量子点半导体光放大器的基础理论与在信号处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会快速增长的通信需求使得发展超高速光通信系统成为当前光通信领域的研究热点。本论文主要依托于国家高技术研究发展计划(批准号:2009AA03Z405),紧密围绕量子点半导体光放大器(QD-SOA)的基础理论与在信号处理方面的实际应用展开,为超高速光通信系统中的全光信号处理提供关键技术支撑,主要内容及创新点如下:
     1通过建立和完善简化模型和频谱模型两类用于QD-SOA基础理论研究和应用仿真研究的基本理论模型,改进了传统的数值计算方法,提高了数值计算的准确性,使计算速度得到了阶跃式提升。
     2对QD-SOA的稳态特性进行了研究。给出了局部增益和局部材料折射率的闭合解,使快速定量表征特定QD-SOA的稳态特性成为可能;基于数值解和闭合解研究了输入光强、注入电流等外部参数以及量子点密度、量子点群的非均匀展宽程度、自发辐射寿命等内部参数对QD-SOA稳态特性的影响。另外还根据典型QD-SOA的增益谱特性提出了一种以双模量子点为核心内容的制备具有平坦增益谱特性的QD-SOA的理论方案。
     3对QD-SOA的动态特性进行了研究。在研究了QD-SOA的动态特性的基本特征的基础上,初步给出QD-SOA中增益动态特性与相位动态特性变化不同步的数值证明和理论解释。通过理论分析与数值研究相结合给出了能够反映QD-SOA基本物理本质的局部增益动态特性的闭合解,该闭合解由瞬时特性和延时特性共同组成,使简化定量表征QD-SOA的动态特性成为可能。不仅定性地给出了各参数对局部增益及局部材料折射率的动态特性的影响效果,还结合定性研究的结论和闭合解工作,定量证明了QD-SOA的增益恢复速度与自发辐射寿命呈反比这一重要结论。
     4研究了QD-SOA在超高速光开关中的应用。以体材料半导体光放大器(bulk-SOA)为传统光放大器的典型代表,对比研究了QD-SOA在马赫增德尔干涉仪(MZI)型及Sagnac环型光开关中的优势和特点。证明了基于QD-SOA的MZI型光开关具有应用于>100Gbit/s乃至Tbit/s的超高速光通信系统中的可能。针对性地提出了基于QD-SOA的MZI型光开关的改进方案,即采用具有一定宽度的方波信号或者方波信号与超短脉冲的组合作为控制信号将使光开关性能得到明显改善。研究了非平衡的MZI型光开关的基本特性,得到改变耦合器的耦合比对光开关性能的影响。研究基于QD-SOA的Sagnac环型光开关中信号从QD-SOA的两端输入对开关性能的影响,指出了基于QD-SOA的Sagnac环型光开关与基于传统光放大器的Sagnac环型光开关的不同,从而得到了基于QD-SOA的Sagnac环型光开关应用于高速光通信系统中的特殊性。
     5研究了基于QD-SOA的交叉增益调制在超高速光波长变换中的应用。结合QD-SOA的静态特性与动态特性给出了参数选择的基本原则;通过计算不同情况下的消光比,指出了信号波长与信号光强对波长变换性能的影响,进一步给出了相应的应用原则。
The rapid growth of communication requirements in modern society makes the development of ultra-fast optical communication systems becomes the frontier of optical communication. Supported by the National High Technology Research and Development Program of China (Grant No.2009AA03Z405), the research works presented in this doctoral thesis focus on the basic theory and the applications in signal processing of quantum-dot semiconductor optical amplifiers (QD-SOAs), providing support to the key technology in ultra-fast optical communication systems. The main contents and innovative ideas are listed below:
     1A simplified model and a spectral model have been established and improved, for taking research on the basic theory and simulating of the applications of QD-SOAs. The traditional numerical calculating methods have been improved, leading to more accurate numerical results, and accelerated the calculating speed rapidly.
     2The steady state properties of QD-SOAs have been studied. Close-form solutions of the local gain and local refractive index have been given out, making possible the quantitative characterization of the steady state properties of QD-SOAs. The potential effect leading by extrinsic parameters, including inputted signal and injected currents, and intrinsic parameters, including the density of quantum dots (QDs), the inhomogeneous broadening and the spontaneous emission lifetime, has been studied basic on numerical results and close-form results. Additionally, A theoretical scheme for manufacturing QD-SOAs with flat gain spectrum has been presented.
     3The dynamic properties of QD-SOAs have been studied. Basic on the studying of general characters, the asynchronize of the gain dynamic and phase dynamic has been proved by numerical results and explained by physical theory. The close-form solutions of local gain dynamic, including transient response and time-delay characteristics, have been established by combining the theoretical analysis and numerical analysis, making possible the quantitative characterization of the dynamic properties of QD-SOAs. The qualitative analysis of the impact to the dynamic properties by extrinsic parameters and intrinsic parameters has been given out, and the quantitative analysis has proved that the speed of gain recovery is inversely proportional with the spontaneous emission lifetime.
     4The applications of QD-SOAs in ultra-fast optical switch have been studied. Compared with Bulk-SOA, which is treated as a typical traditional optical amplifier, QD-SOAs'advantages and properties in optical switches based on MZI or Sagnac ring have been analyzed. The optical switch based on QD-SOAs have been proved to be potential in ultra-fast (>100Gbit/s or even Tbit/s) optical commutation system. The optical switch base on QD-SOAs have been improved by replacing the traditional control pulses to two square signals or a square signal and an pulse signal, making the switch performance better. The properties of symmetric MZI optical amplifiers have also been analyzed by considering the couplers with different ration. The simulations and analysis indicate that optical signals transmit in opposite directions in Sagnac ring based on QD-SOAs shows different impact on the switch, comparing with on bulk-SOAs.
     5Ultra-fast optical wavelength conversion based on cross gain modulation (XGM) in QD-SOAs have been studied. Basic rules for choosing parameters of signals have been summarized by combing the steady state properties and dynamic properties of QD-SOAs. The power and wavelength of signals proved to be important to the extinction ratio of output signal, leading to some additional rules in corresponding applications.
引文
[1]Kao, K. C., and George A. Hockham. "Dielectric-fibre surface waveguides for optical frequencies." Electrical Engineers, Proceedings of the Institution of 113.7 (1966):1151-1158.
    [2]Mears, R. J., et al. "Low-noise erbium-doped fiber amplifier operating at 1.54μm." Electronics Letters 23.19 (1987):1026-1028.
    [3]Laude, Jean-Pierre. DWDM fundamentals, components, and applications. Norwood:Artech House,2002.
    [4]桑新柱,余重秀,吕乃光.”光通信发展中重要的物理问题.”光电子技术与信息5(2003):002.
    [5]柯熙政,席晓莉.无线激光通信概论.Vol.243.北京邮电大学出版社,2004.
    [6]黄澄清.”中国互联网发展报告(2009)之3.1CNGI-CERNET2主干网建设与试验.”(2009).
    [7]毛谦.”我国光纤通信技术发展的现状和前景.”电信科学8.2(2006):3.
    [8]纪越峰.”现代通信技术.”(2002).
    [9]Singh, Simranjit, Amanpreet Singh, and R. S. Kaler. "Performance evaluation of EDFA, RAMAN and SOA optical amplifier for WDM systems." Optik-International Journal for Light and Electron Optics 124.2 (2013):95-101.
    [10]李保海,吴重庆,付松年,等.”半导体光放大器的研究进展与新应用.”光通信技术4(2004):18-21.
    [11]Kitamura, Shotaro. "Semiconductor optical amplifier." U.S. Patent No.6,052,222. 18 Apr.2000.
    [12]Bimberg, Dieter, and Udo W. Pohl. "Quantum dots:promises and accomplishments." Materials Today 14.9 (2011):388-397.
    [13]Akiyama, Tomoyuki, Mitsuru Sugawara, and Yasuhiko Arakawa. "Quantum-dot semiconductor optical amplifiers." Proceedings of the IEEE 95.9 (2007):1757-1766.
    [14]Romstad F, Borri P, Bischoff S, et al. Sub-picosecond pulse distortion in an InGaAsP optical amplifier[C]. ECOC,1999..
    [15]Akiyama, Tomoyuki, et al. "Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device." Photonics Technology Letters, IEEE 12.10(2000):1301-1303..
    [16]Akiyama, Tomoyuki, et al. "Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers." Applied Physics Letters 77.12 (2000):1753-1755.
    [17]T. Akiyama, H. Kuwatsuka, S. Simoyama, Y. Nakata, K. Mukai, S. Sugawara, O. Wada, and H. Ishikawa, "Nonlinear gain dynamics in quantum-dot optical amplifier and its application to optical communication devices," IEEE J. Quantum Electron.,37, (2001):1059-1065
    [18]M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, "Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing over 40Gbit/s," Jpn. J. Appl. Phys.,40, (2001):L488-491.
    [19]Berg, T.W.; Bischoff, S.; Magnusdottir, I.; Mork, J., "Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot_devices," Photonics Technology Letters, IEEE,13.66,2001:541-543
    [20]Sugawara, M., et al. "Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1 and a new scheme of 3R regenerators." Measurement Science and Technology 13.11 (2002):1683.
    [21]Borri, P., et al. "Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature." Selected Topics in Quantum Electronics, IEEE Journal of 8.5 (2002):984-991.
    [22]Sugawara, Mitsuru, et al. "Quantum-dot semiconductor optical amplifiers." Asia-Pacific Optical and Wireless Communications 2002. International Society for Optics and Photonics,2002.
    [23]Akiyama, Tomoyuki, et al. "Symmetric highly efficient (/spl sim/0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers." Photonics Technology Letters, IEEE 14.8 (2002):1139-1141.
    [24]Sugawara, Mitsuru. "Optical signal processing method and apparatus." U.S. Patent No.6,590,701.8 Jul.2003.
    [25]Sugawara, Mitsuru. "Quantum-dot semiconductor optical amplifiers." Optical Fiber Communication Conference. Optical Society of America,2003.
    [26]Bilenca, Alizon, et al. "Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm." Photonics Technology Letters, IEEE 15.4 (2003): 563-565.
    [27]Uskov, Alexander V., Tommy W. Berg, and J. Mrk. "Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers." Quantum Electronics, IEEE Journal of 40.3 (2004):306-320.
    [28]Akiyama, Tomoyuki, et al. "Recent progress in quantum-dot semiconductor optical amplifiers for optical signal processing." Optical Amplifiers and Their Applications. Optical Society of America,2005.
    [29]Akiyama, Tomoyuki, et al. "An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots." Photonics Technology Letters, IEEE 17.8 (2005):1614-1616.
    [30]Akiyama, T., et al. "A semiconductor optical amplifier with an extremely-high penalty-free output power of 20dBm achieved with quantum dots." Proc.29th Europ. Conf. on Opt. Comm.(ECOC03), Rimini (Italy).2003.
    [31]Akiyama, T., Ekawa, M., Sugawara, M., Sudo, H., Kawaguchi, K., Kuramata, A.,...& Arakawa, Y. (2004, February). An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm realized with quantum-dot active layers. In Optical Fiber Communication Conference, 2004. OFC 2004 (Vol.2, pp.3-pp). IEEE.
    [32]Doerr, Christopher R., et al. "40-Gb/s colorless tunable dispersion compensator with 1000-ps/nm tuning range employing a planar lightwave circuit and a deformable mirror." Optical Fiber Communication Conference. Optical Society of America,2005.
    [33]Oshima, Ryuji, Ayami Takata, and Yoshitaka Okada. "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells." Applied Physics Letters 93.8 (2008):083111-083111.
    [34]Bimberg D. Quantum dots for lasers, amplifiers and computing. Journal of Physics D:Applied Physics,2005,38(13):2055-2058
    [35]Liu, S., et al. "Cascaded performance of quantum dot semiconductor optical amplifier in a recirculating loop. "Conference on Lasers and Electro-Optics. Optical Society of America,2006.
    [36]Ju, Heongkyu, et al. "Effects of two-photon absorption on carrier dynamics in quantum-dot optical amplifiers."Applied Physics B 82.4 (2006):615-620.
    [37]Zilkie, Aaron J., et al. "Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55μm."Quantum Electronics, IEEE Journal of 43.11 (2007):982-991.
    [38]O'Driscoll, I., et al. "Electron and hole dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers." Applied Physics Letters 91 (2007):071111.
    [39]Bimberg D, Meuer C, Fiol G, et al. Influence of p-doping in quantum dot semiconductor optical amplifiers at 1.3 μm. ICTON,2009. C6
    [40]Poel M., Gehrig E., Hess O., et al. Ultrafast gain dynamics in quantum-dot amplifiers:theoretical analysis and experimental investigations. IEEE Journal of QuantumElectronics,2005,41(9):1115-1123
    [41]Meuer C., Kim J., Laemmlin M., et al. Static gain saturation in quantum dot semiconductor optical amplifiers. Optics Express,2008,16(11):8269-8279
    [42]Huang, L., Zhan, P., Fei, S.,& Huang, D. "Quantum-dot coupled tensile-strain quantum-well polarization insensitive semiconductor optical amplifier." Asia Pacific Optical Communications. International Society for Optics and Photonics,2008.
    [43]Berg, Tommy Winther, and Jesper Mork. "Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure."Optical Communication, 2002. ECOC 2002.28th European Conference on. Vol.2. IEEE,2002.
    [44]Ben-Ezra, Y, M. Haridim, and B. I. Lembrikov. "Theoretical analysis of gain-recovery time and chirp in QD-SOA." Photonics Technology Letters, IEEE 17.9 (2005):1803-1805.
    [45]Kim, Jungho, et al. "Enhancing small-signal cross-gain modulation of quantum-dot optical amplifiers by injecting carriers to excited states."Optical Fiber communication/National Fiber Optic Engineers Conference,2008. OFC/NFOEC 2008. Conference on. IEEE,2008.
    [46]O'Driscoll, I., et al. "Phase dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers." Applied Physics Letters 91 (2007):263506.
    [47]Qasaimeh, Omar. "Characteristics of cross-gain wavelength conversion in quantum dot semiconductor optical amplifiers." Photonics Technology Letters, IEEE 16.2 (2004):542-544.
    [48]Qasaimeh, Omar. "Novel closed-form model for multiple-state quantum-dot semiconductor optical amplifiers."Quantum Electronics, IEEE Journal of44.7 (2008): 652-657.
    [49]Kim, Jungho, et al. "Static gain saturation model of quantum-dot semiconductor optical amplifiers." Quantum Electronics, IEEE Journal of44.7 (2008):658-666.
    [50]Xiao, Jin-Long, Yue-De Yang, and Yong-Zhen Huang. "Investigation of gain recovery for InAs/GaAs quantum dot semiconductor optical amplifiers by rate equation simulation." Optical and quantum electronics 41.8 (2009):613-626.
    [51]Erneux, Thomas, et al. "The fast recovery dynamics of a quantum dot semiconductor optical amplifier." Applied physics letters 94.11 (2009): 113501-113501.
    [52]Qasaimeh, Omar R. "Ultra-fast gain recovery and compression due to Auger-assisted relaxation in quantum dot semiconductor optical amplifiers."Lightwave Technology, Journal of 27.13 (2009):2530-2536.
    [53]Kim, J., Meuer, C., Bimberg, D.,& Eisenstein, G Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. Quantum Electronics, IEEE Journal of 46.11 (2010):1670-1680.
    [54]Kim, J., Meuer, C., Bimberg, D.,& Eisenstein, G. Effect of Inhomogeneously Broadened Linewidth on the Phase Recovery of Quantum-Dot Semiconductor Optical Amplifiers. In Conference on Lasers and Electro-Optics. Optical Society of America.(2010, May)
    [55]Xiao, Jin-Long, Yue-De Yang, and Yong-Zhen Huang. "Investigation of gain recovery for InAs/GaAs quantum dot semiconductor optical amplifiers by rate equation simulation." Optical and quantum electronics 41.8 (2010):613-626.
    [56]Qasaimeh, Omar. "Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers." Photonics Technology Letters, IEEE 16.4 (2004):993-995.
    [57]Qasaimeh, Omar. "Characteristics of wavelength conversion of short optical pulses in quantum dot semiconductor optical amplifiers." Optical and quantum electronics 37.7 (2005):661-673.
    [58]Wong, H. C., G B. Ren, and J. M. Rorison. "The constraints on quantum-dot semiconductor optical amplifiers for multichannel amplification." Photonics Technology Letters, IEEE 18.20 (2006):2075-2077.
    [59]Kuntz, Matthias, et al. "High-speed mode-locked quantum-dot lasers and optical amplifiers." Proceedings of the IEEE 95.9 (2007):1767-1778.
    [60]Kim, N. J., et al. "InAs/InGaAsP quantum dot semiconductor optical amplifiers at 1.5μm:fabrication and gain characteristics." Lasers and Electro-Optics Society, 2007. LEOS 2007. The 20th Annual Meeting of the IEEE. IEEE,2007.
    [61]Spyropoulou, Maria, et al. "160 Gbps simulation of a quantum dot semiconductor optical amplifier based optical buffer." Optical Network Design and Modeling. Springer Berlin Heidelberg,2007.107-116.
    [62]O'Driscol, I., et al. "Gain and phase dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers." Lasers and Electro-Optics,2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on. IET,2008.
    [63]Gomis-Bresco, Jordi, et al. "InGaAs quantum dot population and polarisation dynamics for ultrafast pulse train amplification."Lasers and Electro-Optics,2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on. IET,2008.
    [64]Meuer, Christian, et al. "High Speed Cross Gain Modulation Using Quantum Dot Semiconductor Optical Amplifiers at 1.3μm." Conference on Lasers and Electro-Optics. Optical Society of America,2008.
    [65]Bimberg, D., et al. "Quantum dot semiconductor optical amplifiers for wavelength conversion using cross-gain modulation." Transparent Optical Networks, 2008. ICTON 2008.10th Anniversary International Conference on. Vol.2. IEEE, 2008.
    [66]Kim, Jungho, et al. "Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers."Quantum Electronics, IEEE Journal of 45.3 (2009):240-248.
    [67]Contestabile, G, A. Maruta, and K. Kitayama. "Gain dynamics in quantum-dot semiconductor optical amplifiers at 1550 nm." Photonics Technology Letters, IEEE 22.13 (2010):987-989.
    [68]Contestabile, G, et al. "All-optical signal processing using QD-SOA."Optoe Electronics and Communications Conference (OECC), 2010 15th. IEEE,2010.
    [69]Yang, Wei, Min Zhang, and Peida Ye. "Analysis of all-optical demultiplexing from 160/320 Gbit/s to 40 Gbit/s using quantum-dot semiconductor optical amplifiers assisted Mach-Zehnder interferometer. "Microwave and Optical Technology Letters 52.7 (2010):1629-1633.
    [70]Contestabile, Giampiero, et al. "Cross-gain modulation in quantum-dot SOA at 1550 nm." Quantum Electronics, IEEE Journal of 46.12 (2010):1696-1703.
    [71]Rostami, AH, et al. "Tb/s optical logic gates based on quantum-dot semiconductor optical amplifiers."Quantum Electronics, IEEE Journal of46.3 (2010):354-360.
    [72]Pulka, Jaroslaw, et al. "Ultrafast Gain and Refractive Index Dynamics in AlInAs/AlGaAs Quantum Dot Based Semiconductor Optical Amplifiers Operating at 800 nm."Quantum Electronics, IEEE Journal of 47.8 (2011):1094-1100.
    [1]Bimberg, Dieter, and Udo W. Pohl. "Quantum dots:promises and accomplishments." Materials Today 14.9 (2011):388-397.
    [2]Akiyama, T., Ekawa, M., Sugawara, M., Sudo, H., Kawaguchi, K., Kuramata, and Arakawa, Y. "An ultrawide-band (120 nm) semiconductor optical amplifier having an extremely-high penalty-free output power of 23 dBm realized with quantum-dot active layers." In Optical Fiber Communication Conference,2004. OFC 2004 (Vol.2, pp.3-pp). IEEE.
    [3]Oshima, Ryuji, Ayami Takata, and Yoshitaka Okada. "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells." Applied Physics Letters 93.8 (2008):083111-083111.
    [4]Qasaimeh, Omar. "Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers." Quantum Electronics, IEEE Journal of 39.6 (2003): 793-798.
    [5]Dietmar W. Reschner, Edeltraud Gehrig, and Ortwin Hess. "Pulse Amplification and Spatio-Spectral Hole-Burning in Inhomogeneously Broadened Quantum-Dot Semiconductor Optical Amplifiers." Quantum Electronics, IEEE Journal of 45.1 (2009):21-33.
    [6]Xu, Bo, et al. "Controlled growth of Ⅲ-V compound semiconductor nano-structures and their application in quantum-devices." Semiconducting and Insulating Materials,2004. SIMC-XIII-2004.13th International Conference on. IEEE, 2004.
    [7]Mi, Zetian, and Pallab Bhattacharya. "Molecular-beam epitaxial growth and characteristics of highly uniform InAs/GaAs quantum dot layers." Journal of applied physics 98 (2005):023510.
    [8]Mano, T., et al. "Formation of InAs quantum dot arrays on GaAs (100) by self-organized anisotropic strain engineering of a (In, Ga) As superlattice template." Applied physics letters 81.9 (2002):1705-1707.
    [9]El-Emawy, A. A., et al. "Formation trends in quantum dot growth using metalorganic chemical vapor deposition." Journal of applied physics 93.6 (2003): 3529-3534.
    [10]Bhattacharya, P., S. Ghosh, and A. D. Stiff-Roberts. "Quantum dot opto-electronic devices." Annu. Rev. Mater. Res.34 (2004):1-40.
    [11]Kim, Jungho, et al. "Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers." Quantum Electronics, IEEE Journal of 46.11 (2010):1670-1680.
    [12]Qasaimeh, Omar. "Novel closed-form model for multiple-state quantum-dot semiconductor optical amplifiers."Quantum Electronics, IEEE Journal of44.7 (2008): 652-657.
    [13]Schneider, Stephan, et al. "Linewidth enhancement factor in InGaAs quantum-dot amplifiers." Quantum Electronics, IEEE Journal of 40.10 (2004):1423-1429.
    [14]Uskov, Alexander V., and Eoin P. O'Reilly. "Nonlinear refractive index and pattern-effects-free cross-phase modulation in quantum dot semiconductor optical amplifiers." Photonics Europe. International Society for Optics and Photonics,2004.
    [15]Schneider, Stephan, et al. "Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers." Quantum Electronics, IEEE Journal of 46.11(2010):1670-1680.
    [16]Jin-Long Xiao and Yong-Zhen Huang. "Numerical analysis of gain saturation quantum-dot semiconductor-optical amplifiers." Quantum Electronics, IEEE Journal of 46.11(2010):1670-1680.
    [1]Qasaimeh, Omar. "Novel closed-form model for multiple-state quantum-dot semiconductor optical amplifiers."Quantum Electronics, IEEE Journal of44.7 (2008): 652-657.
    [2]Akiyama, Tomoyuki, Mitsuru Sugawara, and Yasuhiko Arakawa. "Quantum-dot semiconductor optical amplifiers." Proceedings of the IEEE 95.9 (2007):1757-1766.
    [3]Houbavlis, T., et al. "Performance analysis of ultrafast all-optical Boolean XOR gate using semiconductor optical amplifier-based Mach-Zehnder interferometer." Optics communications 232.1 (2004):179-199.
    [4]Qasaimeh, Omar. "Optical gain and saturation characteristics of quantum-dot semiconductor optical amplifiers." Quantum Electronics, IEEE Journal of 39.6 (2003): 793-798.
    [5]Jin-Long Xiao and Yong-Zhen Huang. "Numerical analysis of gain saturation quantum-dot semiconductor-optical amplifiers." Quantum Electronics, IEEE Journal of 46.11(2010):1670-1680.
    [6]Sheng-Ling, D. E. N. G, H. U. A. N. G Yong-Zhen, and Y. U. Li-Juan. "Intraband relaxation and its influences on quantum dot lasers." Chinese Physics Letters 22.8 (2005):2077.
    [7]Kim, J., Meuer, C., Bimberg, D.,& Eisenstein, G. Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers. Quantum Electronics, IEEE Journal of 46.11 (2010):1670-1680.
    [8]Kim, J., Meuer, C., Bimberg, D.,& Eisenstein, G Effect of Inhomogeneously Broadened Linewidth on the Phase Recovery of Quantum-Dot Semiconductor Optical Amplifiers. In Conference on Lasers and Electro-Optics. Optical Society of America.(2010, May)
    [9]Perlin, Victor E., and Herbert G Winful. "Optimal design of fiat-gain wide-band fiber Raman amplifiers." Journal of lightwave technology 20.2 (2002):250.
    [10]Oh, Jung Mi, et al. "Demonstration of highly efficient flat-gain L-band erbium-doped fiber amplifiers by incorporating a fiber Bragg grating." Photonics Technology Letters, IEEE 14.9 (2002):1258-1260.
    [11]Grant, Andrew R., Pavel Viktorovich Mamyshev, and Linn Frederick Mollenauer. "Time-division multiplexed pump wavelengths resulting in ultra-broad band, flat, backward pumped Raman gain." U.S. Patent No.6,611,368.26 Aug.2003.
    [12]M. Yamada, A. Mori, K. Kobayashi, H. Ono, T. Kanamori, K. Oikawa, Y. Nishida, and Y. Ohishi. "Gain-flattened tellurite-based EDFA with a flat amplification bandwidth of 76nm." IEEE Photon. Technol. Lett.10 (1998):1244-1246
    [13]Zhou, G Y., et al. "Different growth mechanisms of bimodal InAs/GaAs QDs." Physica E:Low-dimensional Systems and Nanostructures 43.1 (2010):308-311.
    [14]Lee, Hao, et al. "Determination of the shape of self-organized InAs/GaAs quantum dots by reflection high energy electron diffraction." Applied physics letters 72.7 (1998):812-814.
    [15]Anders, Solveig, et al. "Bimodal size distribution of self-assembled In_{x} Ga_{1-x} As quantum dots." Physical Review B 66.12 (2002):125309.
    [16]Liang, S., H. L. Zhu, and W. Wang. "Temperature-dependent bimodal size evolution of InAs quantum dots on vicinal GaAs (100) substrates." Journal of applied physics 100.10(2006):103503-103503.
    [1]vanderPoel, Mike, et al. "Ultrafast gain dynamics in quantum-dot amplifiers: Theoretical analysis and experimental investigations." Quantum Electronics, IEEE Journal of 41.9 (2005):1115-1123.
    [2]Borri, Paola, et al. "Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers." Photonics Technology Letters, IEEE 12.6 (2000):594-596.
    [3]Pulka, Jaroslaw, et al. "Ultrafast Gain and Refractive Index Dynamics in AlInAs/AlGaAs Quantum Dot Based Semiconductor Optical Amplifiers Operating at 800 nm." Quantum Electronics, IEEE Journal of 47.8 (2011):1094-1100.
    [4]Zilkie, Aaron J., et al. "Ultrafast gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 μm." Lasers and Electro-Optics,2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on. IEEE,2006.
    [5]Hui, Li, et al. "Experimental study on dynamic range of SOA switch for multi-wavelength optical packet switching." Photonics in Switching,2009. PS'09. International Conference on. IEEE,2009.
    [6]Yang, Ping, and K. N. Liou. "Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space." JOSA A 13.10 (1996): 2072-2085.
    [7]Sullivan, Dennis, and D. S. Citrin. "Time-domain simulation of two electrons in a quantum dot." Journal of Applied Physics 89.7 (2001):3841-3846.
    [8]Wang, Qing, et al. "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier." Optics letters 31.21 (2006):3083-3085.
    [9]Dommers, Sabine, et al. "Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot Based Semiconductor Optical Amplifiers." Conference on Lasers and Electro-Optics. Optical Society of America,2007.
    [10]Rafailov, E. U., et al. "Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier." Photonics Technology Letters, IEEE 15.8(2003):1023-1025.
    [11]Vallaitis, T., et al. "Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier." Optics express 16.1 (2008):170-178.
    [12]Cesari, Valentina, et al. "Refractive Index Dynamics and Linewidth Enhancement Factor in< formula formulatype=." Quantum Electronics, IEEE Journal of 45.6 (2009): 579-585.
    [13]Chen, Yaohui, and Jesper Mork. "Enhancing slow and fast light effects in quantum dot optical amplifiers through ultrafast dynamics." (2009):662-663.
    [14]Qasaimeh, Omar. "Dynamics of optical pulse amplification and saturation in multiple state quantum dot semiconductor optical amplifiers." Optical and quantum electronics 41.2 (2009):99-111.
    [1]Nakamura, Hitoshi, Yoshimasa Sugimoto, and Kiyoshi Asakawa. "Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks." Lasers and Electro-Optics,2006 and 2006 Quantum Electronics and Laser Science Conference. CLEO/QELS 2006. Conference on. IEEE,2006.
    [2]Uskov, A. V., et al. "On ultrafast optical switching based on quantum-dot semiconductor optical amplifiers in nonlinear interferometers." Photonics Technology Letters, IEEE 16.5 (2004):1265-1267.
    [3]Sugawara, Mitsuru, et al. "Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing over 40 Gbit/s." Lasers and Electro-Optics,2001. CLEO/Pacific Rim 2001. The 4th Pacific Rim Conference on. Vol.1. IEEE,2001.
    [4]Girardin, F., G. Guekos, and A. Houbavlis. "Gain recovery of bulk semiconductor optical amplifiers." Photonics Technology Letters, IEEE 10.6 (1998):784-786.
    [5]Akiyama, Tomoyuki, Mitsuru Sugawara, and Yasuhiko Arakawa. "Quantum-dot semiconductor optical amplifiers." Proceedings of the IEEE 95.9 (2007):1757-1766.
    [6]Kumar Garai, Sisir, and Sourangshu Mukhopadhyay. "A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier." Optics & Laser Technology 42.7 (2010): 1122-1127.
    [7]Schreieck, Roland P., et al. "All-optical switching at multi-100-Gb/s data rates with Mach-Zehnder interferometer switches." Quantum Electronics, IEEE Journal of 38.8 (2002):1053-1061.
    [8]Webb, R. P., and R. J. Manning. "Compensation for patterning in SOA-based switches." Photonics in Switching,2009. PS'09. International Conference on. IEEE, 2009.
    [9]Kang, K. I., et al. "Comparison of Sagnac and Mach-Zehnder ultrafast all-optical interferometric switches based on a semiconductor resonant optical nonlinearity." Applied optics 35.3 (1996):417-426.
    [10]Dorren, Harm JS, G D. Khoe, and Daan Lenstra. "All-optical switching of an ultrashort pulse using a semiconductor optical amplifier in a Sagnac-interferometric arrangement." Optics Communications 205.4 (2002):247-252.
    [11]Houbavlis, T., and K. E. Zoiros. "SOA-assisted Sagnac switch and investigation of its roadmap from 10 to 40 GHz." Optical and quantum electronics 35.13 (2003): 1175-1203.
    [12]Connelly, Michael J. Semiconductor optical amplifiers. Springer,2002.
    [13]Gutierrez-Castrejon, Ramon, and Marcus Duelk. "Uni-directional time-domain bulk SOA simulator considering carrier depletion by amplified spontaneous emission." Quantum Electronics, IEEE Journal of 42.6 (2006):581-588.
    [14]Eiselt, M., W. Pieper, and H_G Weber. "SLALOM:Semiconductor laser amplifier in a loop mirror." Lightwave Technology, Journal of 13.10 (1995): 2099-2112.
    [15]Dommers, Sabine, et al. "Gain Dynamics after Ultrashort Pulse Trains in Quantum Dot Based Semiconductor Optical Amplifiers." Conference on Lasers and Electro-Optics. Optical Society of America,2007.
    [16]Rafailov, E. U., et al. "Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier." Photonics Technology Letters, IEEE 15.8 (2003):1023-1025.
    [17]Vallaitis, T., et al. "Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier." Optics express 16.1 (2008):170-178.
    [18]Cesari, Valentina, et al. "Refractive Index Dynamics and Linewidth Enhancement Factor in< formula formulatype=." Quantum Electronics, IEEE Journal of 45.6 (2009): 579-585.
    [19]Chen, Yaohui, and Jesper Mork. "Enhancing slow and fast light effects in quantum dot optical amplifiers through ultrafast dynamics." (2009):662-663.
    [20]Qasaimeh, Omar. "Dynamics of optical pulse amplification and saturation in multiple state quantum dot semiconductor optical amplifiers." Optical and quantum electronics 41.2 (2009):99-111.
    [21]Han, Huining, et al. "Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear mach-zehnder interferometer." Optics Communications 281.20 (2008): 5140-5145.
    [22]Naim, Nani Fadzlina, et al. "Modelling of all-optical symmetric Mach-Zehnder switch with asymmetric coupler." RF and Microwave Conference,2008. RFM 2008. IEEE International. IEEE,2008.
    [1]Bimberg, D., et al. "Quantum dot semiconductor optical amplifiers for wavelength conversion using cross-gain modulation." Transparent Optical Networks,2008. ICTON 2008.10th Anniversary International Conference on. Vol.2. IEEE,2008.
    [2]Bilenca, Alizon, et al. "Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm." Photonics Technology Letters, IEEE 15.4 (2003): 563-565.
    [3]Matsuura, Motoharu, and Naoto Kishi. "Broadband wavelength conversion with S/C/L-band flexible operation using cross-gain-modulation in a single quantum dot SOA." Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference. IEEE,2011.
    [4]Qasaimeh, Omar. "Characteristics of cross-gain (XG) wavelength conversion in quantum dot semiconductor optical amplifiers." Photonics Technology Letters, IEEE 16.2 (2004):542-544.
    [5]张新亮,黄德修,等.”交叉增益调制型波长变换器噪声特性的研究.”[J]光学学报21.10(2001):1256-1259.
    [6]Ellis, A. D., et al. "Error free 100 Gbit/s wavelength conversion using grating assisted cross-gain modulation in 2 mm long semiconductor amplifier." Electronics Letters 34.20 (1998):1958-1959.
    [7]Chelles, Sandrine, et al. "Extinction ratio of cross-gain modulated multistage wavelength converters:Model and experiments." Photonics Technology Letters, IEEE 9.6 (1997):758-760.
    [8]Lee, Hanlim, et al. "Theoretical study of frequency chirping and extinction ratio of wavelength-converted optical signals by XGM and XPM using SOA's." Quantum Electronics, IEEE Journal of 35.8 (1999):1213-1219.
    [9]Xiao, Jin-Long, and Yong-Zhen Huang. "Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers." Quantum Electronics, IEEE Journal of 44.5 (2008):448-455.
    [10]Morito, Ken, and Shinsuke Tanaka. "Record high saturation power (+22 dBm) and low noise figure (5.7 dB) polarization-insensitive SOA module." Optical Amplifiers and Their Applications. Optical Society of America,2005.
    [11]Berg, Tommy W., and Jesper Mork. "Saturation and noise properties of quantum-dot optical amplifiers." Quantum Electronics, IEEE Journal of 40.11 (2004): 1527-1539.
    [12]Weiner, Andrew Marc, S. Enguehard, and Brian Hatfield. "Femtosecond optical pulse shaping and processing." Progress in Quantum Electronics 19.3 (1995): 161-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700