业,2003,(2):8-l0
    [165]王红梅,刘巧泉,顾铭洪.稻米蛋白营养品质及其遗传改良[J].植物生理学通讯,2007,43(2):391-396
    [166] Btucer, Hamaker. Changing the viscoelastic properties of cooked rice through protein disruption[J]. Cereal Chemistry, 1990, 67(3): 261-264
    [167]李军,顾德法.紫黑米营养价值和药理功能[J].种子,1995,6(40):38-40.
    [168]唐传核.植物功能性食品[M].化学工业出版社,2004.
    [169]雷永烨.黑稻的开发利用价值[J].上海农学院学报,1988,12,6(4):324-328.
    [170]顾德法,徐美玉.紫黑糯米特种营养研究[J].中国农业科学,1992,25(5):36-41.
    [171]王景辰.黑米天然黑紫色素研究[J].食品科学.1993,(6):13-17
    [172]陈志刚、顾振新、汪志君,等.糙米的营养成分及其在芽过程中的变化[J].南京农业大学学报. 2003 , 26 (3) : 84-87
    [173]郑艺梅,何瑞国,黄霞,等.发芽对不同品种糙米碳水化合物组成及其相关酶活性的影响[J].粮食与饮料工业,2006,5:1-2,14
    [174]孙玲,张名位,池建伟,等.黑米的抗氧化及其与黄酮和种皮色素的关系[J].营养学报,2000,22(3):246-249
    [175]龙盛京,钱莹几种黑色与淡色食物抗活性氧效应的比较研究[J]营养学报,1997,l9(4):4 70—473
    [176]罗志刚,杨连生,高群玉.米糠功能成分的研究与开发[J].粮油加工与食品机械,2003,12:49-51
    [177]池建伟,张名位,张瑞芬,等.黑五谷营养羹的加工工艺与营养评价[J].华南师范大学学报(自然科学版),2006,2:92-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700