AZ31B镁合金脉冲激光加工行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于轻质高强和矿产资源优势,镁合金材料成为“陆、海、空、天”交通运载装备等领域的重要优势材料,被誉为“21世纪最具发展潜力和应用前景的绿色结构材料”。
     镁合金材料化学活性高、熔点低、导热快、热膨胀系数大等特点,使得其热加工性能较差,成为制约镁合金材料广泛应用的瓶颈。与传统热加工方法相比,激光加工具有能量密度大、加工效率高、工艺流程短、能源消耗低、绿色加工与柔性制造等特点,被称为“未来制造系统共同的加工手段”。而以高能量高频率的优势,脉冲激光成为镁合金材料热加工的一个重要途径,将有利于拓展镁合金材料的应用领域。因此,研究镁合金材料脉冲激光加工行为,将具有重要的理论意义和应用价值。
     针对镁合金材料吸光率低、产热少、散热快的特点,本课题与相关研究单位合作,设计研制了高能量高频率的固体Nd:YAG脉冲激光器及其加工装备。系统研究了脉冲激光作用下AZ31B镁合金材料切割、焊接、熔凝及熔覆等加工行为,并在此基础上,探索了激光加热·液氮深冷极端冷却条件下镁合金材料表面纳米化和非晶化行为。本研究取得以下结论:
     设计并研制成功一台单泵浦腔平均功率大于500W的固体Nd:YAG脉冲激光器。激光光束波长1.064μm,频率1-2000Hz可调,峰值功率9200W,单脉冲能量83.8J;光束参数乘积Kf为16.5mm·mrad,聚焦光斑理论直径最小可达12.7μm;并制造了与该激光器相适应的数控加工系统。
     探索了镁合金材料脉冲激光切割机理、切割质量影响因素和切割断面微观组织结构。研究表明:在脉冲激光作用下,镁合金材料微区熔化、气化、燃烧以及气流力的协调“挖掘”机制,使得镁合金激光切割成为可能。单脉冲能量、峰值功率、脉冲频率、脉冲宽度、离焦量和气体种类是切割质量的主要影响因素。重熔层与母材交界处没有发现明显的热影响区,这是由于脉冲激光快速加热和快速冷却的特点所致。在优化参数情况下,切割厚度可达到6mm以上。
     研究了镁合金材料拘束作用下脉冲激光焊接冶金微观组织和缺陷产生机理。结果表明,元素烧损、蒸发、飞溅、裂纹、气孔、夹杂是存在的主要问题。裂纹形式主要是结晶热裂纹,氢气孔是焊缝金属中主要的气孔形式。脉冲激光快热快冷可使焊接接头组织细化,平均晶粒尺寸从母材的10-30μm细化到3-10μm。晶粒细化和晶内弥散分布的细小颗粒状β-Mg17A112是焊缝金属显微硬度提高的主要原因,最大硬度值可达72HV0.05。细小晶粒对焊缝金属脆性断裂有所改善,断口局部显示出塑性断裂的形貌。
     采用脉冲激光对AZ31B镁合金材料表面进行熔凝试验。结果表明,熔凝层微观组织明显细化,晶粒尺寸约为2-10μm,并存在大量的胞状亚结构。TEM电镜观察发现大量纳米尺寸的β-Mg17All2相,且均匀弥散分布于胞状亚结构的内部。熔凝层显微硬度约为原始镁合金的2倍,腐蚀电位比原始镁合金正移了约106mV,这是由于晶粒细化、第二相粒子弥散强化、杂质元素固溶以及Al含量增加等综合作用的结果。
     利用脉冲激光在AZ3 1B镁合金材料表面成功制备了Al-Si和A12O3-TiO2复合陶瓷涂层。当A1203-TiO2陶瓷粉末的质量分数小于15%时,具有良好的熔覆工艺性能。复合涂层与基体结合区成份过渡平缓,达到了良好的冶金结合。复合涂层中陶瓷颗粒大多以“质点”形式镶嵌,同时有Mg2Si和镁铝金属间化合物生成,局部区域还发现有未熔的陶瓷颗粒。复合涂层的平均显微硬度达到225HV0.05,约是单一Al-Si涂层的1.5倍,其强化机制为细晶强化、固溶强化及弥散强化。复合涂层的摩擦磨损机制以磨粒磨损为主,氧化磨损和粘着磨损为辅。电化学腐蚀结果表明,复合涂层的抗腐蚀性都得到了改善,其原因是由于陶瓷颗粒和生成的镁铝金属间化合物提高整个复合涂层的腐蚀电位,同时晶粒细化也降低了电偶腐蚀的有效阴阳极面积。
     在以上研究的基础上,提出了激光加热·液氮冷却的极端快速熔凝的方法,在镁合金表面成功获得了纳米晶和非晶的混合组织,从材料凝固特性及晶体生长热力学方面探讨了纳米晶和非晶的形成机理。液氮冷却改性层显微硬度最高达148HV0.05,约为基体的3倍。电化学腐蚀试验结果表明:液氮冷却改性层的腐蚀电位为-1439mV,比空气冷却熔凝层正移了26mV,比原始镁合金正移了124mV,这是固溶度增大、非晶组织形成以及晶粒细化等综合作用的结果。
High specific strength and abundant nature recourses have made magnesium alloys an ideal candidate for automobile, aerospace, navigation and electronic etc. It is known as "the most potential and prospective green structure material in the 21st century ".
     However, due to quantity of intrinsic properties including higher reactivity, lower melting point, bigger thermal conductivity and expansion coefficient etc, it's very difficult for magnesium alloy to precede hot working, which limits its application greatly. Compared with traditional heat process, laser processing is called as "a common processing technique in the future", which that is characterized due to its high energy density and efficiency, short process, energy conservation and flexible manufacturing etc. Therefore, it has great significance to study the pulsed laser behavior of magnesium alloy.
     A solid Nd:YAG pulsed laser were designed and manufactured for laser processing of magnesium alloy materials. In this paper, laser processing behaviors of AZ31B magnesium alloy material was investigated including laser cutting, laser welding, laser surface modification etc. The behavior of nanocrystallization and amorphization of magnesium alloy surface was explored by laser heating-liquid nitrogen cooling. Some conclusions were drawn as follows:
     The solid Nd:YAG pulsed laser with a single pump cavity was designed and manufactured successfully with an average output power of 500W, wavelength of 1064nm, frequency of 1-2000Hz, peak power of 9200W, single of pulse energy 83.8J. Its beam parameter product Kf was 16.5mm-mrad and its minimum beam spot diameter was 12.7μm. The numerical control processing system corresponding to the laser was designed and manufactured.
     The laser-cutting mechanism and factors were discovered and the microstructure of pulsed laser cutting surface was observed. The results showed that it made the laser cutting possible because a micro-district was melted coordinated with the action of vaporization, burning, and gas flow. The single pulse energy, peak power, pulse frequency, pulse width, defocusing amount, and assistant gas type were the main factors that determined the cutting quality. The heat affected zone was almost indiscernible between the remelted layer and the base material. A 6mm in thickness of laser cutting could be reached with the optimized parameters.
     The weld metallurgy and defect behaviors of laser welding magnesium alloy were also studied. The element burning, evaporation, splash, cracks, porosity, and inclusion were the main metallurgy problems of pulsed laser welding magnesium alloy. Especially, the hot cracking was the main crack formed in the weld. Although the content of hydrogen in weld metal was higher, there was no delayed crack observed. The microhardness in the weld was improved to 72HV0.05 because of the grain refinement and dispersive distribution ofβ-Mg17Al12 particles. The crystal size was refined from 10~30μm to 3~10μm due to fast heating and quick cooling. The refined crystalline grain had positive effect on the fracture properties of the weld metal, which was characterized by ductile fracture in partial.
     Laser surface melting was carried out on AZ31B magnesium alloy by the pulsed Nd:YAG laser. The results showed that the microstructure of melted layer was refined obviously with the grain size of about 2~10μm, and a lot nanophase Mg17Al12 was dispersed uniformly. Microhardness of the melted layer was twice of that of the as-received magnesium alloy. The results of electrochemical corrosion showed that the corrosion resistance of laser surface melted layer had been improved due to the grain refinement, dispersion reinforcement of the second phase particle, solid solution of the impurity element and the increase of the content of Al.
     To improve the wear resistance and corrosion resistance of magnesium alloys, the composite coating of Al-Si and Al2O3-TiO2 on AZ31B magnesium alloy surface was prepared successfully by laser cladding. When the content of Al2O3-TiO2 was lower than 15%, the composite coating had good technological performance. The laser cladding was bonded metallurgically with the magnesium alloy substrate. Those ceramic particles were embedded by granular "particle" in the composite coating layer. Simultaneity, there were a lot of Mg-Al intermetallic and Mg2Si generated. In addition, it was found that little unmelted ceramic particles distributed in the composite coating. The average microhardness of the composite coatings was significantly improved to 225HVo.o5 compared to that of the Al-Si coating, which was 125HV0.05. The results showed that the wear resistance and corrosion resistance of the composite layer were considerably improved compared to the substrate because of the presence of Mg-Al metallic compounds, ceramic particles and grain refinement.
     Based on the above, a rapid melting method of laser heating and liquid nitrogen cooling was proposed. The hybrid microsturcture of nanocrystalline and amorphous on the surface of magnesium alloy were prepared successfully. The relevant mechanism was discussed in the aspects of solidification characterization and grain growth in thermodynamics. The maximum microhardness of the liquid nitrogen cooling layer reached to 148 HV0.05, which was about three times of that of the base material. The results of electrochemical corrosion showed that the corrosion potential of the melted layer cooled by liquid nitrogen was -1439mV. It shifted 26mV higher than the sample cooled in the air and 124mV higher than primitive magnesium alloys. Improved corrosion resistance can be achieved by expanding the solid solubility, forming amorphous phase, and prohibiting grain growth.
引文
[1]丁文江等.镁合金科学与技术[M].北京:科学出版社,2007.
    [2]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004.
    [3]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [4]Schumann S, Friedrich H. Current and future use of magnesium in the automobile industry[J]. Materials Science Froum,2003,419-422.
    [5]吕宜振,王渠东,曾小勤等.镁合金在汽车上的应用现状[J].汽车技术,1999,8: 28-31.
    [6]Mordike B L, Ebert T. Magensium Properties-application-Potential[J]. Material Seienee and Engineering A,2001,302:37-45.
    [7]左铁钏等著.21世纪的先进制造—激光技术与工程.北京:科学出版社,2007.
    [8]关振中.激光加工工艺手册[M].中国计量出版社,2007.
    [9]郑启光.激光先进制造技术[M].武汉:华中科技大学出版社,2002.
    [10]张育川.我国民用激光器产业的现状与发展[J].激光与红外,1994,24(2):5-8.
    [11]陈振华等编著.镁合金[M].北京:化学工业出版社,2004.
    [12]Newman R. Excitation of the Nd3+ fluorescence in CaWO4 by recombination radiation in GaAs[J]. Journal of Appllied Physics,1963,34:437-439.
    [13]宋威廉.用于激光加工的激光器及其特点[J].激光与红外,1997,27(6):323-325.
    [14]Kim, K S, Kim J M, Kim C J. Output prefermance of a Nd:YAG laser with mixed operation in the cw and pulsed modes[J]. Optical Engineeing,1995,34(5):1413-1416.
    [15]Friel G J, Lee J R, Chesworth A A, et al. Conference on lasers and electro-optics Europe-Technical Digest[C].2000, CWA4:172.
    [16]John M. T, David J, Stolarski, J. et al.100-Megawatt Q-switched Er-glass Laser[J]. SPIE.2006:1-8.
    [17]Dietmar K, Denis F, Ralf W, Maik F. Core-doper Ceramic Nd:YAG Laser[J]. Optics Express,2006,14(7):2690-2694.
    [18]Sabaghzadeh J, Rahimzadeh F, Mashayekhe I.468-W CW operation of a diode-pumped Nd:YAG rod laser with high beam quality and highly efficient concentrator of pump light[J]. Optics & Laser Technology,2008,40:748-755.
    [19]Saiki T, Motokoshi S, Imasaki K, et al. Two-pass amplification of CW laser by Nd/ Cr:YAG ceramic Active mirror under lamp light pumping[J]. Optics Communication, 2009,282:936-939.
    [20]李俊书,谢志浩,李华振.平凸非稳腔Nd:YAG激光器[J].激光技术,1983,1:21-23.
    [21]任建华,沈柯.氪灯泵浦腔内倍频Nd:YAG激光器的混沌观察与混沌消除[J].中国激光,1998,25(8):681-688.
    [22]王路威等.半导体激光器的发展及其应用[J].成都大学学报,2003,9:34-38.
    [23]房明星,李强,姜梦华等.四棒串接连续Nd:YAG大功率激光器[J].强激光与粒子束,2005,17(11):1644-1648.
    [24]郭丽,姚建铨,禹国俊等.百瓦级全固态绿光激光器的实验研究[J].光子学报,2004,33(9):1025-1028.
    [25]周勇,陈亚辉,宗楠等.双端端泵国产透明陶瓷Nd:YAG激光器研究[J].量子电子光报,2008,25(3):257-259.
    [26]王路威等.半导体激光器的发展及其应用[J].成都大学学报,2003(9):34-38.
    [27]习聪玲,乔学光等.光纤激光器的研究与发展前景[J].西安石油大学陕西省光电传感测井重点实验室,2006(1):52-54.
    [28]孙文.中国激光材料加工发展现状[J].激光与光电子学进展,2004,41(1):54-56.
    [29]朱培元.绿色制造—激光加工[M].现代零部件,2009,(02):62-64.
    [30]王家金.激光加工技术[M].北京:中国计量出版社,1994.
    [31]左铁钏.21世纪的先进制造—激光技术与工程[M].北京:科学出版社,2007.
    [32]陈绮丽,黄诗君,张宏超.激光技术在材料加工中的应用现状与展望[J].机床与液压,2006(8):221-223.
    [33]关振中.激光加工工艺手册[M].中国计量出版社,2007.
    [34]袁根福.激光加工技术的应用与发展现状[J].安徽建筑工业学院学报(自然科学版),2004,12(1):30-34.
    [35]陈秀深.用不等厚钢板进行车门内板的冲压成形[J].机电工程技术,2002,4:21-23.
    [36]郑启光.激光先进制造技术[M].武汉:华中科技大学出版社,2002.
    [37]左铁钏等.高强铝合金的激光加工[M].国防工业出版社,2001.
    [38]林刚,万贵根,黄安国.铝合金激光熔覆技术的研究进展[J].材料热处理技术,2010,39(10):147-149.
    [39]Will J D, Kistner M G. Fabrication of laser beam welded superplatically formed mutisheet structure using advanced titanium alloys[J]. International SAMPE Technical conference,1996,28:651-663.
    [40]Will J D, G.Kistner M, Cotton J D. Characterization of laser welded Ti-62222s/Ti-64 superplastically formed panels[J]. TMS Annual meeting, Superplasticity and Superplastic Forming 1998:321-329.
    [41]王昆林,藏东红等.钛合金的激光切割[J].稀有金属材料与工程,1994,23(1):62-65.
    [42]Almeida I A, Rossi W, et.al. Optimization of titanium cutting by factorial analysis of the pulse Nd:YAG laser parameters[J]. Journal of Materials Processing Technology,2006, 179:105-110.
    [43]Lv S J. An investigation of pulse laser cutting of titanium alloy sheet[J]. Optics and Lasers in Engineering,2006,44:1067-1077.
    [44]姚伟,巩水利.钛合金激光穿透焊的焊缝成形[J].焊接学报,2004,125(8):119-122.
    [45]Torsten F, Dos S, Kocak J F. Mechanical and microstructure characterization of laser beam welded titanium alloys[J]. Trends in Welding Research,1998:887-892.
    [46]Mazumder J, Steen W M. Microstructure and mechanical properties of laser welded titanium6Al-4V[J]. Metallurgical Transactions A,1982,13:865-871.
    [47]王华明.TiAl合金激光气体合金化[J].金属学报,1997,33(9):917-920.
    [48]李崇桂,田伟,杨勇等.TC4钛合金表面等离子喷涂Al2O3-13wt%TiO2涂层及激光重熔研究[J].材料热处理学报,2007,28(S1):228-232.
    [49]Tian Y S, Chen C Z, Wang D Y, et al. Laser surface alloying of pure titanium with TiN-B-Si-Ni mixed powders[J]. Appl.Surf.Sci.,2005,250(8):223-227.
    [50]Tian Y S, Chen C Z, Chen L X et al. Microstructures and wear properties of composite coatings produced by laser alloying of Ti-6A1-4V with graphite and silicon mixed powders[J]. Mater.Lett.,2006,60(1):109-113.
    [51]田永生,陈传忠,王德云等.激光熔覆生产碳硅钛化合物及组织性能研究[J].中国激光,2004,31(7):879-882.
    [52]郭晓琴,张为国,王金凤.铜合金表面激光改性研究[J].铸造技术,2007,28(6):859-861.
    [53]Usov S V, Minaev I V. High-power impulse YAG laser system for cutting, welding and perforating of super hard materials[J]. Journal of Materials Processing Technology,2004, 149:541-545.
    [54]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [55]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [56]Coelho R S, Kostka A. Microstructure and mechanical properties of magnesium alloy AZ31B laser beam welds[J]. Materials Science and Engineering A,2008,485:20-30.
    [57]Kazzaz H A, Medraj M, Cao X, et.al. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy:Modeling and experimental investigations [J]. Materials Chemistry and Physics,2008,109:61-76.
    [58]全亚杰,陈振华.AM60变形镁合金薄板激光焊接接头的组织与性能[J].中国有色金属学报,2008,17(4):525-529.
    [59]Quan Y J, Chen Z H. CO2 laser beam welding of dissimilar magnesium-based alloys[J]. Materials Science and Engineering A,2008,496:45-51.
    [60]Quan Y J, Chen Z H. Effects of heat input on microstructure and tensile properties of laser welded magnesium alloy AZ31[J]. Material Scharacterization,2008,59:1491-1497.
    [61]王红英.AZ31镁合金薄板的C02激光焊接接头性能[J].焊接,2006,2:47-50.
    [62]王红英,李志军.焊接工艺参数对镁合金C02激光焊焊缝表面成形的影响[J].焊接学报,2006,27(2):64-68.
    [63]单际国,雷祥.AZ31B变形镁合金C02激光焊接模式及焊缝成形特点[J].焊接学报,2008,29(4):9-12.
    [64]宋刚,刘黎明.变形镁合金AZ31 B的激光焊接工艺研究[J].应用激光,2003,23(6):327-329.
    [65]包海涛,刘金合.真空激光焊接工艺参数对AZ31镁合金熔深的影响及缺陷分析[J].应用激光,2008,28(5):366-370.
    [66]Eboo M, Steen W, Clarke J. Arc Augmented daser Welding[A]. Proc.4th Int. Conf. on'Advances in welding processes'[C]. Abington,The Welding Institute.1978:257-265.
    [67]宋刚,刘黎明.激光-TIG复合焊接镁合金AZ31B焊接工艺[J].焊接学报,2004,25(3):31-34.
    [68]Liu L M, Wang J F. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy[J]. Materials Science and Engineering A,2004,381: 129-133.
    [69]冯杰才‘,陈高东.AZ31激光-MIG复合热源焊接参数对焊缝形貌的影响[J].兵器材料科学与工程,2009,32(2):100-103.
    [70]高明,曾晓雁.MB8镁合金激光-MIG复合焊接分析[J].焊接学报,2009,30(2):71-74.
    [71]赵文轸,王汉功.国外铝合金激光表面改性研究进展[J].表面工程,1996,1:43-47.
    [72]Majumdar J D, Galun R. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy[J]. Materials Science and Engineering,2003,361(1): 119-129.
    [73]Abbas G, Liu Z., Skeldon P. Corrosion behaviour of laser-melted magnesium alloys[J]. Applied Surface Science,2005,247(1-4):347-353.
    [74]高亚丽.AZ91HP镁合金激光表面改性[D].大连理工大学,2007.
    [75]陈菊芳,张永康,李仁兴等.AM50A镁合金激光表面熔凝层的强化效果与机理[J]. 中国有色金属学报,2008,18(8):1426-1431.
    [76]陈菊芳,张永康,许仁军.AM50镁合金表面激光熔凝层的组织与耐蚀性能[J].中国激光,2008,35(2):307-310.
    [77]Mondal A K, Kumar S, Blawert C, et al. Effect of laser surface treatment on corrosion and wear resistance of ACM720 Mg alloy[J]. Surface & Coatings Technology,2008,202: 3187-3198.
    [78]Abbas G. Effect of high power diode laser surface melting on wear resistance of magnesium alloy[J]. Wear,2006,260:175-180.
    [79]Dube D, Frset M, Couture A, et al. Characterization and reformance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering A,2001,299:38-45.
    [80]徐滨士,刘世参编.表面工程技术手册[M].北京:化学工业出版社,2009.
    [81]Galun R, Weisheit A. Laser surface alloying of magnesium base alloys[J]. Journal of Laser Applications,1996, (8):299-305.
    [82]Majumdar J D. Laser composite surfacing of a magnesium alloy with SiC Carbide[J]. Composite Science and Technology,2003,63:771-778.
    [83]Majumdar J D, Chandra B R, Mordike B L, et al.Laser surface engineering of a magnesium alloy with Al+Al2O3[J]. Surface and Coatings Technoloy,2004,179: 297-305.
    [84]Murayama K, Suzuki A, Kamado S, et al. Improvement of wear resistance of magnesium by laser-alloying with Silicon[J]. Materials Transactions,2003,44(4):531-538.
    [85]Murayama K, Suzuki A, Tohru, et al. Surface modification of magnesium alloys by laser alloying using Si powder[J]. Materials Science and Forum,2003,419-422(2):969-974.
    [86]陈长军,张敏等.在ZM5上预置A1-Y粉末激光合金化的研究[J].热加工工艺,2007,36(23):33-37.
    [87]Chen C J, Wang M C, Wang D S, et al. Laser cladding of Al+Ir powders on ZM5 magnesium base alloy[J]. Rare Metals,2007,26(5):420-425.
    [88]徐滨士,刘世参编.表面工程技术手册[M].北京:化学工业出版社,2009.7.
    [89]Bakkar A, Galun R, Neubert V. Microstructural characterizationand corrosion behaviour of laser cladded Al-12Si alloy onto magnesium AS41/carbon fiber composite[J]. Materials Science and Technology,2006,22(3):353-362.
    [90]Maiwald T, Galun R. Microstructure and corrosion properties of laser clads of magnesium base alloys for laser generated cylinder liners[J]. Lasers in Engineering, 2002,12(4):227-238.
    [91]Ignat S, Sallamand P, Grevey D, et al. Magnesium alloys (WE43 and ZE41) characterization for laser applications[J]. Applied Sureface Science,2004,233:382-391.
    [92]杨晓飞,林文光等.AZ91D镁合金表面激光熔覆Al+Al2O3涂层研究[J].兵器材料科学与工程,2007,4(30):20-23.
    [93]黄开金,林鑫等.AZ91D镁合金表面激光熔覆Zr-Cu-Ni-Al/TiC复合粉末的组织与磨损[J].中国激光,2007,4(34):549-553.
    [94]Yao J, Sun G. P, Wang H Y, et al. Laser(Nd:YAG) cladding of AZ91D magnesium alloys with Al+Si+Al2O3[J]. Journal of Alloys and Compounds,2006,407:201-207.
    [95]Xu Y, Li S. Corrosion Resistance of AZ91D Magnesium Alloy modified by rare earths-laser surface treatment[J]. Journal of Rare Earths,2007, (25):201-203.
    [96]张建华,田宗军,赵剑峰等.A1203纳米复合陶瓷涂层激光熔敷试验研究[J].激光杂志,2004,25(3):67-69.
    [97]花国然,黄因慧,赵剑峰.激光熔覆纳米A1203等离子喷涂陶瓷涂层[J].中国有色金属学报,2004,14(2):199-203.
    [98]Chen C J, Zhang M, Chang Q M, et al.Laser cladding of ZM5 magnesium base alloy with Al+Nano-SiC powder [J]. Lasers in Engineering,2008,18:85-94
    [99]刘红宾,王存山等.镁合金表面激光熔覆Cu-Zr-Al非晶复合涂层[J].中国激光,2006,5(33):709-713.
    [100]陈长军,张敏,常庆明等.镁合金表面激光熔覆纳米三氧化二铝[J].中国激光,2008,35(11):1752-1755.
    [101]左铁钏等著.21世纪的先进制造——激光技术与工程.北京:科学出版社,2007.
    [1]Geusic J E, Nassau L. Proc.1961, IRE49,1704.
    [2]Harper L L, Thornton J R. Increased energy storage Nd Laser material:Soldium lanthanum molybdate. Tech. Report AFAL-TR-72-38, Air Force Avionics Lab., WPAFB, 1973.
    [3]胡静,刘瑞廷,曹野根. Nd:YAG晶体光学质量的研究[J].人工晶体学报,1997,26:3-4
    [4]W.克希耐尔编著.固体激光工程[M].北京:科学出版社,2002.
    [5]Tso Y F, Robert L B. Modeling and CW Operation of Quasi-three-Level 946nm Nd:YAG laser[J]. IEEE Journal of quantum electronics,1987,23(5):605-612.
    [6]马养武,陈玉清编著.激光器件[M].杭州:浙江大学出版社,2002.
    [7]Zhao C M. Investigation on the experimental measurement of laser beam quality[J]. Laser technolgy,2000,24(6):341-344.
    [8]Zhao X. The importance of the beam expander in laser processing system[J]. Laser technolgy,1999,6(23):378-380.
    [9]Yuan L, Pan B Z, Hao P M et al. Study of the laser beam-expander optcial system with large aperture and non-curvature of field[J]. Laser & nfrared,2007,37 (7):672-675.
    [10]熊雪霜.激光束参数和光束质量测量系统[D].吉林大学,2006.
    [11]Hu M Y. Design of Beam Expander with aspheric surface[J]. Chinese journal of quantum electronics,2002,5(19):418-424.
    [12]Hao P M, Kong X L. Research of Beam Expander with a Two-mirror System[J]. Chinese journal of quantum electronics,2001,18(2):179-183.
    [13]董志航,廖志忠.理论应力集中系数的有限元求法[J].航空兵器,2005(3):15-18.
    [1]唐元冀.激光切割在工业上应用的现状[J].激光与光电子学进展,2002,39(1):53-56.
    [2]邓鸿林.我国大功率C02激光数控切割机技术、市场及产业[J].激光与光电子学进展,2007,44(7):66-70.
    [3]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报,2001,32(6):599-603.
    [4]Mordike B L, Ebert T. Magnesium properties-application-potential[J]. Materials Science and Engineering,2001 (A302):37-45.
    [5]GB-Z18462-2001激光加工机械金属切割的性能规范与标准检查程序.中华人民共和国国家质量监督检验检疫总局.
    [6]Arata Y, Maruo H, Miyamoto I. Dynamic behavior in laser gas cutting of mild steel[J]. Trans JWR I,1979,8(2):15-26.
    [7]Pietro P D, Yao Y L. An investigation into characterization and optimizing laser cutting qulity[J]. Int J Mach ToolsManufact,1994,34(2):225-243.
    [8]鄢锉,李力钧等.激光切割板材切口波纹和挂渣研究综述.现代制造工程[J].2004(10):100-102.
    [9]Poprawe R. Modeling, monitoring and control in high quality laser cutting[J]. Annals of the CIRP,2001,50(1):137-140.
    [10]Arif A F M, Yilas B.S. Laser cutting of sheet metals:Residual stress analysis[J]. Optics & Laser Technology,2009,41:224-32.
    [1]冯吉才,王亚荣,张忠典等.镁合金焊接技术的研究现状及应用[J].中国有色金属学报,2005,15(2):165-178.
    [2]Munitz A, Cotler C, Stem A, et al. Mechanical propertiesand microst ructure of gas tungsten arc welded magnesium AZ91D plates. Mater Sci Eng A,2001,302(1):68-72
    [3]Asahina T., Katoh K. and Tokisue H, et al. Fatigue strength of friction welded joints of AZ31 magnesium alloy[J]. Light Metal,1994,44(3):147-151.
    [4]Liu L M, Song G, Liang G L, et.al. Pore formation during hybrid laser-tungsten inert gas arc welding of magnesium alloy AZ31B--mechanism and remedy[J]. Materials Science and Engineering A,2005,390:76-80.
    [5]潘际銮.镁合金结构及焊接[J].电焊机,2005,35(9):1-7.
    [6]谭兵,王有祁,陈东高,王英.AZ31B镁合金电子束焊接接头组织及性能分析[J].焊接学报,2008,29(9):75-78
    [7]宋刚,刘黎明,王继锋,等.变形镁合金AZ31B的激光焊接工艺研究[J].应用激光,2003,23(6):237-240
    [8]刘黎明,王继锋,宋刚等.激光电弧复合焊接AZ31B镁合金[J].中国激光,2004,31(12):1523-1526.
    [9]张华,林三宝,吴林等.镁合金AZ31搅拌摩擦焊接头的微观组织[J].中国有色金属学报,2003,13(6):1510-1513.
    [10]刘楚明,朱秀荣,周海涛.镁合金相图集[M].中南大学出版社,2006.
    [11]方洪渊.焊接结构学[M].机械工业出版社,2008.
    [12]单际国,张婧,郑世卿等.镁合金激光焊接气孔问题的实验研究[C].轻金属焊接关键基础研究论文集,2008.
    [13]涂铭旌.镁合金的应用共性基础问题[C].国际材料科学与工程学术研讨会论文集,2005:6-8.
    [1]Boettinger W J, Coriell S R, Greer A L et al. Solidification microstructures:recent developments, future Directions[J]. Acta Mater,2000,48(1):43-70.
    [2]Wang R M, Eliezer A, Gutman E. Microstructures and Dislocations in the Stressed AZ91D Magnesium Alloys[J]. Mater Sci and Eng A,2002,344(1-2):279-287.
    [3]Trivedi R, Magnin P, Kurz W. Theory of eutectic growth under rapid solidification conditions[J]. Acta Metall,1987,35(4):971-980.
    [4]Majumdar J D, Galun R, Mordike B L, et al. Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy. Materials Science and Engineering, 2003,361(1-2):119-129.
    [5]Gao B, Hao S Z, Zou J X, et al. Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy. Surface and Coatings Technology,2007,201(14):6297-6303.
    [6]Dube D, Fiset M, Couture A, et al. Characterization and performance of laser melted AZ91D and AM60B[J]. Materials Science and Engineering A,2001,299(1-2):38-45.
    [7]候利锋.镁合金变形非平衡组织演变机制及稳定性研究[D]太原:太原理工大学,2008.
    [8]谭淳礼.金属材料高能喷丸表面纳米化研究[D].大连:大连铁道学院,2002.
    [9]左演生,陈文哲,梁伟.材料现代分析方法.北京:北京工业大学出版社,2000.
    [10]Miller W S, Humphreys F J. Strengthening mechanisms in particulate metal matrix composites[C]. Scripta Metallurgica et Materialia,1991,25:33-38.
    [11]Nussbam G, Sainfort P, Reggazoni G, et al. Science and engineering of light metals[C]. Proc.Int. Conf. Raselm Jilm, Tokyo,1991,114-129.
    [12]陈振华.镁合金[M].北京:北京化学工业出版社,2004:203-204.
    [13]Li H Q, Xing D M, et al. Relationship between yield stress and microcosmic structure of nanostructured material [J]. Journal of Tianjin university,2000,33(5):671-674.
    [14]Jones H. Rapid solidation of metals and alloys[C]. The Insititute of metallurgists Monograph. London,1982.
    [15]姚军.AZ91D镁合金激光熔覆与重熔层组织特征及其性能研究[D].吉林大学,2007.
    [16]Ballerini G, Bardi U, Bignucolo R, et al. About some corrosion mechanisms of AZ91D magnesium alloy[J]. Corrosion Science,2005,47(9):2173-2184.
    [17]Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J]. Corrosion Science,2008,50(3):823-834
    [18]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.
    [19]高亚丽.AZ91 HP镁合金激光表面改性研究[D].大连:大连理工大学,2006.
    [20]Guang L, Amanda L. Bowles, David H. John. Corrosion resistance of aged die cast magnesium alloy AZ91D[J]. Materials Science and Engineering A,2004,366(1):74-86.
    [1]阎毓禾,钟敏霖.高功率激光加工及应用[M].天津:天津科学技术出版社,1994.
    [2]Volovitch P, Masse J E, Fabre A, et al. Microstructure and corrosion resistance of magnesium alloy ZE41 with laser surface cladding by Al-Si powder[J]. Surface & Coatings Technology,2008,202:4901-4914.
    [3]Yang Y, Wu H. Improving the wear resistance of AZ91D magnesium alloys by laser cladding with Al-Si powders[J]. Materials Letters,2009, (63):19-21.
    [4]高亚丽.AZ91HP镁合金激光表面改性研究[D].大连:大连理工大学,2006.
    [5]刘楚明,朱秀荣,周海涛.镁合金相图集[M].中南大学出版社,2006.
    [6]Yuan G Y, Liu Z L, Wang Q D, Ding W J. Microsructure refinement of Mg-Al-Zn-Si alloys. Materials letters,2002,56:53-58.
    [7]Gao Yali, Wang Cunshan, Yao Man, et al. Broad-beam laser cladding of Al-Si alloy coating on AZ91HP magnesium alloy[J]. Surface & Coatings Technology,2006,201:2701-2706
    [8]徐滨士.表面工程技术,国防工业出版社,2002.
    [9]姚军.AZ91D镁合金激光熔覆与重熔层组织特征及其性能研究[D].吉林:吉林大学,2007.
    [1]邱庆忠.深冷处理技术在金属材料中的应用.材料研究与应用,2007,1(2):150-153
    [2]Rhodes R A. Deep cryogenic treatment:What's in store for the future[J]. Heat treating progress.2006,6(1):49-52
    [3]Baldissera P. Deep cryogenic treatment of AISI 302 stainless steel:Part Ⅰ-hardness and tensile properties[J]. Materials & Design,2010,31(10):4725-4730.
    [4]Liu H H, Wang J, Shen B L, et al. Effects of deep cryogenic treatment on property of 3Cr13Mo1V1.5 high chromium cast iron[J]. Materials & Design,2007,28(3):1059-1064.
    [5]Oppenkowski A, Weber S, heisen W. Evaluation of factors influencing deep cryogenic treatment that affect the properties of tool steels[J]. Journal of materials processing technology,2010,210(14):1949-1955
    [6]Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels[J]. Journal of materials processing technology,2001, 118(1-3):350-355
    [7]陈鼎;黎文献.铝和铝合金的深冷处理[J].中国有色金属学报,2000,10(6):891-896.
    [8]陈鼎,夏树人,姜勇.镁合金的深冷处理[J].湖南大学学报(自然科学版),2008,35(1):62-65
    [9]Kaveh M A, Alireza T, Farzad K. Effect of deep cryogenic treatment on microstructure, creep and wear behaviors of AZ91 magnesium alloy[J]. Materials Science and Engineering A,2009,523(1-2):27-31
    [10]候利锋.镁合金变形非平衡组织演变机制及稳定性研究[D].太原:太原理工大学,2008.
    [11]胡赓祥,蔡殉,戎咏华编著.材料科学基础[M].上海交通大学出版社,2000.11.
    [12]肖冬飞,谭敦强,欧阳高勋等.镁合金快速凝固技术的研究现状及进展[J].铸造,2007,56(9):909-914.
    [13]郑启光,辜建辉.激光与物质相互作用[M].华中理工大学出版社,1996.12.
    [14]徐滨士,刘世参编.表面工程技术手册[M].北京:化学工业出版社,2009.7.
    [15]丁文江.镁合金科学与技术[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700