弗朗西斯·克里克对遗传密码研究的历史贡献
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弗朗西斯·克里克(F.H.C.Crick,1916-2004)是科学史上的杰出人物之一。他的科研兴趣经历了从物理学转向生物学的重大转变。即使在生物学领域,克里克的科学研究也是多方面的,涉及细胞质、蛋白质、DNA、遗传密码和人类意识等多个方向。
     本文在研读克里克在遗传密码领域发表的原始论文和相关学术研究文献的基础上,利用文献研究和概念分析等方法,揭示克里克在密码研究中的理论观点的本质内容,力求构建克里克从事遗传密码研究的历史图景。
     具体地讲,文章以克里克的原始论文和相关学术研究文献等第一手资料为依托,再现克里克密码研究的理论成果。梳理了克里克在密码研究中提出的概念和假说的历史演变;初步探索克里克的密码研究的影响,说明了当今密码研究领域的焦点问题,且采用案例研究法揭示突变危险性理论的本质内容和深受克里克密码研究之重要观点:摆动假说和冻结偶然性理论影响的痕迹。
     本篇论文包括六章内容。第一章全面解析克里克的科研人生,综合分析了克里克的个人学术选择及主要科学成就,概要地总结了克里克在所研究领域的重大贡献;揭示克里克审慎、执着和智慧的科研人生,认为在克里克诸多的探索领域中,遗传密码研究是一个重要的组成部分。克里克的此项研究建构在物理学思维与生物学研究对象有机结合的基础之上,这个结合是克里克实现其初衷(涉入生物物理学领域)的一个富有成效的尝试。
     第二章梳理了遗传密码研究的早期发展。介绍了“遗传物质”概念的历史演变,澄清了遗传密码研究的发端问题,并重点提出四种早期的密码研究雏形:认为胚胎学家布拉舍(J.Brachet)首先发起了从DNA到蛋白质信息流向问题的研究,生物学家杜恩斯(A.L.Dounce)第一个提出了编码设想,物理学家伽莫夫(G.Gamow)最先从细节上重视编码问题,克里克在此基础上开始走上遗传密码的研究之路,提出多种编码方案,初期探索步履维艰,显示其坚定执着,开拓创新的科学精神。
     第三章基于对其科研论文、论著及个人通讯资料的研读,探究克里克密码思想形成的心路历程。提出有三点原因促使克里克走向密码研究之路,其一是自然选择思想,其二是洞察新问题的能力和物理学思想的影响,其三则是对科学研究全身心的投入。
     第四、五章是克里克密码研究思想的主体部分。论文首次将克里克的密码研究分成基础性研究和综合性研究两部分。第四章探索了克里克对遗传密码的基础性研究,包括编码问题、论蛋白质的合成和三联体三部分内容。编码问题是密码研究中的一个基本问题,基于对克里克在编码问题中史实上的梳理和概念上的分析,认为克里克虽然不是第一个提出编码方案的人,但是是他首先意识到了编码问题的重要性,并为此付诸大量的思考和理论分析;在编码问题的研究处于“低谷”期间,克里克构建了蛋白质合成问题的理论框架,提出了序列假说和中心法则,彰显了假说的重要价值及经验出于错误的历史教训;克里克的密码研究突显循序渐进,追求实证的科研逻辑。随后他开创性地设计了遗传学实验,证实了密码子为“三联体”的本质。这一研究成果在全部密码子发现的历史过程中起到了决定性的作用,是克里克密码研究中一项承前启后的工作,首次阐明了密码的本质特征,并促使他进一步成为根植于实验的理论家。
     第五章是从内史角度揭示克里克对遗传密码的综合性研究。本章分析了克里克对遗传密码的性质、摆动假说、终止密码子、密码表的建立和密码起源与进化方面的研究;探讨了克里克密码研究的五次综合,从实证方面展示其对密码研究发展到一定程度的理论综合及完善的过程,体现了密码表建立过程中多国科学家的集体智慧以及理论和实验两方面的共同协作。基于对克里克两个层次的密码研究充分显示了其密码研究的主体特征:一般性、系统性、逻辑性和根本性;框架式的研究风格;大胆假设和开拓创新;根植于历史和实验。这一切又体现了克里克深厚的物理学知识基础和物理学思想的影响。
     第六章初步探讨了克里克密码研究的影响。分析了密码研究的一些焦点问题:密码的简并性和反常码、无义密码子的再编码、遗传密码的扩展和密码的起源与进化。然后,通过案例研究梳理了中国学者在遗传密码研究方面的成果——突变危险性理论,揭示其理论形成的历史背景和本质内容。突变危险性理论起源于上世纪80年代,在诸多关于密码起源与进化的理论观点中,突变危险性极小化理论从其基本假设的合理性、逻辑结构的明晰性和完整性以及解释实验资料的广泛性来看,是特别成功的。论文也从细节上首次研究了克里克的密码观对突变危险性理论的直接影响。
F.H.C.Crick (1916-2004) is one of the most distinguished scientists inthe history of science. He changed his major from physics to biology. Hisresearch interests arranged many fields of biology such as cytoplasm, protein,DNA, genetic code and human consciousness, etc..
     Based on a careful examination of Crick’s original academic papers ongenetic code and related study literature, the present dissertation deals withthe essential contents of his theories by means of the methods of literature andconcept analysis.The ultimate goal of the dissertation is to give a historicalimage of his scientific work.
     Specifically, the achievements of Crick on the study of genetic codetheory are presented according to the first hand materials including CrickCrick’s original academic papers and some related study literature. Theevolution of concepts and hypotheses raised by him is investigated, so is histhinking effect on modern code field. All the concentrated problems areillustrated. By using the case study method, the essential contents ofMutational Deterioration theory are reviewed, and the truth is that Crick’simportant views of wobble hypothesis and frozen accident have greatinfluence on Mutational Deterioration theory.
     The dissertation is divided into the six chapters. The first chapter is about the study of Crick’s lifetime. His personal academic options and the mainachievements have been analyzed completely. The important contributions inhis research fields have been summarized briefly. All of these prove that hislifetime is prudent, constant and intelligent. Among his academic activities,genetic code is recognized as the most important part. The study on geneticcode is on the basis of the integration of physics thinking with biology objects.The integration is an effective attempt of his original ideal involved inbiophysics.
     The early development of genetic code is reviewed in the second chapter.The historical evolution of the concept "genetic material" is introduced,theorigin of the study of genetic code is made clear, and moreover, the point isthat four early code rudiments are proposed. Embryologists J.Brachet firstlaunched the research related to information flow from DNA to protein,biologists A.L.Dounce first put forward the coding assumption, and physicistsG.Gamow attached importance to the coding problem at first in detail.By theinspiriting of the work of Gamow, Crick stepped into the road of studyinggenetic code, bringing forth a series of coding schemes and struggling withdifficulty in the beginning of research. The hard work embodies his scientificspirit such as perseverance and innovation.
     The third chapter is to trace back to the reasons why Crick could giverise to the thoughts about genetic code. The whole psychological process ofCrick is probed through referring to his papers, books and personal communication letters. The dissertation comes to the conclusion that threeimportant factors contribute to his interests in the study of genetic code. First,it is from Darwinism. Second, Crick has the ability to gain an insight into thenew things and benefits from his physics thinking. Third, he has committedhis full devotion to science.
     Both the fourth and the fifth chapters are the main parts of the wholepaper. The research work of Crick on the genetic code is divided into twoparts. The first includes his fundamentals, and the second is made of thesyntheses. In the fourth chapter, his fundamentals including coding problem,protein synthesis and triplet are probed. Coding problem is the most essentialissue in his study. Based on the historical study and concept analyzing ofCrick on coding problem, it is believed that although the first person who putforward to coding problem was not Crick, he was aware of the importance ofthe issue firstly. With a lot of thinking and theory analyses, Crick appliedhimself to that problem. At a low ebb of the coding research, he built up thetheory frame, making proposition of "sequence synthesis" and "centraldogma". The performance shows the value of his hypothesis and historicallessons that experience comes from mistakes. The research of Crick in theaspect proves the scientific logic that the academic research should conformto the way from easy to difficult and seeking evidences. Sequentially, hedevised an original experiment that proved the essence of code is triplet. Thesuccessful experiment plays an important role in history of code discovery and also serves as a link between the past and the future. It is the first timethat the essence of genetic code was expanded and helped him further tobecome a theoretician rooted in experiments.
     The fifth chapter is to do some synthesis research of Crick on geneticcode from the perspective of internal history. The research of Crick involvedin the properties of genetic code, wobble hypothesis, stop codons, theconstruction of the standard code table and the origin and evolution of code isintegrated completely in the chapter. Contributions of Crick and otherscientists to the syntheses process of the theory of genetic code andconstruction of the code table are shown by explaining his five timessyntheses. Based on two-level researches of Crick,the author thinks that themain characteristics of his researches in the aspect are as follows: generality,systematicness, logicality and essentiality; frame research style; boldassumptions and innovation; thinking rooted in history and experiments.These characteristics show the influence of the strong foundation of physicsknowledge and physics thinking to him in his scientific activities on geneticcode.
     The impact of the research of Crick in the field of genetic code is studiedprimarily in the chapter6. Some concentrated problems, such as thedegeneracy of genetic code and deviant code, redefinition of nonsense codons,the expanding of code, the origin and evolution of code, etc, are analyzed atfirst. And then, through a case study on Mutation Deterioration theory proposed by Chinese scholar, the historical background and the essentialcontent of the theory of genetic code is examined. Mutation deteriorationtheory may date back to1980s. From the rationality of underlyingassumptions, the clarity of the logical structure, the completeness and theuniversality of interpretation of experimental data, the theory is particularlysuccessful among many other theories on the code origin and evolution. Thefact that the code study of Crick has direct effects on the MutationDeterioration theory is demonstrated in detail for the first time.
引文
①[德]H.斯多倍.遗传学史——从史前期到孟德尔定律的重新发现[M].上海:上海科学技术出版社,1981,291-313.
    ②Pauling L and Corey R B. Structure of the Nucleic Acids[J].Nature,1953,171:346.
    ③[英]J.格里宾,方玉珍译.双螺旋探秘———量子物理学与生命[M].上海:上海科技教育出版社.2001:236-259.
    ④[美]J.D.沃森著,刘望夷译.双螺旋—发现DNA结构的故事[M].北京:科学出版社,1984:18.
    ①Miller J H. Discovering Molecular Genetics:a Case Study Course with Problems and Scenarios[M].USA:Cold Spring Harbor Laboratory Press,1996:15-200.
    ②Maciej Szymański, Jan Barciszewski.The Genetic Code-40Years on [J].Acta.Biochimica.Polonica,2007,54(1):51-54.
    ①Hayes B. The Invention of the Genetic Code[J]. American Scientist,1998,86:8-14.
    ②胡文耕.生物学哲学[M].北京:中国社会科学出版社,2002:100-231.
    ①李辉芳.迈尔的生物学史思想与方法研究[D].太原:山西大学博士论文,2010.
    ①[德]E.迈尔著,涂长晟译.生物学思想发展的历史[M].成都:四川教育出版社,1990:748-751.
    ②[美]H.贾德森著,李晓丹译.创世纪的第八天:20世纪分子生物学革命[M].上海:上海科技出版社,2005:10-489.
    ①[美]L.N.玛格纳著,刘学礼译.生命科学史[M].天津:百花文艺出版社,2001:578-599.
    ②[美]G.E.艾伦著,田洺译.20世纪的生命科学史[M].上海:复旦大学出版社,2000:5-258.
    ①李难.生物学史[M].北京:海洋出版社出版,1990:369-373.
    ②宣建武.认识基因之路[M].北京:科学出版社,1989:56-178.
    ③谈家桢.中国遗传学史[M].上海:上海科技教育出版社,2002:1-10.
    ④朱玉贤.现代分子生物学[M].北京:高等教育出版社,2007:1-16.
    ⑤林克椿.面向21世纪物理学丛书—生物物理学[M].武汉:华中师范大学出版社,1999:1-3.
    ⑥Olby R C. The Path to the Double Helix[M].London: The Macmillan Press,1974:341、348-422.
    ⑦Olby R C. Francis Crick: Hunter of Life's Secrets [M]. USA:Cold Spring Harbor LaboratoryPress,2009:34-122.
    ⑧Olby R C. Francis Crick, DNA and the Central Dogma[J].Daedalus,1970,(99):942、953-955.
    ⑨Ridley M. Francis Crick: Discoverer of the Genetic Code[M]. USA:HarperCollins Publishers,2006:praise.
    ①Hayes B. Ode to the Code [J].2004,92(6):494-498.
    ②任本命.解开生命之谜的罗塞达石碑[J].遗传,2003,25(3):245-246.
    ③任本命,王虹.基因简史[J].西安联合大学学报,2000,3(2):102-104.
    ④向义和. DNA纤维的X射线衍射分析与双螺旋结构的发现[J].大学物理,2005,(1):50-58.
    ⑤向义和.薛定谔对基因性质的物理学分析及其思想影响[J]..物理,2002.31(11):741-745.
    ①向义和.遗传密码是怎样破译的[J].物理与工程,2007,17(2):16-23.
    ②雷瑞鹏.遗传密码概念发展的历史脉络[J].科学技术与辩证法,2006,23(3):95-99.
    ③辛亭转.基因概念的演变[D].太原:山西大学硕士论文,2009:10-126.
    ①吴国盛.科学思想史指南[M].成都:四川教育出版社,1994:96-100.
    ①刘凤朝.科学史的层次划分及其编史学意义[J].自然辩证法研究,2002,01.
    ②[美]T.S.库恩,李宝恒纪树立译.《科学革命的结构》[M].上海:科学技术出版社,1980:1-5.
    ①Rich A, Stevens C F. Francis Crick (1916~2004). Nature,2004,430:845-847.
    ①[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:20-105.本章多处引文出自此参考文献,不再重复加注。
    ②Olby R C. Francis Crick: Hunter of Life's Secrets[M]. USA:Cold Spring Harbor Laboratory Press,2009:34-39.
    ③Ridley M. Francis Crick: Discoverer of the Genetic Code[M].USA:HarperCollins Publishers,2006:115-120.
    ①袁观宇.生物物理学[M].北京:科学出版社,2006.
    ①[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:20–105.
    ②Muirhead H, Perutz M. Structure of Hemoglobin. A Three-Dimensional Fourier Synthesis of ReducedHuman Hemoglobin at5.5A Resolution[J]. Nature,1963,199(4894):633-638.
    ①Crick F H C. The Physical Properties of Cytoplasm. A Study by Means of the Magnetic ParticleMethod). PartⅡ. Theoretical Treatment Exp[J]. Exp.Cell.Res,1950,505-533.
    ②Crick F H C.On Protein Synthesis[J].Symp Soc Exp Biol,1958,7139-163.
    ③Watson J D, Crick F H C. Molecular Structure of Nucleic Acids[J]. Nature,1953,171:737-738.
    ④Crick F H C.On the Genetic Code[J]. Science,1963,139:461-464.
    ⑤[英]F·克里克著,汪云九译.惊人的假说[M].湖南:湖南科学技术大学出版社,2007:1-85.
    ⑥杂志名称为《Nature》、《Science》、《PNAS》及美国冷泉港实验室(Cold Spring Harbor Laboratory,CSHL)出版的定量生物学论文集.这些杂志皆被SCI检索,影响因子极高.
    ⑦徐娜.分子生物学之父——弗朗西斯·克里克[J].世界科学,2004,9:43-46.
    ①郭晓强.中心法则的提出者——克里克[J].生物学通报,2008,43(3):60-62.
    ①[美]V.K.麦克尔赫尼著,魏荣瑄译.沃森与DNA[M].北京:科学技术出版社,2005:27-133.
    ②[美]J.D.沃森著,刘望夷译.双螺旋—发现DNA结构的故事[M].北京:科学出版社,1984:28-135.
    ①Crick F H C. From DNA to Protein on Degenerate Templates and the Adapter Hypothesis: a Note forthe RNA Tie Club,1955.克里克认为这篇论文是他没有发表的论文中最有影响力的一篇.
    ②Crick F H C.Central Dogma of Molecular Biology[J]. Nature,1970,227(8):501.
    ③Crick F H C. Biochemical Activities of Nucleic Acids.The Present Position of the Coding Problem[J].Brookhaven Symp Biol.,1959,12:35-39.
    ④Crick F H C, Griffith J S, Orgel L E. Codes Without Commas [J]. PNAS,1957,43:416-421.
    ⑤Crick F H C,Barnett L,Brenner S,et al. General Nature of the Genetic Code [J]. Nature,1961,192:1227-1232.
    ⑥Crick F H C.Codon--Anticodon Pairing: the Wobble Hypothesis[J]. J.Mol.Biol,1966,19(2):548-555.
    ⑦Brenner S, L. Barmett, E R Katz, Crick F H C. UGA: a Third Nonsense Triplet in the Genetic Code[J].Nature,1967,213:449-450.
    ⑧Crick F H C.The Origin of the Genetic Code[J]. J.Mol.Biol,1968,38:367-379.
    ⑨Gamow G. Possible Relation between Deoxyribonucleic Acid and Protein Structures[J].Nature,1954,173:318.
    ⑩Crick F H C,Barnett L,Brenner S,et al. General Nature of the Genetic Code[J]. Nature,1961,192:1227-1232.
    11L.N.玛格纳.生命科学史[M].天津:百花文艺出版社,2001:636-638.
    12Ochoa S, Basilio C,Wahea A, lengyel P, Speyer J. Synthetic Polynucleotides and the Amino AcidCode.ⅴ[J].Science,1962,48:613-616.
    13Crick F H C.The Genetic Code—Yesterday, Today, and Tomorrow[J]. Cold Spring Harb Symp Quant
    Biol,1966,31:3-9.
    ①[英]F.克里克著,王淦昌译.生命:起源和本质[M].北京:科学普及出版社,1993:15-115.
    ②[美]J.霍根著,孙雍君译.科学的终结.呼和浩特:远方出版社,1997.
    ③[英]F·克里克著,汪云九译.惊人的假说[M].湖南:湖南科学技术大学出版社,2007:1-85.
    ①Ridley M. Francis Crick: Discoverer of the Genetic Code [M]. USA:HarperCollins Publishers,2006:156-163.
    ①[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:20-105.
    ②赵凯华.从分子生物学的历程看学科交叉[J].物理,2003,32(11):719-727.
    ①[美]G.E.艾伦著,田洺译.20世纪的生命科学史[M].上海:复旦大学出版社,2000:5-258.
    ②李难.生物学史[M].北京:海洋出版社出版,1990:369-373.
    ①H.斯多倍.遗传学史——从史前期到孟德尔定律的重新发现[M].上海:上海科学技术出版社,1981:291-313.
    ②http://www.nobelprize.org/nobel_prizes/medicine/laureates/1968/press.html.
    ①Portin P.The Origin, Development and Present Status of the Concept of the Gene: a Short HistoricalAccount of the Discoveries[J]. Current Genomics,2000,1(1),29-40.
    ②[美]L.N.玛格纳著,刘学礼译.生命科学史[M].天津:百花文艺出版社,2001:578-599.
    ③辛亭转.基因概念的演变[J].太原:山西大学硕士论文,2005:20-136.
    ①[美]J.D.沃森著,刘望夷译.双螺旋—发现DNA结构的故事[M].北京:科学出版社,1984:18-25.
    ②Olby R C. Quiet Debut for the Double Helix[J].Nature,2003,421:402-405.
    ③雷瑞鹏.遗传密码概念发展的历史脉络[J].科学技术与辩证法,2006,23(3):95-99.
    ④[英]J.格里宾著,方玉珍译.双螺旋探秘———量子物理学与生命[M].上海:上海科技教育出版社,2001:236-259.
    ①向义和.薛定谔对基因性质的物理学分析及其思想影响——评价薛定谔的《生命是什么?--生命细胞的物理学见解》[J].物理,2002,31(11):741-746.
    ②[奥]薛定谔著,罗来鸥,罗辽复译.生命是什么[M].长沙:湖南科技出版社,2007:20-89.
    ①Vasily V Ogryzko.Erwin Schroedinger, Francis Crick and Epigenetic Stability[J].Biology Direct,2008,3(1):15-25.
    ②Ellis E L,Delbruck M.The Growth of Bacteriophage[J]. J.Gen.physiol,1939,22:365-370.
    ③Luria S E, Delbruck M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance[J].Genetics,1943,28:491-498.
    ①James F. Crow and William F. Dove. Anecdotal, historical and critical commentaries ongenetics[J].Genetics,1992,131:515-518.
    ②[比]J.布拉舍著,傅文庆译.分子胚胎学引论[M].北京:科学出版社,1981:80-81.
    ③李约瑟(Joseph Needham)被布拉舍誉为“化学胚胎学之父”。但他真可说是集数家于一身。他在37岁开始对中国产生深厚兴趣,一生潜心研究中国问题,成为“中国人民的好朋友”,著成《中国科学技术史》.
    ④Alexandre H. Jean Brachet and His School[J]. Int. J. Dev. Biol,1992,36:29-39.
    ①Brachet J. Embryologie Chimique[M]. Paris:Interscience Publishers,1944:510.
    ②Brachet J. Expose Souvenirs Sur Les Origines De La Biologie Moliculaire[J].Bull. Ci. Sci. Acad. R.Belg.(5e Ser.)1987,73:441-449.
    ①Boris E.Terminology in Bacterial Genetics. Nature,1953,171(4355):701.
    ②http://osulibrary.orst.edu/specialcollections/coll/pauling/dna/people/crick.html.
    ①Dounce A L.Duplicating Mechanism for Peptide Chain and Nucleic Acid Synthesis[J].Enzymologia,1952,15(5):251-258.
    ②Dounce A L, Morrison M, et al.Role of Nucleic Acid and Enzymes in Peptide Chain Synthesis[J].Nature,1955,176:597-598.
    ①杨庆余.乔治·伽莫夫—成就卓越、勇于创新的科学大师[J].物理,2002,31(5):327-332.
    ①Gamow G, Ycas M. Statistical Correlation of Protein And Ribonucleic Acid Composition[J].PNAS,1955,41(12):1011-1019.
    ②Nanjundiah V.George Gamow and the Genetic Code[J]. Resonance,2004(7):44-49.
    ①[美]J.D.沃森著,刘望夷译.双螺旋—发现DNA结构的故事[M].北京:科学出版社,1984:100-135.
    ①1959年,他因发现DN A聚合酶而与人分享诺贝尔医学或生理学奖。
    ②Crick F H C.The Biochemistry of Genetics[C]. International Congress of Biochemistry,1964,6:109-128.
    ①Crick F.H.C.Obituary[J].Nature,1976,262:429-430.
    ①[美]L.N.玛格纳著,刘学礼译.生命科学史[M].天津:百花文艺出版社,2001:546-565.
    ②来源于卡罗莱纳生物供应公司(Carolina Biological Supply Company)提供的对克里克的访问原稿。http://www.accessexcellence.org/AE/AEC/CC/crick.php.
    ①罗辽复.物理学家看生命[M].长沙:湖南教育出版社,1994:160-168.
    ②江晓原.简明科学技术史[M].上海:上海交通大学出版社,2001:1-46.
    ①Crick F.H.C.What Mad Pursuit: A Personal View of Science[M].New York:Basic Books.1988:95-96.
    ②罗辽复.物理学家看生命[M].长沙:湖南教育出版社,1994:1-2.
    ①G.伽莫夫著,王晓华译.伽莫夫自传[M].上海:海翻译出版公司,1988:20-59.
    ②Crick F H C. From DNA to Protein on Degenerate Templates and the Adapter Hypothesis: a Note forthe RNA Tie Club,1955.
    ①Ridley M. Francis Crick: Discoverer of the Genetic Code[M].USA: Harper Collins Publishers,2006:77-79.
    ①刘明海.还原论研究[D].武汉:华中科技大学硕士论文,2008:1-26.
    ①Crick F H C. From DNA to Protein on Degenerate Templates and the Adapter Hypothesis: a Note forthe RNA Tie Club,1955.
    ①Crick F H C. From DNA to Protein on Degenerate Templates and the Adapter Hypothesis: a Note forthe RNA Tie Club,1955.
    ②[美]V.K.麦克尔赫尼著,魏荣瑄译.沃森与DNA[M].北京:科学技术出版社,2005:112-113.
    ③Waston J M. sixtieth-birthday remarks[J].CSHL,1976.
    ①那一时期人们仍然认为密码必定是重叠的,伽莫夫1955年12月发表的论文《蛋白质和RNA组分的统计关系》中提出非重叠码。
    ①Brenner S.On the Impossibility of All Overlapping Triplet Codes[J].PNAS,1957,43(8):687-694.
    ①向义和.遗传信息的转录和翻译机制是怎样发现的[J].自然杂志,2005,27(6):339-345.
    ②Benzer S. On the Topology of the Genetic Fine Structure[J]. PNAS,1959,45(11):1607-1620.
    ①Ryle A P, Sanger F, Smith L F.The Disulphide Bonda of Insulin[J].Biochem J,1955,60:541-556.
    ①王志珍.一个科技里程碑:分子生物学的中心法则[J].生理科学进展,2003,34(2):101-103.
    ②1959年10月,克里克与一起研究遗传密码的合作者布伦纳向RNA领带俱乐部提交《关于蛋白质的合成的一些脚注》,这篇文章也没有公开发表过,但是其影响力不及1955年的《关于退化的模板和连接子假说》.
    ①J.D.沃森著,刘望夷译.双螺旋——发现DNA结构的故事[M].北京:科学出版社,1984:91-100.
    ②Brachet J. Expose Souvenirs Sur Les Origines De La Biologie Moliculaire[J].Bull. Ci. Sci. Acad. R.Belg.(5e Ser.),1987,73:441-449.
    ①帕迪(Pardee)、雅各布(Jacob)和莫诺(Monod)合作,证明信使的存在。
    ①Jacob F, Monod J. Genetic Regulatory Mechanisms in the Synthesis of Proteins[J]. J.Mol. Biol.,1961,3:318-354.
    ②[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994.
    ③Singer M F, Leder P. Messenger RNA: An Evaluation[J].Annual Review of Biochemistry.1966,35:195-230.
    ①J.D.沃森著,钟扬译.基因.女郎.伽莫夫:发现双螺旋之后[M].上海:科学普及出版社,2003:241-242.
    ①李汝祺《.中国大百科全书·生物学》分册,遗传学卷[M].北京:中国百科全书出版社,1983:50-51.
    ①Ridley M. Francis Crick: Discoverer of the Genetic Code[M]. USA:HarperCollins Publishers,2006.
    ②Smit S, Widmann J, Knight R. Evolutionary Rates Vary among rRNA Structural Elements[J].Nucleic Acids Res.2007,35(10):3339-3354.
    ③1956年沃金和阿斯特拉汉曾经在宿主大肠杆菌中发现了一类新RNA分子,即是信使。
    ④Waston J D. Involvement of RNA in the Synthesis of Protein:the Ordered Interaction of Three Classesof RNA Controls the Assembly of Amino Acids Into Proteins[J].Science,1963,140:17-26.
    ①王前.假说与理论[M].沈阳:辽宁人民出版社出版,1985:3-95.
    ②Judson H F. First among Equals—Francis Crick[J].The New Eng Med Mag,2004,351:858
    ①向义和.遗传密码是怎样破译的[J].物理与工程,2007,17(2):16-23.
    ②方陵生.现代神经科学奠基人西莫尔·本泽尔[J].世界科学,2008(02):45-46.
    ①向义和.遗传密码是怎样破译的[J].物理与工程,2007,17(2):16-23.
    ①Morange M.The death of Francis Crick: the End of a Golden Age in Biology[J].J Biosci,2004,29(4):378-380.
    ②Yanofsky C. Establishing the Triplet Nature of the Genetic Code [J].Cell,2007,128(5):815-818.
    ①Orgel L E.Molecular biology. Retrospective: Francis Crick (1916-2004)[J].Science,2004,305(5687):1118.
    ①Crick F H C.The Biochemistry of Genetics. International Congress of Biochemistry[C].1964,6:109-128.
    ①1964年11月16-18日在休斯敦举行了罗伯特·韦尔奇基金会会议,议题为现代生物化学研究,会上克里克做了一篇题名为《遗传密码的总体性质》的会议报告。
    ②Epstein C.J. Role of Amino-Acid ‘Code’ and Selection for Conformation in the Evolution ofProteins[J]. Nature,1966,210:25-28.
    ①Crick F H C. Codon--Anticodon Pairing: the Wobble Hypothesis[J]. J.Mol.Biol,1966,19(2):548-555.
    ②Jones O W,Nirenberg M W. Degeneracy in the Amino Acid Code[J]. Biochim. Biophys. Acta,1966,
    119:400-406.
    ①肖敬平.遗传密码子进化的阶段性[J].生命科学研究,2002,6(3):198-203.
    ②李难.生物学史[M].北京:海洋出版社,1990:429-459.
    ③杨岐生.分子生物学[M].杭州:浙江大学出版社,2004:335-345.
    ④张伊平,祁国荣.密码子与反密码子的相互作用——从“摆动假说”到“三中读二”[J].遗传,1984,6(4):38-40.
    ⑤Crick F H C. Codon--Anticodon Pairing: the Wobble Hypothesis[J].J Mol Biol,1966,19(2):548-555.
    ①Crick F H C,Barnett L,Brenner S,et al. General Nature of the Genetic Code [J]. Nature,1961,192:1227-1232.
    ②Nirenberg M, Martin R, Matthaei J, Jones O. Ribonucleotide Composition of the Genetic Code[J].Biochemical and Biophysical Research Communications,1962,6:410-414.
    ③Eck R V.Genetic Code: Emergence of a Symmetrical Pattern[J].Science,1963,140(3566):477-481.
    ④Khorana H G. Nucleic Acid Synthesis in the Study of the Genetic Code[J]. Nobel Lectures:Physiology or Medicine(1963~1970).350-356.
    ⑤Nirenberg M. The Genetic Code[J]. Nobel Lectures:Physiology or Medicine (1963~1970).375-392.
    ①罗辽复.论遗传密码的简并规则[J].内蒙古大学学报(自然科学版).1986,3:513-516.
    ②Woese C R. Nature of the biological code[J]. Nature.1962,194:1114-1115.
    ③Woese C R. Order in the genetic code[J]. Proc. Natl. Acad. Sci. U S A.1965,54:71-75.
    ④Crick F H C. On the genetic code[J]. Science.1963,139:461-464.
    ⑤Sonneborn T M.The Differentiation of Cells [J]. PNAS,1964,51(5):915-929.
    ⑥罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    ①1966年,在Crick提出密码子摆动假说时,转运RNA(tRNA)还以sRNA来命名。
    ②Holley R W et al. Structure of a Ribonucleic Acid[J]. Science.1965,147:1462-1465.
    ①Bernfield M R, Nirenberg M W. RNA Codewords and Protein Synthesis. The Nucleotide Sequences ofMultiple Codewords for Phenylalanine, Serine, Leucine, and Proline[J].Science.1965,147:479-484.
    ②Kellogg D A, Doctor B P, Loebel J E, Nirenberg M W.RNA Codons and Protein Synthesis. IX.Synonym Codon Recognition by Multiple Species of Valine-, Alanine-, and Methionine-sRNA[J].PNAS,1966,55(4):912-919.
    ①U-U,U-C配对与标准配对相比,糖苷键需要很近,因此U-U,U-C配对的可能性极小.
    ②Varani G, McClain W H. The G·U Wobble Base Pair. A Fundamental Building Block of RNA StructureCrucial to RNA Function in Diverse Biological Systems[J].EMBO Rep,2000,1(1):18-23.
    ①杨岐生.分子生物学[M].杭州:浙江大学出版社,2004:335-345.
    ①1,2,3代表密码子或反密码子三个的位点号,反密码子的第一位点(5’端)与密码子的第三位点(3’端)符合摆动配对,其余两个位点与密码子相应的位点遵循标准配对G====C;A====U.
    ②Holley R W et al. Structure of a Ribonucleic Acid[J]. Science,1965,147:1462-1465.
    ①刘望夷.转移核糖核酸发现五十年——tRNA发现者Zamecnik辞世[J].生命的化学,2010,30(5):656-666.
    ①Lagerkvist U."Two out of three": An Alternative Method for Codon Reading[J]. Proc. Nati. Acad. Sci.USA,1978,75(4):1759-1762.
    ②Knight R D, Freeland S J, Landweber L F.Selection, History and Chemistry: the Three Faces of theGenetic Code[J]. Trends Biochem Sci,1999,24(6):241-247.
    ①罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    ②[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:20-105.
    ①Benzer S, Champe S P. A Change from Nonsense to Sense in the Genetic Code[J].PNAS,1962,48:1114-1121.
    ②Benzer S. Fine Structure of a Genetic Region in Bacteriophage[J].PNAS,1955,41:344-354.
    ③Yanofsky C, Carlton B C, Guest J R, et al. On the Colinearity of Gene Structure and ProteinStructure[J]. PNAS,1964,51:266-274.
    ①Brenner S, Stretton A O W, Kaplan S.Genetic Code: The ‘Nonsense’ Triplets for Chain Terminationand their Suppression"[J]. Nature,1965,206(4988):994-998.
    ②Weigert M G, Garen A. Base Composition of Nonsense Codons in E. coli Evidence from Amino-AcidSubstitutions at a Tryptophan Site in Alkaline Phosphatase[J]. Nature,1965,206:992-994.
    ③Stahl F W. The Amber Mutants of Phage T4[J]. Genetics,1995,141:439-442.
    ④UAG三联体密码子中任意一个碱基突变均可产生编码其他氨基酸的新密码子,如,UAA,UGA和UAG等。
    ①Brenner S, L. Barmett, E R Katz, Crick F H C. UGA: a Third Nonsense Triplet in the Genetic Code[J].Nature,1967,213:449-450.
    ①Crick F H C.Codon--Anticodon Pairing: the Wobble Hypothesis[J]. J.Mol.Biol,1966,19(2):548-555.
    ①Osawa S, Jukes T H, et al. Recent Evidence for Evolution of the Genetic Code[J]. Microbiol Rev,1992,56(1):229-264.
    ②Wickner R B.[URE3] as an Altered URE2Protein: Evidence for a Prion Analog in SaccharomycesCerevisiae[J]. Science,1994,264(5158):566-569.
    ①Eggertsson G, Soll D. Transfer RNA-Mediated Suppression of Termination Codons in E. coli[J].Microbiol. Rev,1988,52:354-374.
    ③Gubbens J, Kim S J, Yang Z, et al.In Vitro Incorporation of Nonnatural Amino Acids into ProteinUsing tRNA(Cys)-Derived Opal, Ochre, and Amber Suppressor tRNAs[J].RNA,2010,16(8):1660-1672.
    ④Murgola E J. tRNA, Suppression, and the Code[J].Ann. Rev. Genet,1985,19:57-80.
    ①罗辽复.论遗传密码的简并规则[J].内蒙古大学学报(自然科学版).1986,3:513-516.
    ②罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    ①[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:105.
    ①Nirenberg M. Historical review: Deciphering the Genetic Code–a Personal Account[J].Trends inBiochemical Sciences,2004,29(1):46-54.
    ①Nirenberg M W,Matthaei J H. The Dependence of Cell-Free Protein Synthesis in E. coli uponNaturally Occurring or Synthetic Polyribonucleotides[J]. PNAS,1961,47:1588-1602.
    ①宣建武.认识基因之路[M].北京:科学出版社.1989:22-266.
    ②Ochoa S,lengyel P,Speyer J. Synthetic Polynucleotides and the Amino Acid Code[J].PNAS,1961,47:1936-1942.
    ③Nirenberg M W, et al. An Intermediate in the Biosynthesis of Polyphenylalanine Directed by SyntheticTemplate RNA[J]. PNAS,1962,48:104-109.
    ④Nirenberg M, Leder P. RNA Codewords and Protein Synthesis. The Effect of Trinucleotides upon theBinding of sRNA to Ribosomes[J].Science,1964,145:1399-1407.
    ⑤Martin R G, et al. Ribonucleotide Composition of the Genetic Code[J]. Biochem. Biophys. Res.Commun,1961,6:410-414.
    ①Nirenberg M W. On the Coding of Genetic Information[J].Cold Spring Harb Symp Quant Biol,1963,28:549-557.
    ②Clark B F C,Marcker K A. The Role of N-formylmethionyl-sRNA in Protein Biosynthesis[J]. J. Mol.Biol,1966,17:394-406.
    ③Nirenberg M W. RNA Codewords and Protein Synthesis. On the General Nature of the RNA Code[J].PNAS,1965,53:1161–1168.
    ④Leder P, Nirenberg M W. RNA Codewords and Protein Synthesis. II. Nucleotide Sequence of a ValineRNA Codeword[J]. PNAS,1964,52:420-427.
    ⑤Nirenberg M W. The RNA Code and Protein Synthesis[J].Cold Spring Harb Symp Quant Biol,1966,31:11-24.
    ⑥Marshall R E, et al. RNA Codewords and Protein Synthesis. XII. Fine Structure of RNA CodewordsRecognized by Bacterial, Amphibian,and Mammalian Transfer RNA[J]. Science,1967,155:820-826.
    ①L.N.玛格纳.生命科学史[M].天津:百花文艺出版社,2001:636-638.
    ①Khorana H. Nucleic Acid Synthes is in the Study of the Genetic Code. Nobel Lectures: Physiol ogy orMedicine(1963-1970).350-356.
    ②Khorana H G. Total synthesis of a Gene[J].Science,1979,203(4381):614-625.
    ①http://profiles.nlm.nih.gov/SC/Views/AlphaChron/series/016805/.
    ②Brenner S, Stretton A O W, Kaplan S.Genetic Code: The ‘Nonsense’ Triplets for Chain Terminationand Their Suppression"[J]. Nature,1965,206(4988):994-998.
    ③Brenner S, L. Barmett, E R Katz, Crick F H C. UGA: a Third Nonsense Triplet in the Genetic Code[J].Nature,1967,213:449-450.
    ①Wittmann H G,Wittmann-Liebold B. Tobacco Mosaic Virus Mutants and the Genetic CodingProblem[J].Cold Spring Harb Symp Quant Biol,1963,28:589-595.
    ①Yanofsky C, Carlton B C, Guest J R, et al. On the Colinearity of Gene Structure and ProteinStructure[J]. PNAS,1964,51:266-274.
    ①比德尔、塔特姆和莱德伯格因发现了基因通过调节特定的化学事件起作用而分享了1958年诺贝尔奖.
    ②《诺贝尔奖获得者演讲集》生理学或医学(1963-1970),郑伯承、于英心、扬枕旦等译,学苑出版社,1991年6月.
    ③[英]F·克里克著,吕向东,译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:100-105.
    ①罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    ②Crick F H C.The Origin of the Genetic Code[J]. J.Mol.Biol,1968,38:367-379.
    ①Nirenberg M,Martin R, Matthaei J,Jones O.Ribonucleotide Composition of the Genetic Code[J].Biochemical and Biophysical Research Communications,1962,6:410-414.
    ②Woese C R. Nature of the Biological Code[J]. Nature,1962,194:1114-1115.
    ③Crick F H C. On the Genetic Code[J]. Science,1963,139:461-464.
    ④Woese C R. Order in the Genetic Code[J]. Proc. Natl. Acad. Sci. U S A,1965,54:71-75.
    ⑤Crick F H C.The Origin of the Genetic Code[J]. J.Mol.Biol,1968,38:367-379.
    ⑥Woese C R. The Genetic Code: the Molecular basis for Genetic Expression [M]. New York: Harper&Row,1967.
    ⑦Woese C R. Phylogenetic structure of the prokaryotic domain: the primary kingdoms [J]. PNAS,1977,74(11):5088-5090.
    ①Brenner S, Barnett L, Katz E R, Crick F H C. UGA: a Third Nonsense Triplet in the Genetic Code[J].Nature,1967,213:449-450.
    ②Schwartz R D, Bryson V. Nonsense Mutants in the rⅡ A Cistronof Bacteriophage T4[J]. J.Virology,1969,4:811-815.
    ③Woese C R.On the Evolution of the Genetic Code[J]. Proc. Natl. Acad. Sci. U S A,1965,54:1546-1552.
    ①Crick F H C.The Origin of the Genetic Code[J]. J.Mol.Biol,1968,38:367-379.
    ②罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000.56-256.
    ③Nirenberg M. The Genetic Code[J]. Nobel Lectures:Physiology or Medicine(1963~1970),375-392.
    ①Crick F H C.The Origin of the Genetic Code[J]. J.Mol.Biol,1968,38:367-379.
    ①Crick F H C, Brenner S, Klug A, et al. A Speculation on the Origin of Protein Synthesis[J].Origins ofLife,1976,7:389-397.
    ①Crick F H C.The Origin of the Genetic Code (Editorial letter)[Z]. http://profiles.nlm.nih.gov/SC/Views/AlphaChron/series/016805/.
    ①Sella G Ardell D H. The Coevolution of Genes and Genetic Codes: Crick’s Frozen AccidentRevisited[J]. J.Mol.Evol,2006,63:297-313.
    ①Gilbert W. The RNA World[J]. Nature,1986,319:618.
    ①Crick F H C. General Nature of the Genetic Code [C]. Chapter III in Selected Topics in ModernBiochemistry: Proceedings of the Robert A. Welch Foundation Conferences on ChemicalResearch,1965,8:43-65.
    ②[美]弗·卡约里著,戴念祖译.物理学史[M].北京:中国人民大学出版社,2010.
    ③王士平.近代物理学史[M].长沙:湖南教育出版社,2002.
    ①Crick F H C. Molecular Biology in the Year2000[J]. Nature,1970,228:613-615.
    ②Crick F H C.The Genetic Code—Yesterday, Today, and Tomorrow[J]. Cold Spring Harb Symp QuantBiol,1966,31:3-9.
    ③[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:68-89.
    ①[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:185.
    ①Judson H F.The Eighth Day of Creation [M]. NY:Cold Spring Harbor Laboratory Press,1996:10-11.
    ②郭晓强,姚清国,冯志霞.分子生物学大师和奠基人之一—布雷内[J].生物学通报,2007,42(12):53-55.
    ③Crick F H C. On Running a Summer School[J]. Nature,1968,220:1275-1276.
    ①Olby R C.Francis Crick:Hunter of Life's Secrets[M].USA:Cold Spring Harbor Laboratory Press,2009.
    ②[英]B.克拉克著,钟安环译.遗传密码[M].北京:科学出版社,1982:3.
    ①http://www.guardian.co.uk/science/2010/jun/19/largest-biomedical-research-facility-europe.
    ②摘自《方舟子带你走近科学》,陕西师大出版社2008年11月出版。
    ①Barrell B G, Bankier A T, Drouin J. A Different Genetic Code in Human Mitochondria[J]. Nature,1979,282(5735):189-194.
    ①Luo L F. The degeneracy rule of genetic code [J]. Origins of Life,1988,18:65–70.
    ②肖敬平.析遗传密码子多态性之谜.生命科学研究(XiaoJingPing. Analysis of the Mystery ofPolymorphism of Genetic Codons[J]. Life Sci Res),2001,5(4):321-324.
    ③Knight R D, Freeland S J, Landweber L F. Rewiring the keyboard: Evolution of the Genetic Code[J].Nature Reviews Genetics,2001,2:49–58.
    ④吴宪明,吴松锋等.密码子偏性的分析方法及相关研究进展[J].遗传,2007,29(4):420-426.
    ①James C M, Ferguson T K, Laykan J F, et al. The Amber Codon in the Gene Encoding theMonomethylamine Methyltransferase Isolated from Methanosarcina Barkeri is Translated as a SenseCodon[J]. J Biol Chem,2001,276:34252-34258.
    ②Hao B, Gong W, Ferguson T K, et al. A New UAG-encoded Residue in the Structure of aMethanogen Methyltransferase[J]. Science,2002,296:1462-1466.
    ③Fletcher J E, Copeland P R, Driscoll DM, et al. The Selenocysteine Incorporation Machinery:Interactions between the SECIS RNA and the SECIS-binding Protein SBP2[J]. RNA,2001,7:1442-1453.
    ④孙咏萍.线粒体与细胞核的非标准密码表及其进化关系的研究[D].呼和浩特:内蒙古大学硕士论文,2005:16-35.
    ①王磊.扩展遗传密码[J].世界科学,2004,01.
    ②Wang L, Schultz P G. Expanding the Genetic Code[J]. Angew Chem Int Ed Engl,2004,44:34-66.
    ③刘庆坡.遗传密码子及其应用[J].中国生物化学与分子生物学报,2006,22(11):851-855.
    ④Xie J, Schultz P G. An expanding genetic code [J]. Methods,2005,36(3):227-238.
    ⑤Taki M, Matsushita J, Sisido M. Expanding the Genetic Code in a Mammalian Cell Line by theIntroduction of Four-Base Codon/anticodon Pairs[J]. Chembiochem,2006,7(3):425-428.
    ①Anderson J C, Wu N, Santoro S W, et al. An Expanded Genetic Code with a Functional QuadrupletCodon[J].PNAS,2004,101:7566-7571.
    ②罗辽复.基因组信息、密码进化、折叠动力学和熵产生———理论生物学的几个基本问题[J].科技导报,2010,28(15):106-111.
    ③Wong J T. A Co-evolution Theory of the Genetic Code[J]. PNAS,1975,72:1909-1912.
    ④Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R. The Origin of Genetic Information[J].Sci Am,1981,244(4):88-92.
    ⑤Luo L F. A Unified Theory on Construction and Evolution of the Genetic Code[R/OL].http://arxiv.org/abs/0908.3067.
    ⑥刘庆坡,薛庆中.遗传密码子及其应用[J].中国生物化学与分子生物学报,2006,22(11):851-855.
    ⑦Hornos J E M, Hornos Y M M. Algebraic Model for the Evolution of the Genetic Code [J].PhysicalRev Letters,1993,71:4401-4404.
    ①Freeland S J, Hurst L D. The Genetic Code is one in a Million[J]. J Mol Evol,1998,47:238-248.
    ②Knight R D, Freeland S J, Landweber L F.Selection, History and Chemistry: the Three Faces of theGenetic Code[J]. Trends Biochem Sci,1999,24(6):241-247.
    ③Trifonov E N. Consensus Temporal Order of Amino Acids and Evolution of the Triplet Code[J]. Gene,2000,261(1):139-151.
    ④YANG C M. The Naturally Designed Spherical Symmetry in the Genetic Code[R/OL].http://arxiv.org/abs/q-bio/0309014.
    ⑤Copley S D, Smith E, Morowitz H J.A Mechanism for the Association of Amino Acids with theirCodons and the Origin of the Genetic Code[J].PNAS,2005,102(12):4442-4447.
    ⑥Chechetkin V R. Genetic Code from tRNA Point of View[J]. Theor Biol,2006,242(4):922-934.
    ⑦肖景发,于军.遗传密码的新排列和起源探讨[J].中国科学(C辑:生命科学),2009,39(8):727–726.
    ①1991年前向罗先生索要其在《the Origin of Life》(1988,1989年)杂志上发表的两篇讨论遗传密码的论文复印件的各国函件及回执已整理。
    ②罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    ③Woese C R.On the Evolution of the Genetic Code[J].PNAS,1965,54:1546-1552.
    ④Woese C R.Nature of the Biological Code[J]. Nature,1962,194:1114-1115.
    ①Woese C R.Order in the Genetic Code[J]. PNAS,1965,54:71-75.
    ②Crick F H C.The Origin of the Genetic Code[J]. J Mol Biol,1968,38:367-379.
    ③Knight R D, Freeland S J, Landweber L F.Selection, History and Chemistry: the Three Faces of theGenetic Code[J]. Trends Biochem Sci,1999,24(6):241-247.
    ④Trifonov E N. Consensus Temporal Order of Amino Acids and Evolution of the Triplet Code[J]. Gene2000,261:139-151.
    ⑤Wong J T. Role of Minimization of Chemical Distances between Amino Acids in the Evolution of theGenetic Code[J]. Proceedings of the National Academy of Sciences of the U.S.A,1980,77:1083-1086.
    ⑥Wong J T. A Co-evolution Theory of the Genetic Code[J]. PNAS,1975,72:1909–1912.
    ①Giulio M D, Medugno M. The Historical Factor: the Biosynthetic Relationships between Amino Acidsand their Physicochemical Properties in the Origin of the Genetic Code[J].J Mol Evol,1998,46:615-621.
    ②Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R. The Origin of Genetic Information[J].Sci Am,1981,244(4):88-92.
    ③Luo L F.A Unified Theory on Construction and Evolution of the Genetic Code[R/OL]. http://arxiv.org/abs/0908.3067.
    ①Luo L F. The Degeneracy Rule of Genetic Code[J]. Origins of Life,1988,18:65-70.
    ②罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    ③Sonneborn T M.The Differentiation of Cells [J]. PNAS,1964,51(5):915-929.
    ①Luo L F. Distribution of Amino Acids in Genetic Code[J]. Origins of Life,1989,19(6):621-631.
    ②见《生命进化的物理观》,罗辽复著.
    ③为了显示密码表较强的亲疏水对称性,把通常的碱基顺序UCAG换成阳阴顺序UCGA,详见《生命进化的物理观》,罗辽复著.
    ①Kay L E. Who wrote the book of life?A History of Genetic Code[M]. California:Stanford UniversityPress,2000.
    ②Luo L F, Li X Q. Coding rules for amino acids in the genetic code-The genetic code is a minimalcode of mutational deterioration [J]. Origins of Life,2002,32(1):23-33.
    ①Luo L F, Li X Q. Construction of genetic code from evolutionary stability [J].Biosystems,2002,65(2-3):83-97.
    ②Freeland S J, Hurst L D. The Genetic Code is one in a Million[J]. J Mol Evol,1998,47:238-248.
    ②Luo L F, Li X Q. Construction of Genetic Code from Evolutionary Stability[J].Biosystems,2002,65(2-3):83-97.
    ①Luo L F.A Unified Theory on Construction and Evolution of the Genetic Code[R/OL].http://arxiv.org/abs/0908.3067.
    ②孙咏萍.线粒体与细胞核反常密码表及其进化关系的研究[D].呼和浩特:内蒙古大学硕士论文,2005.
    ③Maeshiro T, Kimura M.The Role of Robustness and Changeability on the Origin and Evolution ofGenetic Codes[J]. PNAS,1998,95:5088-5093.
    ④Santos M A S, Moura G, Massey S E, et al. Driving Change: The Evolution of Alternative GeneticCodes[J]. Trends in Genetics,2004,20:95-101.
    ①Knight R D, Landweber L F. The Early Evolution of the Genetic Code[J]. Cell,2000,101:569-572.
    ②Luo L F.A Unified Theory on Construction and Evolution of the Genetic Code[R/OL].http://arxiv.org/abs/0908.3067.
    ①[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:20-105.
    ①Liu Qingpo, Feng Ying, Dong Hui. Comparative Studies on Synonymous Codon Usage Bias inTwenty Species[J]. J Northwest Sci-Tech Univ Agri For (Nat Sci Ed),2004,32(7):67-71.
    ①[俄] A.I.奥巴林著,徐叔云译.地球上生命的起源[M].北京:科学出版社,1960:100-167.
    ②[日]原田馨著,庚镇城译.生命起源的化学基础[M].上海:上海科学技术出版社,1978:20-46.
    ③尚守臣.易道源与人类生命起源[M].太原:山西科学技术出版社,2009.
    1.Alexandre H. Jean Brachet and his School[J]. Int. J. Dev. Biol,1992,36:29-39.
    2.Anderson J C, Wu N, Santoro S W, et al. An Expanded Genetic Code with a Functional QuadrupletCodon [J].PNAS,2004,101:7566-7571.
    3.[俄]A.I.奥巴林著,徐叔云译.地球上生命的起源[M].北京:科学出版社,1960:100-167.
    4.Barrell B G, Bankier A T, Drouin J. A Different Genetic Code in Human Mitochondria[J]. Nature,1979,282(5735):189-194.
    5.Bernfield M R, Nirenberg M W. RNA Codewords and Protein Synthesis. The Nucleotide Sequencesof Multiple Codewords for Phenylalanine, Serine, Leucine, and Proline[J].Science,1965,147:479-484.
    6.Benzer S. Fine Structure of a Genetic Region in Bacteriophage[J].PNAS,1955,41:344-354.
    7.Benzer S. On the Topology of the Genetic Fine Structure[J]. PNAS,1959,45(11):1607-1620.
    8.Benzer S, Champe S P. A Change from Nonsense to Sense in the Genetic Code[J].PNAS,1962,48:1114-1121.
    9.Brachet J. Embryologie Chimique[M]. Paris:Interscience Publishers,1944:510.
    10.Brachet J. Expose Souvenirs Sur Les Origines De La Biologie Moliculaire[J].Bull. Ci. Sci. Acad. R.Belg.(5e Ser.),1987,73:441-449.
    11.Brenner S.On the Impossibility of All Overlapping Triplet Codes [J].PNAS,1957,43(8):687-694.
    12.Brenner S, Stretton A O W, Kaplan S.Genetic Code: The ‘Nonsense’ Triplets for Chain Terminationand their Suppression"[J]. Nature,1965,206(4988):994-998.
    13.Brenner S, Barmett L, Katz E R, Crick F H C. UGA: a Third Nonsense Triplet in the Genetic Code[J]. Nature,1967,213:449-450.
    14.[英]B.克拉克著,钟安环译.遗传密码[M].北京:科学出版社,1982:10-189.
    15.Chechetkin V R. Genetic Code from tRNA Point of View [J]. Theor Biol,2006,242(4):922-934.
    16.Copley S D,Smith E,Morowitz H J.A Mechanism for the Association of Amino Acids with theirCodons and the Origin of the Genetic Code [J].P NAS,2005,102(12):4442-4447.
    17.Crick F H C. The Physical Properties of Cytoplasm. A Study by Means of the Magnetic ParticleMethod. PartⅡ. Theoretical Treatment Exp[J]. Exp.Cell.Res.1950,505-533.
    18.Crick F H C, Griffith J S, Orgel L E. Codes Without Commas [J]. PNAS,1957,43:416-421.
    19.Crick F H C.On Protein Synthesis[J].Symp Soc Exp Biol,1958,7139-163.
    20.Crick F H C. Biochemical Activities of Nucleic Acids.The Present Position of the CodingProblem[J].Brookhaven Symp Biol.1959,12:35-39.
    21.Crick F H C,Barnett L,Brenner S,et al. General Nature of the Genetic Code[J]. Nature,1961,192:1227-1232.
    22.Crick F H C. On the Genetic Code[J]. Science,1963,139:461-464.
    23.Crick F H C.The Biochemistry of Genetics[C].International Congress of Biochemistry,1964,6:109-128.
    24.Crick F H C. General Nature of the Genetic Code [C]. Chapter III in Selected Topics in ModernBiochemistry: Proceedings of the Robert A. Welch Foundation Conferences on ChemicalResearch.1965,8:43-65.
    25.Clark B F C, Marcker, K A. The Role of N-formylmethionyl-sRNA in Protein Biosynthesis[J]. J. Mol.Biol,1966,17:394-406.
    26.Crick F H C.Codon--anticodon Pairing: the Wobble Hypothesis[J]. J.Mol.Biol.1966,19(2):548-555.
    27.Crick F H C.The Genetic Code—Yesterday, Today, and Tomorrow[J]. Cold Spring Harb Symp QuantBiol,1966,31:3-9.
    28.Crick F H C. On Running a Summer School [J]. Nature,1968,220:1275-1276.
    29.Crick F H C.The Origin of the Genetic Code[J]. J.Mol.Biol.1968,38:367-379.
    30.Crick F H C.Central Dogma of Molecular Biology[J]. Nature,1970,227(8):501.
    31.Crick F H C. Molecular Biology in the year2000[J]. Nature,1970,228:613-615.
    32. Crick F H C. The Double Helix:a Personal View[J]Nature,1974,248:766-769.
    33.Crick F H C, Brenner S, Klug A, et al. A Speculation on the Origin of Protein Synthesis[J].Origins ofLife,1976,7:389-397.
    34.Crick F H C.Obituary[J].Nature,1976,262:429-430.
    35.Crick F H C.How to Live with a Golden Double Helix[J].Science,1979,9:6-9.
    36.Crick F.H.C.What Mad Pursuit: A Personal View of Science[M].New York:Basic Books.1988:95-96.
    37.Crick F H C,Koch C.Towards a Neurobiological Theory of Consciousness[J].Seminars inNeurosciences,1990,2:263-275.
    38.Di Giulio M, Medugno M. The Historical Factor: the Biosynthetic Relationships between AminoAcids and their Physicochemical Properties in the Origin of the Genetic Code[J]. J Mol Evol,1998,46:615-621.
    39.Dounce A L.Duplicating Mechanism for Peptide Chain and Nucleic Acid Synthesis[J].Enzymologia.1952,15(5):251-258.
    40.Dounce A L, Morrison M et al.Role of Nucleic Acid and Enzymes in Peptide Chain Synthesis [J].Nature,1955,176:597-598.
    41.Eck R V.Genetic Code: Emergence of a Symmetrical Pattern[J].Science.1963,140(3566):477-481.
    42.Eggertsson G, Soll D. Transfer RNA-mediated Suppression of Termination Codons in E. coli[J].Microbiol. Rev,1988,52:354-374.
    43.Eigen M, Gardiner W, Schuster P, Winkler-Oswatitsch R. The Origin of Genetic Information [J].SciAm,1981,244(4):88-92.
    44.Ellis E L,Delbruck M.The Growth of Bacteriophage[J]. J.Gen.physiol.1939,22:365-370.
    45.Ephrussi Boris.Terminology in Bacterial Genetics [J]. Nature,1953,171(4355):701.
    46.Epstein C J. Role of Amino-Acid ‘Code’ and Selection for Conformation in the Evolution ofProteins[J]. Nature,1966,210:25-28.
    47.[德]E.迈尔著,涂长晟译.生物学思想发展的历史[M].成都:四川教育出版社,1990:748-751.
    48.[奥]E.薛定谔著,罗来鸥,罗辽复译.生命是什么[M].长沙:湖南科技出版社,2007:20-89.
    49.Fletcher J E, Copeland P R, Driscoll DM, et al. The Selenocysteine Incorporation Machinery:Interactions between the SECIS RNA and the SECIS-binding Protein SBP2[J]. RNA,2001,7:1442-1453.
    50.Freeland S J, Hurst L D. The Genetic Code is one in a Million[J]. J Mol Evol,1998,47:238-248.
    51.方陵生.现代神经科学奠基人西莫尔·本泽尔[J].世界科学,2008(02).
    52.[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:20–105.
    53.[英]F·克里克著,吕向东等译.狂热的追求———科学发现之我见[M].合肥:中国科学技术大学出版社,1994:185.
    54.[英]F·克里克著,汪云九译.惊人的假说[M].湖南:湖南科学技术大学出版社,2007:1-85.
    55.[英]F·克里克著,王淦昌译.生命:起源和本质[M].北京:科学普及出版社,1993:15-115.
    56.[美]弗·卡约里著,戴念祖译.物理学史[M].北京:中国人民大学出版社,2010.
    57.Gamow G. Possible Relation between Deoxyribonucleic Acid and Protein Structures[J].Nature,1954,173:318.
    58.Gamow G,Ycas M. Statistical Correlation of Protein and Ribonucleic Acid Composition[J].PNAS,1955,41(12):1011-1019.
    59.Gilbert W. The RNA World[J]. Nature,1986,319:618.
    60.Gubbens J, Kim S J, Yang Z, et al.In Vitro Incorporation of Nonnatural Amino Acids into ProteinUsing tRNA(Cys)-derived Opal, Ochre, and Amber Suppressor tRNAs[J].RNA,2010,16(8):1660-1672.
    61.[美]G.E.艾伦著,田洺译.20世纪的生命科学史[M].上海:复旦大学出版社,2000:5-258.
    62.Sella G, Ardell D H. The Coevolution of Genes and Genetic Codes: Crick’s Frozen AccidentRevisited[J]. J.Mol.Evol,2006,63:297-313.
    63.郭晓强,姚清国,冯志霞.分子生物学大师和奠基人之一—布雷内[J].生物学通报,2007,42(12):53-55.
    64.郭晓强.中心法则的提出者——克里克[J].生物学通报,2008,43(3):60-62.
    65.Hao B, Gong W, Ferguson T K, et al. A new UAG-encoded Residue in the Structure of aMethanogen Methyltransferase[J]. Science,2002,296:1462-1466.
    66. Hayes B. The Invention of the Genetic Code[J]. American Scientist,1998,86:8-14.
    67. Hayes B. Ode to the Code[J]. American Scientist,2004,92(6):494-498.
    68.Hornos J E M, Hornos Y M M. Algebraic Model for the Evolution of the Genetic Code [J].PhysicalRev Letters,1993,71:4401-4404.
    69.[美]H.贾德森著,李晓丹译.创世纪的第八天:20世纪分子生物学革命[M].上海:上海科技出版社,2005:10-489.
    70.[德]H.斯多倍著,赵寿元译.遗传学史——从史前期到孟德尔定律的重新发现[M].上海:上海科学技术出版社,1981,291-313.
    71.胡文耕.生物学哲学[M].北京:中国社会科学出版社,2002:100-231.
    72.Jacob F, Monod J. Genetic Regulatory Mechanisms in the Synthesis of Proteins[J]. J.Mol. Biol,1961,3:318-354.
    73.James C M, Ferguson T K, Laykan J F, et al. The Amber Codon in the Gene Encoding theMonomethylamine Methyltransferase Isolated from Methanosarcina Barkeri is Translated as a SenseCodon[J]. J Biol Chem,2001,276:34252-34258.
    74.James F. Crow and William F. Dove. Anecdotal, Historical and Critical Commentaries onGenetics[J].Genetics,1992,131:515-518.
    75.Jones O W,Nirenberg M W. Degeneracy in the Amino Acid Code[J]. Biochim. Biophys. Acta,1966,119:400-406.
    76.Judson H F. The Eighth Day of Creation [M]. NY:Cold Spring Harbor Laboratory Press,1996:10-11.
    77.Judson H F. First among Equals—Francis Crick[J].The New Eng Med Mag.2004,351:858.
    78.[美]J.D.沃森著,刘望夷译.双螺旋—发现DNA结构的故事[M].北京:科学出版社,1984:18、28-135.
    79.[美]J.D.沃森著,钟扬译.基因.女郎.伽莫夫:发现双螺旋之后[M].上海:科学普及出版社,2003:241-242.
    80.[比]J.布拉舍著,傅文庆译.分子胚胎学引论[M].北京:科学出版社,1981:80-81.
    81.[英]J.格里宾著,方玉珍译.双螺旋探秘———量子物理学与生命[M].上海:上海科技教育出版社,2001:236-259.
    82.江晓原.简明科学技术史[M].上海:上海交通大学出版社,2001.
    83.Kay L E. Who Wrote the Book of Life?A History of Genetic Code[M]. California:StanfordUniversity Press,2000.
    84.Kellogg D A, Doctor B P, Loebel J E, Nirenberg M W.RNA Codons and Protein Synthesis. IX.Synonym Codon Recognition by Multiple Species of valine-, Alanine-, and Methionine-sRNA[J].PNAS,1966,55(4):912-919.
    85.Khorana H G. Nucleic Acid Synthesis in the study of the Genetic Code[J]. Nobel Lectures:Physiology or Medicine(1963~1970).350-356.
    86.Khorana H G. Total Synthesis of a Gene[J]. Science,1979,203(4381):614-625.
    87.Knight R D, Freeland S J, Landweber L F.Selection, History and Chemistry: the Three Faces of theGenetic Code[J]. Trends Biochem Sci.1999,24(6):241-247.
    88.Knight R D, Freeland S J, Landweber L F. Rewiring the Keyboard: Evolution of the Genetic Code[J]. Nature Reviews Genetics,2001,2:49-58.
    89.Lagerkvist U."Two out of three": An Alternative Method for Codon Reading[J]. Proc. Nati. Acad.Sci. USA.1978,75(4):1759-1762.
    90.Leder P, Nirenberg M W. RNA Codewords and Protein Synthesis. II. Nucleotide sequence of a valineRNA codeword[J]. PNAS,1964,52:420-427.
    91.Liu Qingpo, Feng Ying, Dong Hui. Comparative Studies on Synonymous Codon Usage Bias inTwenty Species[J]. J Northwest Sci-Tech Univ Agri For (Nat Sci Ed),2004,32(7):67-71.
    92.Luo L F. The Degeneracy Rule of Genetic Code[J]. Origins of Life,1988,18:65-70.
    93.Luo L F. Distribution of Amino Acids in Genetic Code[J]. Origins of Life,1989,19(6):621-631.
    94.Luo L F. A Unified Theory on Construction and Evolution of the Genetic Code[R/OL].http://arxiv.org/abs/0908.3067.
    95.Luo L F, Li X Q. Coding Rules for Amino Acids in the Genetic Code-The Genetic Code is aMinimal Code of Mutational Deterioration[J]. Origins of Life,2002,32(1):23-33.
    96.Luo L F, Li X Q. Construction of Genetic Code from Evolutionary Stability[J]. Biosystems,2002,65(2-3):83-97.
    97.Luria S E, Delbruck M. Mutations of Bacteria from Virus Sensitivity to Virus Resistance[J].Genetics,1943,28:491-498.
    98.[美]L.N.玛格纳著,刘学礼译.生命科学史[M].天津:百花文艺出版社,2001:578-599.
    99.雷瑞鹏.遗传密码概念发展的历史脉络[J].科学技术与辩证法,2006,23(3):95-99.
    100.刘凤朝.科学史的层次划分及其编史学意义[J].自然辩证法研究,2002,01.
    101.刘明海.还原论研究[D].武汉:华中科技大学硕士论文,2008.
    102.刘庆坡.遗传密码子及其应用[J].中国生物化学与分子生物学报,2006,22(11):851-855.
    103.李辉芳.迈尔的生物学史思想与方法研究[D].太原:山西大学博士论文,2010.
    104.李难.生物学史[M].北京:海洋出版社出版,1990:369-373.
    105.李汝祺.《中国大百科全书·生物学》分册,遗传学卷[M].北京:中国百科全书出版社,1983:50-51.
    106.洛伊斯·N·玛格纳著,刘学礼译.生命科学史[M].天津:百花文艺出版社,2001:636-638.
    107.罗辽复.论遗传密码的简并规则[J].内蒙古大学学报(自然科学版).1986,3:513-516.
    108.罗辽复.物理学家看生命[M].长沙:湖南教育出版社,1994.
    109.罗辽复.生命进化的物理观[M].上海:上海科学技术出版社,2000:56-156.
    110.罗辽复.基因组信息、密码进化、折叠动力学和熵产生———理论生物学的几个基本问题[J].科技导报,2010,28(15):106-111.
    111.Maciej Szymański,Jan Barciszewski.The Genetic Code-40Years on[J].Acta.Biochimica.Polonica,2007,54(1):51-54.
    112.Maeshiro T, Kimura M. The Role of Robustness and Changeability on the Origin and Evolution ofGenetic Codes [J]. PNAS,1998,95:5088-5093.
    113.Marshall R.E. et al. RNA Codewords and Protein Synthesis. XII. Fine Structure of RNA CodewordsRecognized by Bacterial, Amphibian, and Mammalian Transfer RNA[J]. Science,1967,155:820-826.
    114.Martin R G. et al. Ribonucleotide Composition of the Genetic Code[J]. Biochem. Biophys. Res.Commun,1961,6:410-414.
    115.Miller J H. Discovering Molecular Genetics:a Case Study Course with Problems andScenarios[M].USA:Cold Spring Harbor Laboratory Press,1996:15-200.
    116.Morange M.The Death of Francis Crick: the End of a Golden Age in Biology[J].J Biosci,2004,29(4):378-380.
    117.Muirhead H, Perutz M. Structure of Hemoglobin. A Three-Dimensional Fourier Synthesis ofReduced Human Hemoglobin at5.5A Resolution[J]. Nature,1963,199(4894):633-638.
    118.Nanjundiah V.George Gamow and the Genetic Code[J]. Resonance,2004(7):44-49.
    119.Nirenberg M W, Matthaei J H. The Dependence of Cell-Free Protein Synthesis in E. coli uponNaturally Occurring or Synthetic Polyribonucleotides[J]. PNAS,1961,47:1588-1602.
    120.Nirenberg M, Martin R, Matthaei J, Jones O. Ribonucleotide Composition of the Genetic Code[J].Biochemical and Biophysical Research Communications,1962,6:410-414.
    121.Nirenberg M. The Genetic Code[J]. Nobel Lectures: Physiology or Medicine (1963~1970).375-392.
    122.Nirenberg M, Leder P. RNA Codewords and Protein Synthesis. The Effect of Trinucleotides uponthe Binding of sRNA to Ribosomes[J]. Science,1964,145:1399-1407.
    123.Nirenberg M. Historical Review: Deciphering the Genetic Code–a Personal Account[J].Trends inBiochemical Sciences,2004,29(1):46-54.
    124.Nirenberg M W. An Intermediate in the Biosynthesis of Polyphenylalanine Directed by SyntheticTemplate RNA[J]. PNAS,1962,48:104-109.
    125.Nirenberg M W. On the Coding of Genetic Information[J].Cold Spring Harb Symp Quant Biol,1963,28:549-557.
    126.Nirenberg M W. et al. RNA Codewords and Protein Synthesis. On the General Nature of the RNACode[J]. PNAS,1965,53:1161–1168.
    127.Nirenberg M W. The RNA Code and Protein Synthesis[J].Cold Spring Harb Symp Quant Biol,1966,31:11-24.
    128.Ochoa S, lengyel P, Speyer J. Synthetic Polynucleotides and the Amino Acid Code[J]. PNAS,1961,47:1936-1942.
    129.Ochoa S, Basilio C,Wahea A, lengyel P, Speyer J. Synthetic Polynucleotides and the Amino AcidCode.ⅴ[J].Science,1962,48:613-616.
    130.Olby R C. Francis Crick, DNA and the Central Dogma[J].Daedalus,1970,(99):942、953-955.
    131.Olby R C. The Path to the Double Helix[M].London: The Macmillan Press,1974:341、348-422.
    132.Olby R C. Quiet Debut for the Double Helix[J].Nature,2003,421:402-405.
    133.Olby R C. Francis Crick: Hunter of Life's Secrets[M]. USA:Cold Spring Harbor LaboratoryPress,2009:34-122.
    134.Orgel L E.Molecular biology. Retrospective: Francis Crick (1916-2004)[J].Science,2004,305(5687):1118.
    135.Osawa S, Jukes T H, et al. Recent Evidence for Evolution of the Genetic Code[J]. Microbiol Rev,1992,56(1):229-264.
    136.Pauling L,Corey R B. Structure of the Nucleic Acids[J].Nature,1953,171:346.
    137. Portin P.The Origin, Development and Present Status of the Concept of the Gene: a ShortHistorical Account of the Discoveries [J]. Current Genomics,2000,1(1),29-40.
    138.Rich A, Stevens C F. Francis Crick (1916~2004)[J]. Nature,2004,430:845-847.
    139.Ridley M. Francis Crick: Discoverer of the Genetic Code[M].USA: Harper Collins Publishers,2006.
    140.Ryle A P, Sanger F, Smith L F.The Disulphide Bonda of Insulin[J]. Biochem J,1955,60:541-556.
    141.任本命,王虹.基因简史[J].西安联合大学学报,2000,3(2):102-104.
    142.任本命.解开生命之谜的罗塞达石碑[J].遗传,2003,25(3):245-246.
    143.Santos M A S, Moura G, Massey S E, et al. Driving Change: The Evolution of Alternative GeneticCodes [J]. Trends in Genetics,2004,20:95-101.
    144.Singer M F, Leder P. Messenger RNA: An Evaluation[J].Annual Review of Biochemistry.1966,35:195-230.
    145.Smit S, Widmann J, Knight R. Evolutionary Rates Vary among rRNA Structural Elements[J].Nucleic Acids Res.2007,35(10):3339-3354.
    146.Sonneborn T M.The Differentiation of Cells [J]. PNAS,1964,51(5):915-929.
    147.Stahl F W. The Amber Mutants of Phage T4[J]. Genetics,1995,141:439-442.
    148.尚守臣.易道源与人类生命起源[M].太原:山西科学技术出版社,2009:10-189.
    149.孙咏萍.线粒体与细胞核的非标准密码表及其进化关系的研究[D].呼和浩特:内蒙古大学硕士论文,2005:16-35.
    150.[美]T.S.库恩著,李宝恒,纪树立译.科学革命的结构[M].上海:科学技术出版社,1980:10-116.
    151.Taki M, Matsushita J, Sisido M. Expanding the Genetic Code in a Mammalian Cell Line by theIntroduction of Four-Base Codon/Anticodon Pairs[J]. Chembiochem,2006,7(3):425-428.
    152.Trifonov E N. Consensus Temporal Order of Amino Acids and Evolution of the Triplet Code [J].Gene,2000,261(1):139-151.
    153.Varani G, McClain W H. The G·U Wobble Base Pair. A Fundamental Building Block of RNAStructure Crucial to RNA Function in Diverse Biological Systems [J].EMBO Rep.2000,1(1):18-23.
    154.Vasily V Ogryzko.Erwin Schroedinger, Francis Crick and Epigenetic Stability[J].Biology Direct,2008,3(1):15-25.
    155.[美]V.K.麦克尔赫尼著,魏荣瑄译.沃森与DNA[M].北京:科学技术出版社,2005:27-133.
    156.Wang L, Schultz P G. Expanding the Genetic Code[J]. Angew Chem Int Ed Engl,2004,44:34-66.
    157.Waston J D. Involvement of RNA in the Synthesis of Protein:the Ordered Interaction of ThreeClasses of RNA Controls the Assembly of Amino Acids into Proteins[J].Science,1963,140:17-26.
    158.Waston J M. Sixtieth-Birthday Remarks[J].CSHL,1976.
    159.Watson J D, Crick F H C. Molecular Structure of Nucleic Acids[J]. Nature,1953,171:737-738.
    160.Watson J D,Crick F H C.Genetical Implication of the Structure of Deoxyribonucleic Acid[J].Nature,1953,171:964-967.
    161.Weigert M G, Garen A. Base Composition of Nonsense Codons in E. coli Evidence fromAmino-Acid Substitutions at a Tryptophan Site in Alkaline Phosphatase[J]. Nature,1965,206:992-994.
    162.Wickner R B.[URE3] as an Altered URE2Protein: Evidence for a Prion Analog in SaccharomycesCerevisiae[J]. Science,1994,264(5158):566-569.
    163.Wittmann H G, Wittmann-Liebold B. Tobacco Mosaic Virus Mutants and the Genetic CodingProblem[J].Cold Spring Harb Symp Quant Biol,1963,28:589-595.
    164.Woese C R. Nature of the Biological Code[J]. Nature,1962,194:1114-1115.
    165.Woese C R. Order in the Genetic Code[J]. Proc. Natl. Acad. Sci. U S A,1965,54:71-75.
    166.Woese C R. The Genetic Code: the Molecular Basis for Genetic Expression [M]. New York: Harper&Row,1967.
    167.Woese C R. Phylogenetic Structure of the Prokaryotic Domain: the Primary Kingdoms[J].PNAS,1977,74(11):5088-5090.
    168.Wong J T. A Co-Evolution Theory of the Genetic Code[J]. PNAS,1975,72:1909-1912.
    169.Wong J T. Role of Minimization of Chemical Distances between Amino Acids in the Evolution ofthe Genetic Code[J].Proceedings of the National Academy of Sciences of the U.S.A,1980,77:1083-1086.
    170.王士平.近代物理学史[M].长沙:湖南教育出版社,2002.
    171.王磊.扩展遗传密码[J].世界科学,2004,01.
    172.王前.假说与理论[M].沈阳:辽宁人民出版社出版,1985:3-95.
    173.王志珍.一个科技里程碑:分子生物学的中心法则[J].生理科学进展,2003,34(2):101-103.
    174.吴国盛.科学思想史指南[M].成都:四川教育出版社,1994:2-100.
    175.吴宪明,吴松锋等.密码子偏性的分析方法及相关研究进展[J].遗传.2007,29(4):420-426.
    176.Xie J, Schultz P G. An Expanding Genetic Code[J]. Methods,2005,36(3):227-238.
    177.肖景发,于军.遗传密码的新排列和起源探讨[J].中国科学(C辑:生命科学),2009,39(8):727-726.
    178.肖敬平.析遗传密码子多态性之谜.生命科学研究(XiaoJingPing. Analysis of the mystery ofpolymorphismof genetic codons[J]. Life Sci Res),2001,5(4):321-324.
    179.肖敬平.遗传密码子进化的阶段性[J].生命科学研究,2002,6(3):198-203.
    180.向义和.薛定谔对基因性质的物理学分析及其思想影响——评价薛定谔的《生命是什么?--生命细胞的物理学见解》[J].物理,2002,31(11):741-746.
    181.向义和. DNA纤维的X射线衍射分析与双螺旋结构的发现[J].大学物理,2005,(1):50-58.
    182.向义和.遗传信息的转录和翻译机制是怎样发现的[J].自然杂志,2005,27(6):339-345.
    183.向义和.遗传密码是怎样破译的[J].物理与工程,2007,17(2):16-23.
    184.辛亭转.基因概念的演变[D].太原:山西大学硕士论文,2005.
    185.徐娜.分子生物学之父——弗朗西斯·克里克[J].世界科学,2004,9:43-46.
    186.宣建武.认识基因之路[M].北京:科学出版社,1989:22-226.
    187.YANG C M. The Naturally Designed Spherical Symmetry in the Genetic Code [R/OL].http://arxiv.org/abs/q-bio/0309014.
    188.Yanofsky C, Carlton B C, Guest J R, et al. On the Colinearity of Gene Structure and ProteinStructure[J]. PNAS,1964,51:266-274.
    189.Yanofsky C. Establishing the Triplet Nature of the Genetic Code[J].Cell,2007,128(5):815-818.
    190.杨岐生.分子生物学[M].杭州:浙江大学出版社,2004:335-345.
    191.杨庆余.乔治·伽莫夫—成就卓越、勇于创新的科学大师[J].物理,2002,31(5):327-332.
    192.袁观宇.生物物理学[M].北京:科学出版社,2006:1-10.
    193.[日]原田馨著,庚镇城译.生命起源的化学基础[M].上海:上海科学技术出版社,1978:10-78.
    194.[美]J.霍根著,孙雍君译.科学的终结[M].呼和浩特:远方出版社,1997:25-109.
    195.张伊平,祁国荣.密码子与反密码子的相互作用——从“摆动假说”到“三中读二”[J].遗传,1984,6(4):38-40.
    196.赵凯华.从分子生物学的历程看学科交叉[J].物理,2003,32(11):719-727.
    197.郑伯承、于英心、扬枕旦.《诺贝尔奖获得者演讲集》生理学或医学(1963-1970)[M].北京:学苑出版社,1991:321-401.
    198.朱玉贤等.现代分子生物学[M].北京;高等教育出版社,2007:1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700