铸造镁合金遗传性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金因重量轻、比强度高、可再生受到青睐,在汽车、电子和航空航天等工业上的应用越来越广泛,有关镁合金的研究与开发以及生产工艺引起人们的高度重视,并取得了可喜成果。但是原料的组织和性能对生产件的影响,以及废料组织和性能对用废料生产的铸件的影响几乎没有人研究。
     本文利用A、B、C三厂生产的AZ91D和AM60B镁合金锭作为原料,分别将它们重熔,研究分析不同厂家的镁合金重熔前后的组织和性能,以及利用废料生产的镁合金的组织和性能;此外,进一步研究了过热温度、凝固速度、搅拌时间以及通过添加稀土元素Ce对镁合金重熔后组织的影响。结果表明,镁合金重熔后的组织和性能同对应的原料组织和性能基本相同或非常相近,具有明显的遗传性;镁合金遗传性随着过热温度的提高而逐渐降低;随着凝固速度的降低,组织遗传性增加;随着对合金液搅拌时间的增加,合金液结构被破坏,遗传性降低;随着稀土元素Ce含量的增加,镁合金的遗传性逐渐降低。镁合金在熔化过程中,存在的近程有序的原子集团,该集团具有和原料组织结构相同或相近的特性,这些原子集团也被称为团簇,合金液中的团簇(遗传因子)理论恰当地解释了镁合金的遗传性。
With low density, relatively high intensity and stiffness, easier cutting processing capability and good shielding properties, magnesium alloy is recently used in most of industries, such as, automobile, electronics, aviation, etc. Researchers devote themselves to the production technology of magnesium alloy and obtain some results. However, nearly there is few research in the relationship of structure property and capability with materials and re-melting magnesium alloy, in fact, they does tie up. In this article the transmissibility of AZ91D and AM60B magnesium alloy, and the effect of re-melting temperature, rate of solidification, churning time, and by adding accession scrap were studied. The transmissibility of structure, impurity, capability and different re-melting technology are analysized which provides foundation for controlling transmissibility to structure and capability with Magnesium alloy.
     Three kinds of magnesium alloy from different plant A, B, and C to obtain corresponding re-melting magnesium alloy, and the chemical components were analyzised through optical spectrum analyzer. Their differences and intercommunity among the concerned magnesium were contrasted. As a result, it was found that the structure and property of re-melting magnesium alloy was similar to that of the original materials. After adding different percent content scrap, the quantity of re-melting magnesium alloy changed with content of added scrap, and such rule was studied. The result shows that when the content of added scrap is lower than 25%, there is no obvious difference in the structure and property between re-melting magnesium alloy and original material. When the content is over 75%, structure and property of re-melting magnesium alloy is obviously different from that of original material, and are nearly same to that of re-melting scrap. When the content is within 25%~75%, the structure and property is between that of the original material and alloy and re-melting scrap. It is found that it is magnesium alloy remaining the structure and property of original material during the re-melting process results in the comparability and intercommunity between re-melting magnesium and original material.
     When some scraps were added into original material, the quantity of impurity increased, thus the casting mechanical features drop down. It is found that the component element of impurity in product is as same as the original scrap’s by analysis with EDAX, and the content of same element is similar. The impurity of re-melting magnesium alloy with adding scrap is same with that of impurity of scrap. These impurities mainly include inner and exterior impurities. But the granularity is getting less and nearly same with that of scrap, so the rigidity becomes harder which shows the transmissibility of original materials performance.
     In addition, AZ91D and AM60B magnesium alloy with different temperature were re-melted and casted with different concretionary speed and mix-round time. The result shows that when remelting temperature is over 750℃, the original structure is nearly completely destroyed, the structure transmissibility is radical disappear. The higher concretionary speed is less transmit the structure and property of original material, the low concretionary speed is favorable to comeback of structure, so the structure transmissibility is strong with the drop of concretionary speed. The churning time will weaken the transmissibility of Magnesium alloy. When churning time is over a certain numerical value, the structure of re-melting alloy will have no obvious change.
     RE can alter the heredity of the microstructure of the die-cast magnesium alloy, and effect the heredity of the microstructure on magnesium alloy; when the content of RE is 0.5%, the heredity of the microstructure still exists. As the content increasing, the heredity begins to destruct, and when the content of RE is 1.5%, the heredity of the microstructure vanishes completely. The effect of RE on the heredity of the microstructure and property of the magnesium alloy is because the RE is the surface activity element, it can reduce interface energy and increase the crystal nucleus, generate a layer of adsorbed film on the surface of precipitated phase or growth phase, hindrance the crystal grain grow up, refine crystal grain, and reduce the possibility of short-range order atomic group as crystal nucleus or crystal embryo growing up crystal grain, and reduce the possibility of the heredity of the microstructure.
     The re-melting process and transmissibility of magnesium alloy during remelting process were analysized by DTA. According to the atomic clusters theory of alloy liquid, it is found that the structure theory of transmissibility to magnesium alloy and thermodynamics analysis, and the transmissibility of magnesium alloy during the process of solid-melt-solid. Through studying the r-melting process of magnesium alloy, it is found that the asymmetrical regions are gradually lessening. The clusters of asymmetrical microstructure and inordinate regions in between them make up of the melt. The clusters of asymmetrical microstructure reserve some characteristic of original material of Magnesium alloy, so the macroscopically asymmetry of melt is inherited. The asymmetrical structure of melt remains the material asymmetry of magnesium alloy. During the process of solidification, the structure asymmetry effects on the structure and performance of new cast, so the cluster theory is correct to metallic transmissibility by thermodynamic analysis.
引文
[1] 轻金属材料加工手册编写组编. 轻金属材料加工手册[M].北京:冶金工业出社,1979,142~145
    [2] C.R 布鲁克斯(美). 有色合金的热处理组织与性能[M].北京:冶金工业出版社,1988, 276~295
    [3] 兰兴华. 镁在汽车上的应用[J] .有色金属,2004,(5):38~41
    [4] 王渠东,丁文江. 镁合金研究开发现状与展望[J].世界有色金属,2004,(7):8~11
    [5] 张高会,张平则,潘俊德. 镁及镁合金的研究现状与进展[J].世界科技研究与发展,2003,(2):72~78
    [6] Green H. Light to 100% recycled magnesium [J]. Foundry Trade Journal.1999,(2):11~12
    [7] 刘明星,李培杰,王晓强. 镁合金产品生产过程绿色制造技术的研究[J].特种铸造及有色合金,2001 学术年会论文集:101~103
    [8] Riopelle L. The recycling of magnesium makes cents [J].JOM,1996,(10):44~47
    [9] Wardlow G. Recycling must be carefully controlled [J].Foundry Trade Journal,1999,(2):18~21
    [10] Brassard C. Recycling of magnesium scrap, a necessity . Proceeding of 3th International Magnesium Conference [C].1996:1111~1114
    [11]Hoy-Petersen N. ProC. 47th Annual World Magnesium Conf. International Magnesium Association. 1990,(18):18
    [12]Polemeaur I. J. Recent development in light alloys[J].Mater. Trans. JIM,1996,37(1):12~31
    [13]Magers D. Global review of magnesium part in automobiles[J]. light Met. Age, 1997,55(7,8): 60~62
    [14]Decker R. The renaissance in magnesium [ J ] .Advanced Mater Processes,1998,154(9):31~33
    [15]Fleteren R. Magnesium alloys shine bright for North American die casters[J].Die casting Engineering, 1998,42(2): 82~83
    [16] Eliezer D. Aghion E. and Fores F.H.Magnesium science,technology and application,[J].Advance Performance Mater. ,1998,(5):201~212
    [17]Mordike B.L.Magnesium and magnesium alloys[J].Japan Inst. Light Metals,2001,5(1):2~13
    [18]Kojima Y.Platform science and technology for advanced magnesium alloy [J]. Materials Science Forum,2000:350~251,3~18
    [19]宋才飞. 中国镁业的根本出路在于扩大内需而镁合金压铸件是其主要途径.1999 年全国镁业联合体年会报告,1999:4
    [20]波尔米尔 I.J. 轻合金[M].北京:国防工业出版社,1985
    [21]Alexander P, Joachim G, Rainer S.F. Application of computational thermochemistry to Al and Mg alloy processing with Sc additions[J]. Materials Science and Engineering A, 2000,289:123~129
    [22]Apps P.J., Karmza H., King J.F., et al . Phase compositions in magnesium-rare alloys containing Yttrium, Gadolinium or Dysprosium[J] . Scripta Materialia, 2003,48:457~481
    [23] Apps P.J., Karmza H., King J.F.,et al. Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium[J] .Scripta Materialia, 2003,48:1023~1028
    [24] Yoo M.H., Agnew S.R., Morris J.R., et al. Non-basal slip systems in HCP metals and alloys: source mechanicsms[J] . Materials Science and Engineering A, 2001,319:87~92
    [25]Serra A, Bacon D.J.,Pond R.C. Dislocation of the hcp metals at high and defects formed by absorption of crystal dislocateions[J] . Acta Mater., 1999,47(5):1425~1439
    [26]Flynn P.W.,More J., Dorn J.E. On the thermally activeated mechanicsm of prismatic slip in magnesium single crystal[J] . Trans. Metall. Soc. AIME, 1961,221:1148~1057
    [27]史文芳,周昆. 我国镁合金的开发应用现状及展望[J] .汽车工艺与材料,2004,30(6):32~38
    [28]陈振华. 镁合金[M]. 北京:化学工业出版社. 2004:39~53
    [29]Polmear I.J. Recent Developments in Light Alloys[J]. Transactions JIM, 1996,37(1): 21~31
    [30]Cahn R(丁道云译). 非铁合金的结构与性能(第八卷).北京:科学出版社, 1999
    [31]Michael M Avedesian, Hugh Baker. ASM Speciality Handbook— Magnesium and magnesium Alloys. Ohio: ASM International. 1999,22
    [32]Kim S G, Inoue A, Matsumoto T. High Mechanical Strengths of Mg-Ni-Y and Mg-Cu-Y Amorphous Alloys with Significant Supercooled Liquid Region[J]. Mater. Trans. JIM. 1990,31:929
    [33]Inoue A, Kato A, Zhong T, et al. Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method[J]. Mater. Trans. JIM. 1991,32:609
    [34] Inoue A, Masumoto T. Mg-based Amorphous Alloys[J]. Materials Science and Engineering A. 1993,A 173:1~8
    [35]Gebert A, Wolff U, John A, et al. Corrosion Behavior of Mg65Y10Cu25 Metallic Glass[J]. Scripta Mater. ,2000,43:279~283
    [36]Ong M S, Li Y, Blackwood D J, et al. Effect of Heat Treatment on the Corrosion Behaviour of Mg-18at.%Ni Alloy[J]. Journal of Alloys and Compounds. 1998,279: 252~258
    [37]Dahle A. K., Lee Y.C.,Nave M.D., et al. Devolopment of the As-cast Microstructure in Magnesium-Aluminium Alloys[J]. Journal of Light Metals, 2001,1(1):61~72
    [38]Jin Q.L.,Eom J.P.,Lim S.G.et al. A study on the Grain Refining Effects of Carbon Inoculation by C2Cl6 Addition on AZ31 Magnesium Alloy[J]. materials Science Forum, 2003,419~422:587~592
    [39]翟春泉,徐小平,邓祖威,等. 新型镁合金熔剂及其性能测定[J].热加工工艺,1996,6:39~40
    [40]翟春泉,丁汉江,徐小平,等. 新型无公害镁合金熔剂的研制[J] .特种铸造及有色合金,1997,4:48~51
    [41]王益志. 镁合金熔体表面防护技术评述[J] . 铸造,2002,51(10):579~582
    [42]张诗昌,段汉桥,蔡启周,等. 合金的熔炼工艺现状及发展趋势[J] .特种铸造及有色合金,2000,6:51~54
    [43]张永忠,翟代金,张奎,等. 压铸镁合金及其在汽车工业上的应用[J] .特种铸造及有色合金,1999,3:54~56
    [45]钟礼治. 铝镁合金自硬砂铸造[M].北京:国防工业出版社,1993
    [44]付彭怀,王渠东,蒋海燕,等. 镁和金熔炼技术研究进展[J] .铸造技术,2005,26(6):489~493
    [46]Stephn C. Conserving SF6 in Mg melting operation[J] .Foundry Management and Technology,1998,4:39~49
    [47]Schubert W,Gjiestland H. Use of SO2 as Protection Gas in Magnesium Die casting. Magnesium Alloys and their Application[C] . Munich Germany ,2000:761~766
    [48]Kim M H, Park W W, You B S,et al.Effects of Protection Gases on the oxidation Behavior of Mg-Ca Base Molter Alloys[J] . Materials Science Forum, 2003:419~422,575~580
    [49]Stephen C.Molten metal processing in Mg die casting[C]. proceedings of 39th World Magnesium Conferencand Exhibition,1982:13~16
    [50]Dorsam H. Magnesium Melting Casting and Remelting in Foundries[C] . Magnesium Technology 2000:99~105
    [51]申泽骥. 铸造镁合金熔炼技术进展[J] .中国铸造装备与技术,2001,9:522~526
    [52]David Li Y E.Emission Reduction of Sulfur Hexafluoride[J] . Magnesium Industry,,2000(1): 40~50
    [53]Dean S , John G , Dwens. MoltenMagnesium Cover Gas UsingFluorocarbons.US Patent,,6537346 ,2003,March
    [54] Dean S and St.Paul 3M? Novec? 612 magnesium Protection Fluid Its Development and Use in Full Scale Molten Magnesium Processes[C] . Int. Conf ., 2003:26~30
    [55]Κпиенков Е А.СтруктуыРасплавовНугуа[M]. 1985:12~17
    [56] Haerle A, Mikucki B.Mercer I W,A new technique for quality control of magnesium melts cleanliness[J] .Die Casting Engineer, 1996,5:34~35
    [57] USP 5 167 700:Method and apparatus for remelting and ferining of magnesium and magnesium alloys[S]. 1992
    [58] Scharf C,Ditze A.Present state of recycling of magnesium and its alloy [M].The Minerals,Metals & Materials Society ( TMS), 2001:567 ~573
    [59]Dow Chemical Company:Fluxes refining of magnesium die casting scrap[S],1994
    [60] D Oymo,O Holta, O M Hustoft, et al.Magnesium recycling in the die casting shop[J]. Metall,1992,46:898~902
    [61]Harsharn S. T,Per B,Thorvald able engh. Impurities in magnesium and magnesium based alloys and their removal[M]. The Minerals,Metals & Materials Society ( TMS),2000:767 ~778
    [62] Hillis J E,Mercer W E. Separation of nonmetallic contaminants in fluxes melting and refining of magnesium alloys [M].SAE Paper 2000,01,1125,Detroit, Michigan, 2000
    [63]刘兵. 中国镁产业面临的发展机遇与挑战[C] .2001 年中国国际镁业研讨会论文集,北京:中国镁业协会,2001:5~8
    [64]李晓敏. 压铸镁合金在汽车中的应用及其发展前景[J] .世界有色金属,2001,9:16~18
    [65]杜挺. 稀土元素在金属材料中的应用[M] .杜挺科技文集—冶金.材料及其物理化学,北京:冶金工业出版社,1996:11~33
    [66]杜挺. 稀土元素在金属材料中的一些物理化学作用[J] .金属学报,1997,1:69~77
    [67]KARIMZADEH H, LYON P, KING J F.Factors affecting the corrosion performance of elektrom WE43 and WE54 magnesium casting alloy[C] . Werkstoff-Informationgesellschaft, and Frankfurt,1998:403~408
    [68]川二朗.稀土的最新应用技术[M].北京:北京工业出版社,1993
    [69]郭晓涛,李培杰,曾大本. 稀土耐热合金发展现状及展望[J] .铸造,2002,2:68~71
    [70]吴秀铭. 中国镁业的现状与展望[C] .2001 年中国国际镁业研讨会论文集,北京:中国镁业协会,2001:1~4
    [71]李振宏,伍虹. 我国稀土应用的现状与前景[J] .稀土,1997,6:48~52
    [72]刘光华. 稀土固体物理学[M] .北京:机械工业出版社.1997
    [73]张世军,黎文献,余琨. 铈对镁合金AZ31晶粒大小及铸态力学性能的影 响[J] .铸造,2002,12 :30~34
    [74]张诗昌等. 主要合金元素对镁合金组织和性能的影响[J] .铸造,2001,6 :310~315
    [75]闵学刚. Ca,Si 和RE 对AZ91 合金的组织和性能的影响[J].东南大学学报,2002,32(3):409~414.
    [76]郭学锋. Ce/Ca 对AZ91D 镁合金组织与力学性能的影响[J] .西安理工大学学报,2003, 19(3):201~205.
    [77]王立世,段汉桥,魏伯康,等. 混合稀土对 AZ91 镁合金组织和性能的影响[J].特种铸造及有色合金,2002,3:12~14.
    [78] Brown R.F. Magnesium wrought and fabricated products-yesterday, today and tomorrow [C].H.I.Kaplan Magnesium Technology 2002. (Pennsylvana, TMS,2002):155
    [79] Allen R.V, East D.R, Johnson T.J., et al. Magnesium alloy sheet produced by twin roll casting[M]. Magnesium Technology,2001:75
    [80] Empley E.F.Principles of magnesium technology[M]. London, Pergamon Press,1966:484
    [81] Brooks C.R, Translated by Dingfu. Heat treatment,structure and propertiesof nonferrous alloys[M].Beijing,Metallurgical Industry Press,1988:69
    [82]PENG L (彭立明),ZENG X Q(曾小勤),ZHU Y P(朱燕萍). Effect of solid-solution treatments on the microstructure and mechanical properties of AM60B+ xRE and AZ91D+ xRE magnesium alloy[J],Chinese Journal of Materials Research (材料研究学报),2003,17(1):97
    [83]王渠东. 稀土在铸造镁合金中的应用[J].特种铸造及有色合金,2002年压铸专刊,292~299
    [84]刘正. 固溶和时效对压铸AZ91HP合金力学性能的影响[J] .金属学报,1999,8:20~24
    [85]王立世、段汉桥. 混合稀土对AZ91 镁合金组织和性能的影响[J] .特种铸造及有色合金,2000,3:37~41
    [86]罗治平,赵少卿,汤亚力,等. 稀土在镁合金溶液中作用的热力学分析[J] .中国稀土学报,1995,13(2):119~122
    [87] NairKS, Mittal MC. Rare Earth Magnesium Alloys Mate[rJ]. Sci. Forum,1998,30:89~104
    [88]金正爱. 镁合金——航空航天的轻型材料[J] .有色与稀有金属国外动态,1997,9:4~6
    [89] Han B.Q., D.C.Dunand. Microstructure and mechanical propertyes of magnesium containing high volume fractions of yttria dispelrsoids[J]. Materials Science and Engineering A, 2000, 277:297~304
    [90]Li Y., Jones H.. Effect of rare earth and silicon additions on structure and propertyes of melt spun Mg-9Al-1Zn alloy[J]. Materials and Technology, 1996,12:651~661
    [91]Moreno I.P., Nandy T.K, Jones J.W, and et al. Microstuctural characterization of a die-cast magnesium-rare earth alloy[J]. Scripta Materialia, 2001,45:1423~1429
    [92] Moreno I.P., Nandy T.K, Jones J.W., and et al. Microstuctural stability and creep of rare-earth containing magnesium alloys[J]. Scripta Materialia,2003,45:1029~1034
    [93]Takeshi M, Mamoru M, Naobumi S,and et al. Microstructure and mechanical propertyes of a Mg-4Y-3RE alloy processesd by themo-mechanical treatment[J] . Materials Science and Engineering A,1998,257:287~294
    [94]Pettersen G., Westengen H. Microstructure of a pressure die cast magnesium-4wt.% aluminium alloy modified with rare earth additions[J]. Materials Science and Engineering A,1996,207:115~120
    [95] Lee S, Do H. K. Effect of Y,Sr,and Nd Addition on the Microstructure and Microfracture Mechanism of squeeze-cast AZ91-X magnesium Alloys[J] .Metallurgical amd Materials Transaction A, 1998,29A:1221~1235
    [96]Wei L Y, Dunlop G.L, Westengen H. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys[J] .Metallurgical amd Materials Transaction A,1995,8:1947~1954
    [97]徐光宪. 稀土[M] .北京:冶金工业出版社,1995:475~485
    [98]桐生雅夫,奥村勇人,镰士重晴,等. Corrosion resistance of heat resistant magnesium alloy containing heavy rare earth elements[J].轻金属,1996,46(1):39~44
    [99] 刘海峰,侯骏,刘耀辉,等. 含稀土抗蠕变压铸镁合金的开发[J] .中国稀土学报,2005,3:345~350
    [100]张洪杰,孟健,唐定骧. 高性能镁稀土结构材料的研制、开发与应用[J] .中国稀土学报, 2004 ,24(1):40
    [101] Lu YZ. Effects of rare earths on the microstructure proper ties and fracture behavior of Mg2Al alloys [J]. Materials Science and Engineering, 2000,5:210
    [102]Wei L Y. Development of microstructure in cast Mg2Al2RE alloys [J] . Materials Science & Technology , 1996,9:741
    [103]Nair KS,Mittal M C. Rare Earth sin Magnesium Alloys[J],Mater. Sci.Forum,1988,30:89~104
    [104]杨遇春,金红. 稀土金属材料及其发展前景[J] .材料工程,1993,6:45~48
    [105]姚志亮. 低湿性航空有机玻璃[C] .96珠海航空学术交流会讨论集,北京:中国航空学会,1996:20~26
    [106]郭旭涛,李培杰,曾大本. 稀土耐热镁合金发展现状及展望[J] .铸造,2002,2:68~71
    [107]леаи.л.литеиное.дело.高炉铸铁的物理状态对气孔形成的影响[M].1939:13~15
    [108]李培杰,桂满昌,里豪森,等. Al-16%Si 合金熔体的电阻率及其结构遗传[J] .铸造,1995,9:15~20
    [109]李培杰,曾大本,贾均,等. 铝硅合金中的结构遗传及其控制[J] .铸造,1999,6:10~14
    [110]刘相法,边秀房,马家骥,等. 铝合金组织遗传现象及其利用的研究[J] .铸造,1993,10:18~23
    [111]刘相法,边秀房,马家骥,等. 共晶铝硅合金收缩倾向的遗传现象及控制[J] .铸造,1994,6:17~21
    [112]В.Д.萨多夫斯基. 钢的组织遗传性[M] .北京:冶金工业出版社,1980:3~14
    [113]Lownie H.W. Use of pig Iron in Foundries.Trans. AFS,1956: 104
    [114]Motz J. Influence of Trace Elements on the Structures and properties of Nodular Iron Casting[J]. Giessereiforsching,1967,3:109
    [115]顾景诚,孙兴信. 原料组织遗传性对铝及铝合金显微组织的影响[J] .轻合金加工技术,1955,4:32
    [116]Ander L. Heridity in Cast Iron[J] .The Iron Age,1927,6:960
    [117]Gillett H.W. Heredity in cast iron.Metals and Alloys[J]. Trans AFA,1934,5:44
    [118]Margerie J. C. The Notion of Heredity in Cast Iron[M].The Metallurgy of Cast Iron,1974:546
    [119]И.В.Говрилин. 铸造实践用的液态合金组织的研究[J].Лите йное проиэволство,1988,9:3~4
    [120]В.И.Никитин. 炉料和熔体结构遗传性的控制—提高铸件质量最重要的潜力[J].Литейное проиэволство,1988,9:5~6
    [121]В.И.Никитин. 关于炉料金属质量对轻合金性能的影响问题[J].Лветньы,1982,8:15~19
    [122]В.И.Никитин. 利用炉料组织的遗传性提高铸件质量的研究[J].Литейное проиэволство,1986,6:20~21
    [123]第五次铸造合金的遗传性国际学术会议论文题录,1993
    [124]边秀房. 铝合金的熔体结构及其遗传性研究[D].山东大学博士学位论文,2001:29~30
    [125]刘相法,边秀房,李辉. AlTiB 中间合金细化效果的组织遗传效应[J].金属学报,1996,2:149~153
    [126]边秀房,刘相法,王先娥. Al-Sr 中间合金变质效果的遗传效应[J] .金属学报,1997,6:609~614
    [127]刘相法,边秀房,刘玉先,等. 铝合金中 Fe 相的形态的遗传性及球化机制的研究[J].金属学报,1997,10:1063~1068
    [128] 张作贵,刘相法,边秀房,等. Al-Ti-B 中间合金的遗传性研究与推广应用[J].铸造,2000,10:758~763
    [129]张作贵,刘相法,边秀房. TiB2 分布形态对 AlTi5B 细化特性的影响[J].特种铸造及有色合金,1999,5:12~13
    [130]QI X G, LIU X F, BIAN X F.The effects of solid deformation and meltvibration on refining performance of Al5Ti1B master alloys[J ] .Journal of Chinese Non-Ferros Metal, 1999,10(1):80~83
    [131] 张作贵,刘相法,边秀房,等. Al-Ti-B 中间合金中的化合物形态[J] .中国有色金属学报,1999,9(4):736~739
    [132]刘相法,边秀房,马家骥等. 共晶铝硅合金收缩的遗传现象及控制[J].铸造,1994,6:17~21
    [133] 刘相法,边秀房,马家骥. 铝硅合金原锭中气孔的遗传现象及控制[J].铸造技术,1994,4:5~8
    [134]李双寿,朱跃峰,吴群虎,等. 原料组织遗传性及其在铸造铝合金中的应用[J] .铸造,1999,8:53~57
    [135]曹永强. 熔剂与镁合金中夹杂物的相互作用和精炼工艺分析[D]. 吉林大学硕士论文. 2006:41~45
    [136]张诗昌,段汉桥,蔡启舟,等. 镁合金中的夹杂物及检测方法[J] .铸造技术,2001,4:3~5
    [137]安阁英. 铸件形成理论[M].北京:机械工业出版社,1989
    [138]张承甫. 液态金属的净化与变质[M].上海:上海科技出版社,1989
    [139]苏华钦. 半固态铸造的现状及发展前景[J].特种铸造及有色合金,1998,5:1~6
    [140]中国机械工程学会铸造分会代表团. 21 世纪铸造工业展望[J] .铸造,1999,10:1~5
    [141]张士宏,许沂,王忠堂,等. 镁合金成形加工技术[J].世界科技研究与发展,2001,6:18~21
    [142]陈存中. 有色金属熔炼及铸锭[M].北京:冶金工业出版社,1987
    [143]刘生发,刘林艳,黄尚宇,等. 铈对 AZ91 镁合金腐蚀性能的影响[J]. 中国稀土学报, 2006,4: 211~266
    [144]贾均,李培杰. 合金液――固态结构遗传的研究和发展[C]. 94 全国铸造铝合金熔铸金属及理论学术研讨会论文集,1994:1
    [145]Б.А.Баум, Е.А.К лименков.Взаимоб лияние жидкого и твердого состояний сп лавов.Мета ллы,1986,3:19
    [146]ФренкелъЯ И. В ведение в теорию металлов[M]. Л. Наука,1972,424
    [147]Никнтин В Н.Основнъе закономерности структурной наслелственности в системе. Шихта-расплав-отливк[аJ].Литейное производство,1991,4:4
    [148]桂满昌. Al-Si 合金液态若干物性与凝固组织的相关性[D]. 哈尔滨工业大学博士论文,1994:6
    [149]冯端. 凝聚态物理学新论[M].上海:上海科学技术出版社,1994
    [150]李培杰,曾大本,贾均. 合金熔体遗传现象的热力学分析[J] .铸造,1999,10:12~15
    [151]边秀房,李辉,张林等. Pb-Sb 合金液相线上方的异常区[J]. 科学通报,1996,13:1237~1240
    [152]Κпиенков Е А.Структуы Расплавов Нугуа.1985,5:12~17
    [153]耿浩然,周香林,马家骥,等. Zn-Al 合金的熔体结构特征及 Cu 和Fe 的影响[J] .中国有色金属学报,1998,6:239~244
    [154]В.И.Никитин.О сновные за кономерности структурой на сс ледственностви системе[J] .щихта расплав отливка,Литейн. Произво дство, 1991,4:4
    [155]李双手,唐靖林,曾大本,等. 铸造铝合金塔式熔化炉融化特性的研究,98 有色合金及特种铸造国际会议,上海,1998
    [156]神尾彰彦. 溶汤成分变动と制品品质,フルシニウム合金铸物[J] .タイカストの溶汤品质欠陷对策,素形材·セリタ,1997,6:22
    [157] Д. Г. Эскин,洪永先译. 熔体过热对铝合金宏观组织影响的机理[J] .轻合金加工技术,1990,3:26
    [158]黄良余. 铝及其合金的晶粒细化处理简述[J] .特种铸造及有色合金,1997,(3):41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700