砷化硼及砷化铟团簇结构、稳定性和电子性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
III-V族低维半导体材料,在纳米光电子学、集成电路和纳米器件等方面有着极为重要的作用。近几十年来,人们在III-V族半导体薄膜、超晶格、纳米管和量子点的实验及理论研究中取得了巨大的进步,但截止目前,对于III-V族砷化硼和砷化铟在1~200个原子范围内的研究却很有限。为此,文章采用密度泛函理论(DFT)对砷化硼以及砷化铟半导体团簇的几何结构、稳定性和电子性质进行了研究。
     首先,应用密度泛函理论的全电子方法优化得到了BnAsn (n=1-14)团簇基态几何结构,并对其稳定性和电子性质做了系统分析。结果表明,当n=4时团簇的基态由二维平面结构过渡到三维立体,当n > 4时团簇的基态随尺寸的增加而形成以B原子与As原子交替排列的四元环和六元环为结构基元的笼状构型;具有高对称的富勒笼状结构B12As12为最稳定团簇;能隙的取值范围显示BnAsn (n=1-14)团簇具有典型的半导体特征;BnAsn (n=1-14)团簇具有较强的分子特性和共价特性。
     其次,采用密度泛函理论下的赝势方法优化得到了五种稳定的InnAsn (n=4-90)管状团簇。通过研究发现,它们遵循着有趣的结构衍化规律,所有管状团簇在结构上都满足共同的分子通式Inpk/2As pk/2。管状团簇的主要结构单元是两个相互平行的p边形,外加p个四元环以及h个六元环结构,其中h、p和原子层数k满足关系:h=p×(k-2)/2。管状团簇的HOMO、LUMO的电子分布特征揭示了管状结构形成的内在原因,同时它也在微观层面上解释了实验中一维InAs纳米材料的生长机理。
     最后,以稳定管状团簇的结构为基础,通过搭建原胞,在周期边界条件下优化得到了无限长InAs纳米管的几何结构。结果表明,无限长纳米管具有与管状团簇极为类似的构型,且能带结构的分析发现不同类型的纳米管都表现出宽带隙的半导体特征。
     研究结果对于深入理解砷化硼团簇以及砷化铟纳米管的结构衍化和电子性质提供了一定的帮助,为III-V族低维半导体材料的进一步实验研究提供可靠的理论依据。
Low-dimension semiconductor materials of the III-V group is playing an important role in the fields, such as nano-optical electronics, molectron and nanodevice . For the past decades, theoretic and experimental study about the film, superlattice, nanotube and quantum dot of the III-V group semiconductor have achieved a great progress. However, by now, the investigation of boron arsenide and indium arsenide in 1 to 200 scope of the number of atoms is still very limited. Therefor, in this paper a study of the geometric, stability and electronic properties of boron arsenide and indium arsenide clusters, have been carried by density functional theory (DFT).
     First of all, the investigation of the lowest-energy structures, stabilities and electronic properties of BnAsn clusters (n=1-14) have been presented by means of the density-functional theory. The results show that the lowest-energy structures undergo a structural change from two-dimensional to three-dimensional when n=4. With the increase of the cluster size (n>4), the BnAsn clusters tend to adopt cage-like structures, which can be considered as being built from four-membered rings (4MRs) and six-membered rings(6MRs). B12As12, a fullerene-like cage with high symmetry, is the most stable cluster. The results of PDOS analysis reveal that a distinct spd hybrid can be found at the vicinity of Fermi level, and there are strong molecular and covalent characteristic in the clusters.
     Moreover, the effective core potential density functional calculations are performed to explore a series of InnAsn tubelike clusters up to n=90. It is interesting that all of the tubelike structures comply with some common properties, such as the general molecular structural formula Inpk/2Aspk/2 and the common structure units—the parallel polygons, 4MRs and 6MRs. Size-dependent cluster properties such as binding energy, HOMO-LUMO gaps, Mulliken charges on atoms and frontier molecular orbital surfaces have been discussed. The electron density distributions of HOMO and LUMO indicate that the chemical activity of the tubelike clusters at the two ends is stronger, which makes the clusters being conducive to grow longer. That is why we can get the tube-like clusters.
     Finally, based on the stable tube-like cluster structures, the same method have been employed to optimize the infinite InAs nanotubes (InAsNTs). Their atomic and electronic band structures are presented. The results show that one-dimensional InAsNTs can be prepared by proper assembly of tubelike clusters to form semiconductors with large band gap.
     The results of these studies are helpful for us to understand the growth of the structures and electronic properties of the boron arsenide clusters and indium arsenide nanotubes. Furthermore, they can present theoretical credible basis for the further experimental study of the low-dimension semiconductor materials of the III-V group.
引文
[1] Cotton F. A.Transition-metal compounds containing clusters of metal atoms, Quarterly Review, Chemistry Society[M], 1966, (20): 389.
    [2]卢嘉锡.原子簇化合物的结构化学[M].北京:科学出版社,1998. 35~60.
    [3]王广厚.团簇物理学,上海科技出版社[M]. 2003, 1.
    [4] Stein G. D. Atoms and molecules in small aggregates[J]. Phys. Teach, 1979, 17: 503.
    [5] Bawendi M. G., stergerwald M. L, Brus L. E. The quantum mechanics of larger smiconductor clusters (“Quantum Dots”)[J]. Annu. Rev. Phys. Chem, 1990, 41:477.
    [6] Echt O, Sattler K, Recknagel E. Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters [J]. Phys. Rev. Lett, 1981, 47(16): 1121~1124.
    [7]王广厚.物理学进展[J]. 1994,14(1):121.
    [8]王广厚.物理学进展[J]. 2000,20(1): 52.
    [9] Shvartsburg A. A, Jarrold M. F. An exact hard-spheres scattering model for the mobilities of polyatomic ions[J]. Chem.Phys.Lett., 1996, 261: 86~91.
    [10] Castleman A.W, Bowen K.H. Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter [J]. J. Phys. Chem, 1996, 100: 12911.
    [11] Bentley P. G, Chemical Engineering Polymers of Carbon Dioxode [J]. Nature, 1961, 190: 432.
    [12] ZHAO L Z, LU W C, QIN W, et al. Fragmentation behavior of Gen clusters (2≤n≤33) [J]. Chem. Phys. Lett, 2008, 455: 225~231.
    [13] Debashis B, Prasenjit S, Density Functional Investigation of Structure And Stability of Gen and GenNi (n = 1-20) Clusters: Validity of the Electron Counting Rule [J], J. Phys. Chem.A, 2010, 114: 1835~1842.
    [14] Chen Jian-Cheng(陈建成), Xing Xiao-Peng(邢小鹏), Tang Zi-Chao(唐紫超),二元合金团簇CoGen(n = 1 ~ 12)的结构和稳定性[J]. Chem. J. Chinese. Universities (高等学校化学学报), 2007, 28: 535~538.
    [15] Yoo S, Zeng X. C. Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21-Si30[J]. J. Chem. Phys., 2006,124: 054304 (1~6).
    [16] Granqvist C. G., Buhrman R. A., Ultrafine metal particles[J]. J. Appl. Phys. 1976, 47:2200.
    [17] Rohlfing E. A., Cox D. M., Kaldor A., Photoionization of isolated nickel atomclusters[J]. J. Phys. Chem.1984, 88:4497.
    [18] Devienne F. M., Combarieu R.,Teisseire M., Action of different gases, specially nitrogen, on the formation of uranium clusters; comparison with niobium and tantalum clusters[J]. Surf. Sci. 1981, 106:204.
    [19] Seliger R. L., Ward J. W., Wang V., Kubena R. L., A high-intensity scanning ion probe with submicrometer spot size[J]. Appl. Phys. Lett., 1979, 34:310.
    [20] Wilenzick R. M., Russell D. C., Morriss R. H., Marshell S. W., Uniform microcrystals of platinum and gold[J]. J. Chem. Phys., 1967, 47:533.
    [21] Vager Z., Kanter E. P., Both G., Cooney P. J., Faibis A., Koenig W., Zabransky B. J., Zajfman D., Direct Determination of the stereochemical structure of CH+4[J], Phys. Rev. Lett., 1986, 57:2793.
    [22] M. Neumaier, F. Weigend, O. Hampe. Binding energies of CO on gold cluster cations Aun (n=1-65). J. Chem. Phys. 2005,122: 104702
    [23] K. S. Kim, S. Lee, J. Kim, J. Y. Lee. Molecular cluster bowl to enclose a single electron. J. Am. Chem. Soc. 1997, 119: 9329 ~9330
    [24] E. M. Femandez, P. Ordjon, L. Balbas. Theoretical study of O2 and CO adsorption on Aun clusters (n=5-10)[J]. Chem. Phys. Lett. 2005, 408: 252 ~257
    [25] M. D. Chen, J. W. Liu, L. Dang, Q. Zhang. A density functional study on nitrogen-doped carbon clusters CnN3(n=1-8)[J]. 2004, 121(23): 11661 ~11667.
    [26] J. Oviedo, R. E. Palmer. Amorphous structures of Cu, Ag, and Au nanoclusters from first principles calculations[J]. J. Chem. Phys. 2002, 117(21): 9548~9551
    [27] K. Michaelian, N. Rendon. L. L. Garzon. Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B. 1999, 60(3): 2000~2010
    [28]中国科学院. 2006科学发展报告II-VI和III-V族半导体的光学性质研究展望[R].北京:科学出版社, 2006.
    [29]禄来玉,程艳,王海燕. GaAs相变和热力学性质的密度泛函理论研究[J].原子与分子物理学报, 2005, 22:175.
    [30]孙卫忠.半绝缘砷化嫁(SI-GaAs)单晶中的杂质与缺陷[D].天津:河北工业大学,2006.
    [29]肖洪地,马洪磊,薛成山等.粒状GaN微晶的合成及其结构性能的研究闭[J].稀有金属材料与工程,2005,34(9):1411.
    [30]李恩玲. GaAs纳米材料的结构与制备研究[D].西安:西安交通大学,2008.
    [31]李凯,叶小玲,金鹏,王占国. GaAs基上的InAs量子环制备[J],固体电子学研究与进展, 2006, 26(4):7535.
    [32] Chopra N.G, Luyken R.J, Zettl A et al. Boron Nitride Nanotubes[J], Science,1995, 269: 966 ~967.
    [33] Bolesta A.V, Golovnev I. F, Fomin V. M. InGaAs/GaAs nanotubes simulation: comparison betweencontinual and molecular dynamics approaches[J]. Computational Materials Science, 2006, 36: 147 ~151.
    [34] Premila M, Junichi M, Takashi F. Realization of conductive InAs nanotubes based on lattice-mismatched InP/ InAs core-shell nanowires [J]. Applied Physics Letters, 2006, 88, 013110.
    [35]刘宏,王继杨,郭晓涛,III-V族低维半导体材料制备技术及进展[J].半导体光电,2000,21, 1.
    [36] Wells R.L et al. A Straightforward, New Method for the Synthesis of Nanocrystalline GaAs and GaP [J]. Chem. Mater, 1994, 6, 2056.
    [37]赵有文,孙文荣,段满龙,董志远,杨子祥,吕旭如,王应利.高质量InAs单晶材料的制备及其性质[J].半导体学报, 2006, 27(05):2391 ~2395.
    [38] Cirliny G.E, Dubrovskiiy V.G, Petrov V.N et al. Formation of InAs quantum dots on a silicon (100) surface[J]. Semicond. Sci. Technol, 1998, 13: 1262 ~1265.
    [39] Wanda A. III-V semiconductor microclusters:Structures, stability, and melting [J]. Physical Review B, 1991, 45, 8.
    [40] Gutsev G.L, Mochena M.D, O'Neal Jr R.H, Saha B.C. Negatively charged GaAs clusters[J]. Chemical Physics Letters, 2009, 476: 249 ~252.
    [41] Zhao J.J, Xie R.H, Zhou X. L, et al. Formation of stable fullerenelike GanAsn clusters (6≤n≤9): Gradient-corrected density-functional theory and a genetic global optimization approach[J]. Physical Review B, 2006, 74:035319.
    [42] Guo Ling, WuHai-shun. First principles study of the structure, electronic state and stability of AlmAsn+cations[J]. Journal of Molecular Structure: THEOCHEM , 2006, 760: 167 ~173.
    [43] Guo Ling. First principles study of the structure, electronic state and stability of AlmAsn- anions [J]. Journal of Molecular Structure: THEOCHEM, 2007, 809:181 ~187.
    [44] Aurora C, Anil K. K, Ruth F, Ravindra P. Theoretical Study of Structural and Vibrational Properties of (AlP)n, (AlAs)n, (GaP)n,(GaAs)n, (InP)n, and (InAs)n Clusters with n =1, 2, 3[J]. J. Phys. Chem. B, 2002, 106: 1940 ~1944.
    [45] Joro O, Biyoshi S, et al. Preparation and Chemical Properties of Cubic Boron Arsenide, BAs[J]. The Review of Physcial Chemistry of Japan, 1966, 36, 1.
    [46] Wentzcovitch R. M, Cohen M.L . Theoretical study of BN, BP, and BAs at highpressures[J]. Phys. Rev. B, 1987, 36:6058 ~6068.
    [47] Meradji H , Drablia S, Ghemid S, et al. First-principles elastic constants and electronic structure of BP, BAs, and BSb[J]. Phys. Stat. Sol. (b), 2004, 1, 5.
    [48] Burrill S, Grein F. Structure and bonding of III/V compounds X2Y2, with X= B, Al, Ga, and Y= N, P, As[J]. J. Mol. Struct.: Theochem, 2005,757, 137.
    [49]廖沐真,吴国是,刘洪霖,量子化学从头计算方法[M].北京:清华大学出版社1984, (26).
    [50] Born M, Oppenheimer J. R.Zur Quantentheorie der Molekeln[J]. Ann Phys, 1927, 84: 457.
    [51] Born M, Huang K.Dynamical Theory of Crystal Lattices[M], Oxford:Oxford University Press, 1954.
    [52] Hatree D. R. The wave mechanics of all atom with a non-Coulomb central field[J]. Proe.Camb. Pil. Soc, 1928, 24: 111.
    [53] Fock V. Nohernngsmethode zurLosung des quantenmechanischen mehrkorper problems[J], Z.Plays, 1930, 61:126.
    [54] Kohn W , Sham L.J.Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev. A, 1965, 140:1133.
    [55] Thomas L. S., The calculation of atomic fields[J]. Proc. Cambridge Philos.Soc., 1927, 23:542.
    [56] Fermi E., A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements[J], Z. Phys.,1928,73(48):73.
    [57]徐克尊,陈宏芳,周子肪.近代物理学[M].高等教育出版社, 1993.
    [58] Hohenberg P , Kohn W. Inhomogeneous Electron Gas[J]. Phys. Rev, 1964, 136, (3B):864.
    [59] Slater J. C. Self-Consistent Field for Molecules and Solids[J]. Gc Graw-Hill, NewYork, 1974.
    [60] Stowasser R. and Homann R. What do the Kohn-Sham orbitals and Eigenvalues mean[J]. J. Am. Chem. Soc.,1999, 121(4):3414.
    [61] Martin R., Electronic structure: Basic theory and practical methods[M]. London: Cambridge University Press, 2004,106.
    [64] Ceperley D. M. and Alder B. J. Ground State of the Electron Gas by a Stochastic Method[J]. Phys. Rev. Lett., 1980, 45(7):566.
    [65] Barth Uvon and Hedin L. A local exchange-correlation potential for the spin polarized case[J]. Journal of Physics C: Solid State Physics, 1972, 5(13):1629.
    [66] Gunnarsson O., Lundquist B. I. and Wilkins J. W. Contribution to the cohesive energy of simple metals: Spin-dependent effect[J]. Phys. Rev. B., 1974, 10(4):1319.
    [67] Hedin L. and Lundquist S. Solid State Physics[M].New York: Academic Press, , 1969, (23).
    [68] Perdew J.P. and Zunger Alex Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B., 1981, 23(10):5048.
    [69] Vosko S. H., Wilk L. and Nusair M. Accurate spin-dependent electronliquid correlation energies for local spin density calculations:a critical analysis, Can[J]. J. Phys, 1980, 58:1200.
    [70] Becke Axel D. Density-functional thermochemistry. III. The role of exact exchange[J]. J.Chem.Phys, 1993, 98:5648.
    [71] Lee Chengteh,Yang W.T., and Parr Robert G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B., 1988, 37(2):785.
    [72] Dufek P., Blaha P., Sliwko V. and Schwarz K. Generalized-gradient- approximation description of band splittings in transition-metal oxides and fluorides[J]. Phys. Rev. B., 1994, 49(15):10170.
    [73] Adamo C. and Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models[J]. J. Chem. Phys., 1998,108(2):664.
    [74] Perdew J. P, Burke K, and Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1997, 78(7):1396.
    [75] Koch W. and Holthausen M. C., A chemist's guide to density functional theory[M], 2ed, Wiley-VCH, 2001 .
    [76] M. Ernzerhof and G. E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof Exchange-Correlation Functional[J]. J. Chem. Phys,1999,110:5029.
    [77] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., et al.. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.
    [78]许雪松,吉林大学博士学位论文[D] , 2003.
    [79] Ferhat M, Bouhafs B, Zaoui A and Aourag H, First-principles study of structural and lectronic properties of BSb [J]. J.Phys.: Condens. Matter, 1998, 10: 7995.
    [80] Hart G. L. W and Zunger A, BAs and boride III-V alloys[J]. Phys. Rev. B 2000, 62: 13522.
    [81] Phillips J.C. Bonds and Bands in Semiconductors [M]. New York: Academic,1973, (28).
    [82] Van Vechten J.A and Phillips J.C. New Set of Tetrahedral Covalent Radii[J]. Phys. Rev. B, 1970, 2: 2160.
    [83] Wentzcovitch R. M, Chang K. J and Cohen M. L, Electronic and structural properties of BN and BP [J]. Phys. Rev. B, 1986, 34:1071.
    [84] Wentzcovitch R.M and Cohen M.L, Theory of structural and electronic properties of BAs[J]. J. Phys. C: Solid State Phys, 1986, 19: 6791.
    [85]刘立仁,雷雪玲,陈杭,祝恒江. Bn (n=2-15)团簇几何结构和电子性质[J].物理学报,2009,58:5355.
    [86]雷雪玲,祝恒江,葛桂贤,王先明,罗有华.密度泛函理论研究BnNi(n=6-12)团簇的结构和磁性[J].物理学报,2007,57:5491.
    [87]杨致,闫玉丽,赵文杰,雷雪玲,葛桂贤,罗有华.FeBn(n≤6)团簇的结构与磁性[J].物理学报,2007,56:2590.
    [88]雷雪玲,祝恒江,王先明,罗有华.用密度泛函理论研究ZrnB(n=1-13)团簇的结构及性质[J].物理化学学报, 2008, 24:1655.
    [89]雷雪玲,王清林,闫玉丽,赵文杰,杨致,罗有华.利用密度泛函理论研究Bn Ni(n≤5)小团簇的结构和磁性[J].物理学报,2007,56:4484.
    [90] Yang C. L., Zhu Z. H., Wang R., Liu X. Y. Analytical potential energy functions of the neutral and cationic B2[J]. J. Mol. Struct. : Theochem ,2001, 548:47.
    [91] Lide D. R. CRC Handbook of Chemistry and Physics[M]. New York: CRC Press,87th Ed, 2006, 82.
    [92] Rosen B. Spectroscopic Data Relative to Diatomic Molecules[M], Oxford: Pergamon Press, 1970, 80.
    [93] Huber K and Herzberg G, Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules[M]. New York: Van Nostrand 1979 , 504.
    [94] Brumbach S.B, Rosenblatt G.M. In-Cavity Laser Raman Spectroscopy of Vapors at Elevated Temperatures As4 and As4O6[J], J Chem Phys , 1972, 56(6): 3110~3117.
    [95] Bosworth Y.M, Clark R.J.H, Rippon D.M. The vapor phase Raman spectra, Raman band contour analyses,and Coriolis constants of the spherical top molecules MF6 (M=S, Se, Te, Mo, W, or U), M(CH3)4 (M=C, Si,Ge, Sn, or Pb), P4, As4 and OsO4 [J]. J Mol Spectrosc , 1973, 46: 240~255.
    [96] Guo L, Structural, energetic, and electronic properties of hydrogenated aluminum arsenide clusters[J]. Comput. Mater. Sci, 2008, 42: 489.
    [97] Wyckoff R.W.G. Crystal Structures[M]. Malabar: Krieger, 2nd edn, 1986
    [98] Iijima S. Helical microtubules of graphitic carbon[J]. Nature (london)1991, 354: 56.
    [99] Asadollah B, Ahmad S, and Mehran A. Structural Study of Boron-Nitride Nanotube with Magnetic Resonance (NMR) Parameters calculation via Density Functional Theory method (DFT)[M]. Engineering and Technology, 2008, 47.
    [100] Chen G.X, Zhang Y, Wang D.D, Zhang J.M. First-principles study of transition-metal atoms adsorption on GaN nanotube[M]. Physica E, 2010, 43:22~27.
    [101]陈爱华,于金,李瑜璞等. SiC纳米管的研究进展[J].化工时刊, 2008, 22(6).
    [102] Karamanis P, BeguéD.C. PouchanStructure and Polarizability of Small (GaAs)n Clusters (n= 2, 3, 4, 5, 6, and 8)[J]. Computing Letters, 2006, 2:255~258.
    [103]杨建宋,李宝兴.砷化镓离子团簇的稳定性研究[J].物理学报, 2006,55(12): 6562.
    [104] Chanchal G, Sougata P, Biplab G, Pranab S.Theoretical studies on size-dependent properties of GanAsn clusters[J], Chem. Phys. Lett,, 2005, 407: 498~503.
    [105] Lan Y.Z, Cheng W.D and Wu D.S, et al. A theoretical investigation of hyperpolarizability for small GanAsm(n+m=4-10) clusters[J]. J. Chem. Phys., 2006,124: 094302.
    [106] Zhao J.J, Wang B. L, Zhou X.L, et al. Structure and electronic properties of medium-sized GanNn clusters (n = 4-12)[J]. Chem. Phys. Lett, 2006, 422, 170~173.
    [107] Panaghiotis K, Demetrios X, Jerzy L. The polarizabilities of small stoichiometric aluminum phosphide clusters AlnPn (n=2-9). Ab initio and density functional investigation[J]. Chem.Phys. Lett, 2008, 457,137~142.
    [108] Aurora C, Blanco M. A, Francisco, E. Evolution of the Properties of AlnNn Clusters with Size[J]. J. Phys. Chem. B 2005, 109: 24352~24360.
    [109] Giuffreda M.G, Deleuze M.S, and Francois J.P. Structural, Rotational, and Vibrational Properties of Mixed Ionized Boron Nitrogen Clusters BnNn+ (n =3-10)[J]. J. Phys. Chem. A, 2000, 104: 5855~5860.
    [110] Aurora C, Ravindra P. A theoretical study of structural, vibrational, and electronic properties of neutral, positive, and negative indium arsenide clusters, InnAsn (n= 1,2,3) [J]. Chem. Phys. Lett. 2002, 362:210~216.
    [111] Tomioka K, Mohan P and Noborisaka J. Growth of highly uniform InAs nanowire arrays by selective-area MOVPE[J], J. Crys. Grow, 2007, 298: 644~647.
    [112] Xu Y.G, Ji D, Shen X.Y, Wang X.L, Li J.M. A Theoretical Study of Clusters:Realizing Differences between the Second-Row and the Third-RowElements[J]. Chin. Phys. Lett, 2006, 23(7): 1757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700