不同类型甘薯生理特性与淀粉代谢及产量调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘薯以其广适性与多样化的用途,在我国的粮食安全与食品工业发展中发挥了重要作用。本文据前期的实验,在48份育种资源材料中选择出6个不同类型甘薯品种,立足于重庆区域生态条件,重点就不同品种及类型甘薯块根形成与膨大期间的光合特性、内源激素、氮钾分配、淀粉代谢谢等生理性状以及高效栽培的理化调控模式等作了深入研究,系统比较了块根各生长发育阶段不同品种间以及不同类型间的差异与动态变化,并结合进一步的相关分析,明确了甘薯各性状指标间的相关性,为不同类型甘薯品种定向高效选育和高产栽培提供了理论基础和依据,具有一定的指导与应用价值。主要研究结果如下:
     1.不同类型甘薯光合特性比较
     比较6个甘薯品种的光合色素表明,绵粉1号叶绿素相对含量较高,而其他品种的叶绿素含量无显著差异,叶绿素与甘薯淀粉或干物质相关不显著。光合一光强回归曲线表明,各品种净光合速率随光合有效辐射的增强呈抛物线变化,高淀粉类型品种光补偿点的理论值相对低于低淀粉类型品种,净光合速率的最大值与光饱和点的理论最大值均以渝薯2号最高、豫薯10号最低。在甘薯块根膨大盛期,不同品种的净光合速率、蒸腾速率、气孔导度、水分利用率等日变化趋势各不相同,但胞间CO2浓度与气孔限制值的变化趋势基本一致。甘薯一天内光合速率的下降受到气孔限制和非气孔限制因素的双重影响。从不同类型品种间的光合变化来看,环境温度对低淀粉类型的光合速率和蒸腾速率的影响较大,高淀粉类型品种的光合特性受不同气温的影响较小,表现更为稳定。对所有品种的相关分析表明,蒸腾速率与生物产量之间为显著负相关,气孔导度与净光合速率呈显著正相关、与蒸腾速率呈极显著正相关;就高淀粉类型品种而言,净光合速率与蒸腾速率及胞间CO2浓度均表现为显著正相关;就低淀粉类型品种来说,净光合速率与鲜薯产量呈显著正相关,蒸腾速率与淀粉产量呈显著负相关关系。
     2.不同类型甘薯块根膨大期N、K分配差异
     从不同品种藤蔓与块根干物质的氮、钾含量变化看,甘薯藤蔓的含氮量自块根形成后逐渐下降,其干物质含氮量仅为2%左右,而块根含氮量在整个块根膨大期间变化较小,且前后期含量基本一致。藤蔓和块根含钾量在块根膨大期间也相对稳定。从氮、钾在藤蔓与块根干物质中的分配比例看,藤蔓含氮量极显著高于块根含氮量;藤蔓与块根中的含钾量则刚好相反。对不同类型甘薯的研究表明,高淀粉类型品种块根干物质含氮量在0.68%~0.86%之间,藤蔓含氮量在1.98%~3.32%之间,低淀粉类型品种块根与藤蔓含氮量分别在0.69%~0.86%和2.00%~3.17%之间,但无论是藤蔓还是块根,氮素含量在不同类型品种间无显著差异:高淀粉类型品种的块根含钾量为5.83%~6.66%,藤蔓含钾量为3.19%~3.70%,而低淀粉品种的块根与藤蔓含钾量分别为6.12%~6.36%与3.48%~3.90%。此外高淀粉类型品种块根含钾量变率大于低淀粉类型,藤蔓含钾量则以低淀粉类型品种相对较高。相关分析结果表明,对所有品种来说,块根的含钾量与其含氮量之间呈显著正相关,藤蔓的含钾量与根冠含钾量之比也达到了显著负相关;就高淀粉类品种而言,藤蔓含氮量与干率之间、根冠含钾量之比与商品薯率之间均为极显著正相关,块根含钾量与生物产量呈显著负相关;低淀粉含量类型品种的藤蔓含氮量与生物产量呈显著正相关关系,藤蔓含钾量与生物产量、与淀粉产量分别呈极显著正相关和显著负相关关系。
     3.不同类型甘薯淀粉代谢差异
     ADPG-焦磷酸化酶在淀粉合成与积累过程中至关重要,其活性在甘薯块根膨大期间随外界环境温度的下降呈下降趋势,且在不同类型品种间活性大小显著差异,但该酶对甘薯淀粉含量并不起决定作用。在此期间,蔗糖合成酶(SS)和磷酸蔗糖合成酶(SPS)活性均以高淀粉类型品种的相对较高。就糖类物质变化来看,所有品种块根膨_大的初期和后期还原糖含量较高而中期相对较低,可溶性糖含量在整个块根膨大期间波动较小;同时低淀粉含量类型品种的还原糖与可溶性糖含量均较高,而高淀粉含量类型品种的淀粉积累量较高。此外,不同品种的淀粉粒大小的比例存在差异,但粒形多为圆球形,且几乎全是单粒淀粉。相关分析表明,块根的还原糖含量与鲜薯产量、与干物质含量分别为极显著的正相关和负相关关系,与生物产量呈显著的正相关;可溶性糖含量与鲜薯产量之间为极显著正相关,与干物质含量以及淀粉产量均表现为显著负相关。高淀粉类型品种的SPS与商品薯率呈显著正相关,可溶性糖含量与淀粉产量及SS/SPS均为显著正相关;低淀粉类型品种的SPS活性与淀粉产量之间、可溶性糖含量与鲜薯产量之间均为显著正相关,SS/SPS与生物产量也为显著正相关,但与淀粉产量呈极显著负相关。
     4.不同类型甘薯内源激素动态比较
     研究结果表明,在块根形成初期,各品种叶片中(ZR)、生长素(IAA)和脱落酸(ABA)的含量均呈上升趋势,到后期又呈现出不同程度的下降,在移栽后110天时的ABA含量以绵粉1号、渝薯2号与S1-5较高;而ZR、IAA、赤霉素(GA3)以及三者之和与ABA含量的比值在块根膨大中期较低,但在膨大后期南薯88、北京2号以及豫薯10号的相应比值又显著上升。不同类型品种的激素含量变化表明,移栽后80天之前,以高淀粉含量类型品种的ZR与IAA含量较高,之后则以低淀粉类型品种的较高;GA3含量在两类品种间差异较小,但在块根膨大末期低淀粉类型品种的GA3含量相对较高。此外,各种激素比值在两类品种块根膨大期间的变化趋势基本一致,且在95天左右的生育阶段内,以高淀粉类型高于低淀粉类型,随着膨大期的进一步延长,比值大小在两类品种间变化趋势相反。对所有品种进行相关分析表明,仅有甘薯商品薯率与ZR为极显著的负相关,而其他激素与产量性状的相关不显著;就不同类型品种而言,高淀粉类型甘薯ABA与鲜薯产量呈极显著负相关,而IAA/ABA与商品薯率呈显著负相关;低淀粉类型品种的GA3与淀粉产量呈显著正相关。可见,ZR含量升高不利于大薯的形成,ABA对于高淀粉类品种的鲜薯产量不利,GA3则有利于低淀粉类甘薯淀粉产量的提高。
     5.不同类型甘薯高产栽培理化调控模式
     采用正交回归试验设计,分别对渝薯2号、南薯88和豫薯10号三个不同类型品种进行以氮肥、钾肥和去分枝三因素的栽培模式调控。研究表明,渝薯2号关于经济产量和淀粉产量的回归方程达到显著水平,但该品种的生物产量及商品薯率的理论方程的总回归均不显著,而对于中低淀粉类型品种南薯88和豫薯10号,所有产量指标的回归方程均不显著。可见在设定产量性状的调控模式下,不同类型品种对三因素的敏感度是有差别的。通过各调节因子的调控效应研究发现,去分枝因素对各品种都有不利影响,降低产量。低氮施用量有利于提高高淀粉类型品种渝薯2号的经济产量和淀粉产量;对于兼用型品种南薯88,施氮有助于提高生物产量,同时施高氮、高钾肥且不去分枝可获得的经济产量也较高,钾肥还可提高其商品薯率,此外去分枝对其淀粉产量形成不利;而饲用型品种豫薯10号对钾素的需求尤为明显,钾肥对各产量性状都有显著的影响,同时钾肥与去分枝还存在明显的互作效应。可见在甘薯生产中“打藤”或“刈蔓”的做法是不可取的,而应根据不同品种,采用因品种制宜、因生产目的制宜的理化调控措施,才能实现科学种薯,高产高效。
Because of its strong adaptability and versatile purposes, nowadays sweet potato has been playing great roles in food security and processing industry in China. Based on the previous experiment that six different types of cultivars in sweet potato had been choosed from 48 varieties or lines of breeding germplasm, and established in the ecological condition of Chongqing, this thesis mainly researched physiological traits such as photosynthetic characteristics, endogenous hormones, distribution of nitrogen and potassium, starch metabolism, and highly efficient planting mode controlled by physical and chemical measures, systematically contrast the difference and dynamic changes of different sweet potato varieties and types during tuberous root thickening. Through correlation analysis, the relationship among every trait of sweet potato was been obtained, which would provide theoretical foundation and base for high-efficiency breeding and high-yield cultivation of different types of sweet potato. The main experimental results were as follows.
     1. Contrast on photosynthetic characteristics of different types of sweet potato
     The research that contrasted photosynthetic pigment from six varieties of sweet potato suggested that the relative content of chlorophyll in Mianfen-1 leaves was higher. There was no significant difference between others, and no remarkable relationship between chlorophyll content and content of starch or dry matter. The regression curves, concerned with photosynthesis and photo intensity, indicated that Pn of every variety had changed parabolically with PAR increasing. The theoretical LCP of high-starch type of sweet potato was lower than that of low-starch type. Both the maximum of Pn and theoretical LSP from Yushu-2 were higher, while both of them from Yushu-10 were lower. During thickening, the changing trends of Pn, Tr, Gs, WUE every cultivar were different absolutely. However the changing curves about Ci and Ls were same basically. The photosynthetic rate was influenced by both stomatal limitation and non-stoma limitation. For different types, Pn and Tr of low-starch type were more apt to be affected by environmental temperature, and Pn of high-starch type was more stable. For all cultivars, the correlativity analysis suggested that the related coefficient between Tr and biomass was remarkably negative, there were significantly positive correlativity between Gs and Pn, and large significantly positive correlativity between Gs and Tr. For high-starch type, there was markedly positive correlation between Pn and Tr, Pn and Ci. For low-starch type, there were markedly positive correlation between Pn and tuberous roots yield, negative correlation between Tr and starch yield.
     2. Nitrogen and potassium distribution of different types of sweet potato during thickening
     In dry matter of vines or tuberous roots, the nitrogen content that decreased gradually after tuberous root formation accounted for 2% in vines, and it in tuberous root changed a little during thickening. The potassium content both in vines and in tuberous root was relatively stable. For distribution of N and K, N content in vines was far more than it in tuberous root, while K content was on the contrary. For high-starch type, N content of tuberous root ranged from 0.68% to 0.86%, and that of vine did from 1.98% to 3.32%; for low-starch type, N content of tuberous root and vine ranged from 0.69% to 0.86% and from 2.00% to 3.17% respectively. Correspondingly. for the part of high-starch type, K ranged from 5.83% to 6.66% and from 3.19% to 3.70%; for low-starch type, K ranged from 6.12% to 6.36% and from 3.48% to 3.90%. In addition for high-starch type, the changing range of K content was larger than that for low-starch. While K content of vine was relatively higher for low-type. Correlative analysis for all varieties suggested that K was related with N positively in root. And K in vine was closely related with the K content ratio of root to top negatively. For high-starch type, there were remarkably significant relationship between K content in vine and percentage of dry matter, and between K. content ratio of root to top and commercial percentage; and there was remarkably negative correlation between K content of root and biomass. For low-starch type, there were markedly positive correlation between N content in vine and biomass, large markedly positive correlation between K content in vine and biomass, and notably negative correlation between K content in vine and starch yield.
     3. The starch metabolic difference of different types of sweet potato
     AGPP was essential for starch synthesis and accumulation. Its activity descended with environmental temperature declining and took on a marked difference between two types of sweet potato during thickening. Moreover it could not be the decisive factor of starch content in sweet potato. In this period, both SS and SPS activities were higher in high-starch type. For reducing sugar of all cultivars, its content was relatively high at initial thickening phase and at late stage, and it was relatively low at middle stage. However soluble sugar content fluctuated little during all the time. Except that, the content of two kinds of sugars was higher in low-starch type while the starch accumulation was higher in high-starch type. At the same time the percentage of different sizes of starch granules was not same for all cultivars, majority of granules appeared pellet-shape, and they almost were single-granule starch. The correlation analysis showed that the reducing sugar in root was very significantly and positively correlated with tuberous root yield, very significantly and negatively with dry matter content, significantly and positively with biomass. Moreover soluble sugar and tuberous root yield took a very significantly positive relationship, while the relationship was significant negative both between soluble sugar and dry matter content and between soluble sugar and starch yield. For high-starch type, there were all the significant positive relationship between SPS activity and commercial percentage, between soluble sugar and starch yield, and between soluble sugar and SS/SPS. For low-starch type, SPS activity was markedly and positively correlated with starch yield, and soluble did same with tuberous root yield. Also SS/SPS did same with biomass, but it did very significant and negative with starch yield.
     4. Dynamic comparison of endogenous hormones in different types of sweet potato
     The results showed that at initial thickening phase, the content of ZR,IAA and ABA in leaves increased, and it began to decline differently at last phase. At the time of 110 days after transplantation, the content of the three hormones was relatively high for Mianfen-1, Yushu-2 and S1-5. Otherwise the ZR, IAA, GA3 and the ratio of the sum of them to ABA were lower at the middle phase of thickening, and the corresponding ratio of Nanshu-88, Beijing-2 and Yushu-10 went up remarkably. For different type, the ZR and IAA high-starch type were higher before 80 DAP, after that it became opposite. And the GA3 changed not obviously different in two types during thickening, however it in high-starch sweet potato was higher than low-starch before 95 DAP, with tuberous root thickening proceeding, the changing tendency of GA3 content became contrary for the two types. For all varieties, only the very significant and negative relationship existed between commercial percentage and ZR content, and no notable relationship between other yield traits and hormones. As far as high-starch type was concerned, its ABA was very significantly and negatively related with tuberous root yield. And IAA/ABA did remarkably negative with commercial percentage. On the contrary obviously positive correlation occurred between GA3 and starch yield for the low-starch type. In general, that the ZR content became going up was not beneficial to big tuberous root formation, the ABA was disadvantageous to tuberous root yield of high-starch cultivar, and GA3 could make for increasing starch yield of low-starch variety.
     5. Physical and chemical controlling mode for high-yielding cultivation in different types of sweet potato
     The experiment, with orthogonal regression design, research the planting mode for three different types of cultivars (Yushu-2, Nanshu-88 and Yushu-10), whose growth and development were controlled by N fertilizer, K fertilizer and cutting branches. The results indicated that the equation about economic yield and starch yield of Yushu-2 was of significant regression, but the equation about biomass and commercial percentage was not significant for the total regression. For the low-starch type, such as Nanshu-88 and Yushu-10, their regression equations were not remarkable about all yield characteristics. Therefore under the circumstances of experimental controlling, different types of cultivars had discriminatory sensitivity to three factors. Through researching on the controlling effect of the factors, the measure, that cutting branches were not helpful to the three cultivars, would influence yield negatively. For dual-purpose cultivar Nanshu-88, fertilizing a small quantity of N fertilizer could help to improve biomass, and the economic yield could be obtained through fertilizing generous N and K fertilizer and cutting no branches. In addition, K fertilizer was beneficial to its commercial percentage while cutting branches could result in the starch yield declining. For the feeding cultivar, it was obvious that Yushu-10 especially demanded K fertilizer, which affected every yield trait significantly. At the same time the interactive effect was evident in fertilizing K and cutting branches. Therefore it was not advisable to cut or mow vines of sweet potato in reality. And also in terms of different cultivar, scientific planting sweet potato, high yield and good benefit could be achieved through physical and chemical controlling that based on adjusting measures to local conditions and varieties.
引文
敖和军,邹应斌,申建波,等.早稻施氮对连作晚稻产量和氮肥利用率及土壤有效氮含量的影响[J].植物营养与肥料学报,2007,13(5):772-780
    白灯莎.买买提艾力,张士荣,彭华,等.打顶后涂抹生长素对长绒棉生长和蕾铃脱落的影响[J].核农学报,2007,21(2):177-180
    包劲松.植物淀粉生物合成研究进展[J].生物科学,1999,11(增):104-107
    鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2005:100-103
    蔡一霞,王维,张祖建,等.结实期水分亏缺对反义Wx基因转化系水稻籽粒淀粉合成关键酶活性及淀粉累积的影响[J].作物学报,2006,32(3):330-338
    蔡艺艺,陈国防,盛锦寿,等.氮磷钾肥对甘薯养分积累的影响[J].农技服务,2007,24(11):21-23
    曹国军,刘宁,李刚,等.超高产春玉米氮磷钾的吸收与分配[J].水土保持学报,2008,22(2):198-201
    柴一秋,陈利锋,王金生.甘薯根腐病菌侵染对甘薯内源激素水平的影响[J].植物生理与分子生物学学报,2007,33(4):318-324
    陈晓燕.紫甘薯无公害高产栽培技术[J].现代农业科技,2010,16:86,88
    陈选阳,袁照年,张招娟.基因工程改良甘薯的研究与展望[J].中国农学通报,2006,22(1):21-25
    陈宇晖.钾与作物品质[J].荆州师专学报(自然科学版),1998,21(5):87-91
    成善汉,柳俊,谢从华.马铃薯腺苷二磷酸葡萄糖焦磷酸化酶研究进展[J].中国马铃薯,2001,15(6):349-354
    程方民,蒋德安,吴平,等.早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J].作物学报,2001,27(2):201-206
    程方民,钟连进,孙宗修.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响[J].中国农业科学2003,36(5):492-50
    程龙军,郭得平,葛红娟.甘薯块根特异蛋白-Sporamin的研究进展[J].植物学通报,2001,18(6):672-677
    崔瑾,徐志刚,李式军,等.环境调控对甘薯组培苗光合自养和叶片超微结构的影响[J].中国农业科学,2004,37(6):821-824
    寸湘琴,吴华英,赵庆云,等.云南高原甘薯地方品种光合特性分析[J].中国农学通报,2005,21(7):220-222
    单玉华,王海候,龙银成,等.不同库容量类型水稻在氮素吸收利用上的差异[J].扬州大学学报(农业与生命科学版),2004,25(1):41-45
    邓日烈,温玉辉.钾肥对甘薯产量影响的初探[J].佛山科学技术学院学报(自然科学版),2002,20(3):74-77
    邓世媛,朱燕燕,陈建军,等.钾肥对不同基因型甘薯淀粉积累的调控效应[C].中国作物学会学术年会论文摘要集,2009:49
    丁原书.生物钾肥在甘薯上应用的研究[J].安徽农业科学,2005,33(3):414
    樊黎生.甘薯淀粉基本特性的研究[J].粮食与饲料工业,2001,2:49-51
    范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦籽粒蛋白质和淀粉积聚关键调控酶活性的影响[J].中国农业科学,2005,38(6):1132-1141
    高辉远,陈敬锋,邹琦,等.大豆光合午休原因的分析[J].作物学报,1994,20(3):357-362
    高辉远,邹琦,程炳嵩.甘薯光合活力、羧化效率日变化与光合午休的关系[J].作物学报,1997,23(1):62-65
    高家合,杨宇虹.施肥与打顶对不同生态点烤烟化学成分的影响[J].中国农学通报.2006,22(4):171-174
    高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006,144-148
    高松洁,郭天财,吴雪峰,等.小麦淀粉合成关键酶与淀粉主要理化特性研究进展.河南农业大学学报,2002,36(4):313-318
    高松洁,郭天财,王文静,等.两种穗型冬小麦淀粉积累动态及其有关酶活性变化[J].西北植物学报,2004,24(4):632-637
    高小丽,孙健敏,高金锋,等.不同基因型绿豆叶片光合性能研究[J].作物学报,2007,33(7):1154-1161
    龚一富,高峰.甘薯离体器官发生过程中内源激素含量的变化[J].华南师范大学学报(自然科学版),2008,1:103-107
    郭天财,高松洁,王晨阳,等.土壤质地对不同面筋含量冬小麦品种籽粒淀粉合成关键酶活性的影响[J].中国农业科学,2005,38(1):191-196
    郭天财,王之杰,胡廷积,等.不同穗型小麦品种群体光合特性及产量性状的研究.作物学报,2001,25(5):633-639
    郭智慧,董树亭,王空军,等.刈割对不同类型玉米再生分蘖及产量和品质的影响[J].玉米科学,2008,]6(3):104-108
    韩晓日,姜琳琳,王帅,等.不同施肥处理对春玉米穗位叶光合指标的影响[J].沈阳农业大学学报,2009,40(4):444-448
    何海军,王晓娟.复合群体中玉米光合特性日变化研究[J].玉米科学,2006,14(1):104-106
    何振贤,刘子卓,陈建敏,等.豫西褐土区甘薯氮磷钾配比试验研究[J].河南农业科学,2007,2:66-68
    黄冰艳,刘文轩,刘新涛,等.激素及光照对甘薯茎尖分生组织培养的影响[J].华北农学报,1999,14(2):1-5
    黄梅卿,蔡开地,姚宝全.不同氮磷钾施用水平对甘薯经济指标的影响[J].江西农业大学学报,2004,26(2):254-258
    黄熊娟.钾氮肥施用量影响微胚乳超高油玉米产量及含油率机理的研究[D].广西大学硕士论文,2006
    籍瑞芬,李廷轩.钾素营养与作物产品品质[C].中国地壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会文集,2004,7:305
    简泉庆.秋甘薯氮钾肥施用效果试验[J].福建农业科技,2005,4:38-39
    见闻.红薯是否翻藤要看长势[J].北京农业,2010,16:38-39
    姜东,于振文,李永庚,等.施氮水平对鲁麦22籽粒淀粉合成的影响[J].作物学报,2003,29(3):462-467
    姜东,曹卫星,戴廷波,等.冬小麦籽粒淀粉合成相关酶活性的日变化[J].植物学报,2004,46(1):51-57
    姜东,于振文,李永庚,等.高产小麦强势和弱势籽粒淀粉合成相关酶活性的变化[J].中国农业科学,2002,35(4):378-383
    姜宗庆,封超年,黄联联,等.施磷量对弱筋小麦扬麦9号籽粒淀粉合成和积累特性的调控效应[J].麦类作物学报,2006,26(6):81-85
    金正勋,杨静,钱春荣,等.灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响[J].中国水稻科学,2005,19(4):377-38
    康国章,王永华,郭天财,等.植物淀粉合成的调控酶[J].遗传,2006,28(1):110-116
    柯玉琴,潘廷国.NaCl胁迫对甘薯叶片水分代代谢,光合速率、ABA含量的影响[J].植物营养与肥料学报,2001,7(3):337-343
    李春燕,封超年,张容,等.作物籽粒淀粉结构的形成与相关酶关系研究进展[J].生命科学,2005,10(5):449-455
    李建梅,邓西平.干旱和复水条件下转基因甘薯的光合特性[J].水土保持学报,2007,21(4):193-196
    李静援,焦自高,于贤昌,等.不同节位打顶对日光温室厚皮甜瓜生理特性及产量和品质的影[J]响.山东农业科学,2007,3:50-52
    李可,其其格,李刚,等.不同施钾水平春玉米对钾的吸收、积累与分配[J].安徽农业科学,2010,38(18):9455-9456,9495
    李良俊,张晓冬,潘恩超,等.莲藕膨大过程中淀粉合成相关酶的活性变化及其与淀粉积累的关系[J].中国农业科学,2006,39(11):2307-2312
    李强,马代夫,李洪民,等.缩节胺(pix)对甘薯生理特性和产量影响的研究[J].耕作与栽培,2001,2:31,36
    李天,大杉立,山岸徹,等.灌浆结实期弱光对水稻籽粒淀粉积累及相关酶活性的影响[J].中国水稻科学,2005,19(6):545-550
    李武,唐湘如.穗肥增氮对超级稻产量、品质及源库特性的影响[J].中国稻米,2010,16(3):9-11
    李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究[J].作物学报,2001,27(5):658-664
    李友军,熊瑛,骆炳山.不同类型小麦籽粒灌浆期碳水化合物代谢及相关酶活性研究[J].西北农林科技大学学报(自然科学版),2006,34(1):13-19
    李珍炎,唐清波.红薯苗期打顶能增产[J].江西农业科技,1985,5:56
    梁开明,曹洪麟,徐志防,等.台湾青枣及野生种的光合作用日变化及光响应特征[J].园艺学报,2008,35(6):793-98
    梁智,周勃,钟新才,等.打顶、化控与磷肥耦合对长绒棉产量结构、蕾铃形成及脱落的影响[J].新疆农业科学,2007,44(2):149-153
    廖平安,吴春西,刘志坚,等.外源激素对甘薯茎尖分生组织培养再生植株的影响[J].信阳农业高等专科学校学报,1998,8(3):39-40
    林宝华.甘薯打顶产量高[J].河北农业科技,1985,7:11
    林秋月,盛锦寿,陈秋金,等.甘薯氮磷钾肥施用的效应分析[J].福建热作科技,2008,33(3):3-5
    林衍铨.氮肥施期与甘薯生育关系[J].福建农业科技,1997,3:29-30
    刘高洁,逢焕成,李玉义.长期施肥对潮土夏玉米生长发育和光合特性的影响[J].植物营养与肥料学报,2010,16(5):1094-1099
    刘景春,李胜琴.翻藤改提藤甘薯获高产[J].农村科学实验,2000,8:12
    刘克礼,张宝林,高聚林.马铃薯钾素的吸收、积累和分配规律[J].中国马铃薯,2003.17(4):204-208
    刘明,齐华,孙世贤.水分胁迫对玉米光合特性的影响[J].玉米科学,2008,16(4):86-90
    刘鹏,胡昌浩,董树亭,等.甜质型与普通型玉米籽粒发育过程中糖代谢相关酶活性的比较[J].中国农业科学,2005,38(1):52-58
    刘霞,尹燕枰,贺明荣,等.播期对小麦品种藁城8901籽粒淀粉合成相关酶活性及淀粉组分积累的影响.作物学报,2006.,32(7):1063-1070
    刘学庆,周庆涛,林祖军,等.多效唑对甘薯形态生理和产量的影响[J].莱阳农学院学报,1994,11(1):25-28
    卢艳丽,陆卫平,刘小兵,等.不同基因型糯玉米氮素吸收利用效率的研究III[J].植物营养与肥料学报,2007,13(1):86-92
    陆国权,丁守仁.甘薯钾素利用效率的基因型差异研究[J].植物营养与肥料学报.2001,7(3):357-360
    吕树立,周玉玲,姜曙光,等.脱毒甘薯“商薯19”钾肥不同用量效果试验[J].山东农业科学,2010,4:85-86
    罗凤来.甘薯氮磷钾肥平衡施用效应分析[J].土壤肥料,2003(4):32-35,43
    罗小敏.国内主要甘薯种质资源的遗传多样性研究[D].西南大学硕士学位论文,2009
    罗兴录,池敏青,黄小凤,等.木薯叶片可溶性糖含量与块根淀粉积累的关系[J].中国农学通报,2006,,22(8):289-291
    骆科群,韦其萍,韩学明,等.脱毒甘薯1号不同钾肥用量效果分析[J].耕作与栽培,2007,1:33-34
    马均,明东风,马文波,等.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J].中国农业科学,2005,38(2):290-296
    马莲菊,崔鑫福,吕文彦.淀粉合成相关酶活性及其与籽粒灌浆和稻米品质的关系[J].山东农业大学学报(自然科学版),2006,37(3):354-358
    门福义,刘梦芸.马铃薯栽培生理[M].北京:中国农业出版社,1995
    苗艳芳.豫西早地氮磷钾肥配施对甘薯产量的影响[J].土壤肥料,2003,3:11-13
    聂朝娟.花后水分亏缺对不同品种小麦光合特性和蔗糖代谢的影响[J].西北农林科技大学硕士论文,2010
    潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1998:106-112
    彭海欢,翁晓燕,徐红霞,等.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学,2006,20(6):621-625
    彭佶松,郑志仁,刘涤,等.淀粉的生物合成及其关键酶[J].植物生理学通讯,1997,33(4):297-303
    钱秋平,赵文静,陆国权.紫心甘薯高产优质栽培调控优化技术研究[J].浙江农业学报,2006,18(6):433-436
    钱秋平,赵文静,陆国权.紫心甘薯高产优质栽培调控优化技术研究[J].浙江农业学报,2006,18(6):433-436
    邱鹏飞,侯夫云,王庆美,等.不同激素对甘薯胚性细胞悬浮系植株再生的影响[J].山东农业科学,2009,6:15-17
    邱永祥,谢小珍,蔡南通,等.不同氮素及硝化抑制剂对叶菜用甘薯光合特性、茎叶产量及硝酸盐含量的影响[J].西北农林科技大学学报(自然科学版),2006,34(12):58-64
    阮龙,王钰,张瑛,等.6-苄基腺嘌呤和奈乙酸对不同基因型甘薯茎尖培养的影响[J].安徽农业科学,2003,31(4):551-552
    沈建辉,戴廷波,荆奇,等.施氮时期对专用小麦干物质和氮素积累、运转及产量和蛋白质含量的影响[J].麦类作物学报,2004,24(1):55-58
    沈淞海,沈海铭,吴建华.甘薯生长发育过程中可溶性糖含量与淀粉积累的关系[J].浙江农业大学学报,1994,20(4):400-404
    盛锦寿.氮磷钾肥配合施用对甘薯的增产效果[J].土壤肥料,2005(5):29-31
    施生锦,黄彬香,王志敏.小麦不同光合器官的光合性能研究[J].中国生态农业学报,2003,11(4):10-11
    石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3661-3669
    史春余,王汝娟,梁太波,等.食用型甘薯块根碳水化合物代谢特性及与品质的关系[J].中国农业科学,2008,41(11):3878-3885
    史春余,王振林,郭风法,等.甘薯块根膨大过程中ATP酶活性、ATP和ABA含量的变化.西北植物学报,2002,22(2):315-320
    史春余,王振林,赵秉强,等.钾营养对甘薯块根薄壁细胞微结构、14C同化物分配和产量的影响[J].植物营养与肥料学报,2002,8(3):335-33
    史春余,王汝娟,梁太波,等.食用型甘薯块根碳水化合物代谢特性及与品质的关系[J].中国农业科学,2008,41(11):3878-3885
    史春余,王振林,赵秉强,等.钾营养对甘薯某些生理特性和产量形成的影响[J].植物营养与肥料学报,2002,8(1):81-85
    史春余,张晓冬,张超,等.甘薯对不同形态氮素的吸收与利用[J].植物营养与肥料学报,2010,16(2):389-394
    宋海星,彭建伟,刘强,等.不同氮素生理效率油菜生育后期氮素再分配特性研究[J].中国农业科学,2008,41(6):1858-1864
    隋娜,李萌,田纪春,等.超高产小麦品种(系)生育后期光合特性的研究[J].作物学报,2005,31(6):808-814
    孙虎,李尚霞,王月福,等.施氮量对不同花生品种积累氮素来源和产量的影响[J].植物营养与肥料学报,2010,16(1):153-157
    孙玉友.淀粉合成关键酶对水稻粘特性的影响[J].中国林副特产,2006,3:27-29
    谭长乐,张洪熙,戴正元,等.施氮对两系杂交籼稻扬两优6号产量及氮素利用率的影响[J].江苏农业学报,2007,23(3):178-183
    汤绍虎,李坤培,周启贵.基因活化剂对紫色甘薯光合速率的影响[J].西南农业大学学报(自然科学版),2004,26(1):68-70,74
    汤一卒,江华山,徐克芳,等.考验栽培若干农艺措施的产质效应Ⅱ[J].南京农业大学学报,1994,17(1):15-21
    唐成林.大豆打顶试验结果初报[J].甘肃农业科技,2006,8:15-17
    唐君,张华,刘亚菊.外源激素对甘薯不同品种茎尖培养与植株再生的影响[J].江苏农业研究,2001,22(3):22-25
    童晋,龚子端,吕玉华,等.植物激素与蔗糖对甘薯愈伤组织淀粉酶活性的调节[J].四川大学学报(自然科学版),2005,42(5):1061-1065
    汪宝卿,解备涛,王庆美,等.甘薯内源激素和化学调控研究进展[J].山东农业科学.,2010,1:51-56,62
    王丰,杨娟,张国平.稻米品质的遗传、生理研究进展[J].中国粮油学报,2005,20(5):1-5
    王锋,王汝娟,陈晓光,等.不同类型钾肥对甘薯钾素积累和利用率的影响[J].山东农业科学,2009,10:77-80
    王国法,韩常灿,陈喜靖.甘薯茎叶刈割高产技术初探[J].耕作与栽培,2000,2:35-36
    王国法,韩常灿,林宇清,等.甘薯茎叶刈割率与刈割间隔时间[J].山地农业生物学报,2000,19(4):239-242
    王强盛,丁艳锋,朱艳,等.不同基因型水稻钾素吸收利用对施钾量的生理响应[J].水土保持学报,2009,23(4):190-194,199
    王庆美,张立明,王振林.甘薯内源激素变化与块根形成膨大的关系[J].中国农业科学,2005,38(12):2414-2420
    王为木,杨肖娥,李华,等.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J].中国水稻科学,2003,17(1):52-56
    王维,蔡一霞,蔡昆争,等.水分胁迫对贪青水稻籽粒充实及其淀粉合成关键酶活性的影响[J].作物学报,2006,32(7):972-979
    王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响.中国农业科学,2008,41(10):3015-3024
    王晓娟.复合群体中小麦光合特性日变化研究[J].作物杂志,2007,5:39-41
    王彦华,邓森林,张宪铃,等.氮磷钾肥对甘薯生长发育及产量的影响.杂粮作物,2000,20(4):46-47
    王月福,于振文,李尚霞,等.小麦籽粒灌浆过程中有关淀粉合成酶的活性及其效应[J].作物学报,2003,29(1):75-81
    王忠.植物生理学[M].北京:中国农业出版社,2000,107-120魏明山.甘薯块根的发育与糖类物质的变化[J].植物生理学通讯,1964,5:23-26
    吴文革,阮新民,施伏芝.不同施氮水平对中籼稻氮素吸收利用及其产量的影响[J].安徽农业科学,2007,35(5):1403-1405
    吴旭银,张淑霞,周印富,等.甘薯“冀审薯200001”氮磷钾吸收特性的研究[J].河北职业技术师范学院学报,2001,(03):1-4
    徐冰,桂巨德,张从慧,等.甘薯氮磷钾平衡施肥试验初报[J].杂粮作物,2009,29(1):49-50
    徐克章,黑田荣喜,平野贡.水稻叶片的光合日变化[J].植物生理学通讯,1994,30(5):340-343
    徐茂林.氮素供应对强筋小麦产量和品质的影响[J].土壤通报,2005,36(6):983-985
    徐志刚,崔瑾,焦学磊,等.光照强度和CO2浓度间接调控对甘薯无糖组培苗光合特性的影响[J].南京农业大学学报,2004,27(1):11-14
    许大全,丁勇,武海.田间小麦叶片光合效率日变化与光合“午休”的关系[J].植物生理学报,1992,18:279-284
    许大全,李德耀,邱国雄,等.毛竹(Phyllostachys pubescens)叶光合作用的气孔限制研究[J].植物生理学报,1987,13:154-159
    许可,周爽,何博文,等.三个甘薯品种光合特性与生产量关系的比较[J].中国农学通报,2008,24(6):172-175
    许自成,张婷,卢秀萍,等.打顶后施用生长素(IAA)和钾肥对烤烟碳氮代谢的影响[J].生态学杂志,2007,26(4):461-465
    许自成,张婷,卢秀萍,等.打顶后施用生长素和钾肥对烤烟根系性状及品质的影响[J].中国烟草学报,2008,14(2):26-30
    许自成,张婷,马聪,等.打顶后烤烟叶片酶活性、钾及烟碱含量的调控技术研究[J].植物营养与肥料学报,2006,12(5):701-705
    杨爱梅,王自立,王家才.甘薯平衡施肥与施用钾肥效果的研究[J].河北农业科学,2009,13(3):48-50
    杨福,梁正伟,王志春,等.盐碱胁迫下水稻齐穗期剑叶光响应特性的研究[J].吉林农业科学,2005,30(5):7-10
    杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化[J].作物学报,2001,27(3):157-164
    杨晴,韩金玲,李雁鸣,等.不同施磷量对小麦旗叶光合性能和产量性状的影响[J].植物营养与肥料学报,2006,12(6):816-821
    姚宝全.甘薯氮磷钾肥效与适宜用量研究[J].福建农业学报,2007,22(2):136-140
    余汝华,莫放,赵丽华,等.刈割时间对青贮玉米秸秆饲料营养成分的影响[J].中国农学通报,2006,22(6):10-13
    原保忠,王静,张荣,等.春小麦对刈割伤害的补偿作用研究[J].生态学报,2000,20(2):345-348
    云梦县农技推广中心.油菜不同时期打顶试验[J].湖北农业科学,1993,3:15-16
    翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3):211-217
    张保仁,董树亭,胡昌浩,等.高温对玉米籽粒淀粉合成及产量的影响[J].作物学报,2007.33(1):38-42
    张锋,施建达.搭架及多效唑处理对甘薯产量的影响[J].江苏农业科学,2006,4:25-26
    张静,魏荔,隋英.不同氮磷钾肥施用量对甘薯产量的影响[J].北京农业,2010,S1:113-115
    张立明.甘薯源库器官发育的激素调控与产量潜力表达[D].中国农业大学博士论文,2003
    张玲,谢崇华,李伟,等.氮钾对杂交水稻B优827籽粒淀粉含量及淀粉合成酶活性的影响[J].中国水稻科学,2008,22(5):551-554
    张明生,谢波,谈锋.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系[J].中国农业科学,2002,35(5):498-501
    张涛.不同施氮量和氮素形式对水稻光合特性的影响[J].扬州大学硕士论文,2004
    张绪成,张福锁,于显枫,等.氮素对高大气CO2浓度下小麦叶片光合功能的影响[J].作物学报,2010,36(8):1362-1370
    张亚洁,林强森,孙斌,等.中国水稻科学,2005,19(6):539-544
    张云华,王荣富,阮龙.水分胁迫对甘薯叶绿素荧光和光合特性的影响[J].中国农学通报,2005,21(8):208-210
    赵辉,戴廷波,荆奇.灌浆期高温对两种品质类型小麦品种籽粒淀粉合成关键酶活性的影响[J].作物学报,2006,32(3):423-429
    赵俊哗,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490
    赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993
    赵玉山.甘薯打顶获高产[J].山西农业科学,1989,12:25
    钟希琼.甘薯块根主要品质的相关分析[J].佛山科学技术学院学报(自然科学版),2004,22(1):68-70
    周月英,郑华,刘利华,等.不同激素对鲜食甘薯经济性状及产量效益的影响[J].中国农学通报,2000,16(3):52-53
    朱晓军,杨劲松,梁永超,等.盐胁迫下钙对水稻幼苗光合作用及相关生理特性的影响[J].中国农业科学,2004,37(10):1497-1503
    朱燕燕,陈建军,蔡一霞,等.高淀粉甘薯品种块根淀粉积累和产量特征研究.安徽农业科学,2009,37(15):6925-6928
    宗学凤,张建奎,周清元,等.甘薯品种光合生理指标与薯干产量之间关系的初步研究[J].西南农业大学学报,2001.23(3):216-218
    邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000
    邹焱,苏以荣.打顶及施用植物生长调节剂对烟草内源激素的影响[J].烟草科技,2008,10:50-52,57
    左青松.甘蓝型油菜不同氮素籽粒生产效率类型品种的基本特征[D].扬州大学博士论文,2009
    左振朋,孙庆泉,董鲁浩,等.爆、甜、糯玉米生育后期叶片光合特性的比较[J].作物学报,2009,35(10):1930-1935
    Ahmadi, A. Baker, D.A. Effects of abscisic acid (ABA) on grain filling processes in wheat[J]. Plant growth regulation,1999,28(3):187-197
    Ahmadi, A. Baker, D.A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat[J]. Plant growth regulation,2001,35(1):81-91
    Albrecht T, Koch A. Lode A, et al. Plastidic (Phol-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants:expression analysis and immunochemical characterization[J]. Planta,2001, 213:602-613
    Appeldoorn, N.J.G. Bruijn, S.M. de. Koot-Gronsveld, et al. Developmental changes in enzymes involved in the conversion of hexose phosphate and its subsequent metabolites during early tuberization of potato[J]. Plant, cell and environment,1999,22(9):1085-1096 Ballicora, M.A. Iglesias, A.A. Preiss, J. ADP-glucose pyrophosphorylase:a regulatory enzyme for plant starch synthesis[J]. Photosynthesis research,2004,79(1):1-24
    Baun CC, Palmiano EP, Perez CM, et al. Enzymes of starch metabolism in the developing rice grain[J]. Plant Physiol,1970,46:429-434
    Bovell-Benjamin, A.C. Sweet Potato:A Review of its Past, Present, and Future Role in Human Nutrition[J]. Advances in Food and Nutrition Research,2007,52:1-59
    Chang SC, Lin PC, Chen HM, et al. The isolation and characterization of chaperonin 60 from sweet potato roots—involvement of the chaperonins in starch biosynthesis[J]. Bot Bull Academia Sin, 2000,41:105-111
    Chua L K, Kays S J. Assimilation patterns of 14C photosynthate in developing sweet potato storage roots[J]. Journal of the American Society for Horiculture Science,1982,107(5):866-871
    Constantin R J, Hernandez T P, Jones L G. Effects of irrigation and nitrogen fertilization on quality of sweetpotatoes[J]. Journal of the American Society for Horticulture Science,1974,99(4):308-310
    Cross, J.M. Clancy, M. Shaw, J.R. et al. Both subunits of ADP-glucose pyrophosphorylase are regulatory [J]. Plant physiology.2004,135(1):137-144
    Da Silva, P.M.F.R. Eastmond, P.J. Hill, L.M. et al. Starch metabolism in developing embryos of oilseed rape[J]. Planta,1997,203(4):480-487
    Dejardin, A. Rochat, C. Wuilleme, S. Boutin, J.P. Contribution of sucrose synthase, ADP-glucose pyrophosphorylase and starch synthase to starch synthesis in developing pea seeds[J]. Plant, cell and environment,1997,20(11):1421-1430
    Denyer, K. Foster, J. Smith,A.M. The contributions of adenosine 5'-diphosphoglucose pyrophosphorylase and starch-branching enzyme to the control of starch synthesis in developing pea embryos[J]. Planta,1995,197(1):57-62
    Doehlert Douglas C, Lamert Robert J. Metabolic characteristics associated with starch, protein and oil deposition in developing maize kernels[J]. Crop Science,1991,31:151-157
    Figdore S, Gerloff C, Gabelman WH. The effect of increasing sodium chloride levels on potassium utilization efficiency of tomato grown under low-potassium stress[J]. Plant Soil,1989,119:295-304
    Gabelman WH, Loughman BC. Genetic variation in the uptake and utilization of potassium in wheat (Triticum aestivum L.) varieties grown under potassium stress[C]. Genetic Aspects of Plant Mineral Nutrition. Leiden:Martinus Nijhoff Publisher 1993,323-330
    Guang-Huar Young. Han-Min Chen, Chi-Tsai Lin, et al. Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots[J]. Planta,2006,223: 468-478
    Hammett L K, Miller C H. Influence of mineral nutrition and storage on quality factors of "Jewel"sweetpotatoes[J]. Journal of the American Society for Horticulture Science,1982,107(6): 972-975
    Hurkman W J. McCue K F, Altenbach S B. et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm[J]. Plant Science,2003, 164:873-881
    Jiang Dong. Cao Weixing, Dai Tingbo, et al. Diurnal changes in activities of related enzymes to starch synthesis in grains of winter wheat[J]. Acta Botanica Sinica.2004,46(1):51-57
    Jiang, D. Cao, W. Dai, T. et al. Activities of key enzymes for starch synthesis in relation to growth of superior and inferior grains on winter wheat (Triticum aestivum L.) spike[J]. Plant growth regulation,2003,41(3):247-257
    Keeling, P.L. Bacon, P.J. Holt, D.C. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase[J]. Planta,1993,191(3):342-348
    Kichey T, Hirel B, Heumez E, et al. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers[J]. Field Crops Research,2007,102:22-32
    Kim SH, M izuno K, Fu jim ura T. Regulated expression ofADP glucose pyrophosphorylase and chalcone synthase during root development in sweet potato[J]. Plant Growth Regulation,2002, 38:173-179
    Kim SunHyung Mizuno K, Sawada S, Fujimura T. Regulation of tuber formation and ADP-glucose pyrophosphorylase (AGPase) in sweet potato (Ipomoea batatas (L.) Lam.) by nitrate[J]. Plant Growth Regulation,2002,37(3):207-213
    Koda Y, OyanagiA, NakataniM, et al. Comparis on of endogenous cytokinins between two sweet potato cultivars which have different potential in drymatter production[J]. Japanese Journal of Crop Science,1985,54(2):220-221
    Li XQ, Zhang DP. Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato[J]. Plant cell physiol,2003,44(6):630-636
    Lila Babu,Bala Nambisan. Prospects for manipulating starch biosynthesis in sweet potato using molecular tools. Acta Horticulturae[C]. International Society for Horticultural Science (ISHS),Leuven, Belgium:2002.583:77-80
    Liu TTY, Shannon JC. A nonaqueous procedure for isolating starch granules with associated metabolites from maize endosperm[J]. Plant Physiol,1981,67:518-524
    Liu Xia, Jiang Chun-ming, Zheng Ze-rong, et al. Activities ofthe Enzymes Involved in Starch Synthesis and Starch Accumulation in the Grains of W heat Cultivars, GC8901 and SN1391[J]. Agricultural Sciences in China.2005,4(5):348-35
    Lon S, Chen N C, Chishaki N, et al. Behavior of nitrogen absorbed at different growth stages of rice plants[J]. Ecology and Environment,2005,14(4):567-573
    Marschner H. Mineral Nutrition of Higher Plants[M]. San Diego:Academic Press,1995
    Martre P, Porter J R, Jamieson P D, et al. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat[J]. Plant Physiology,2003,133:1959-1967
    Matsuo T, Mitsuzono H. Variation in the levels of major free cytokinins and free abscisic acid during tuber development of sweetpotato[J]. Journal of Plant Growth Regulation,1988,7:249-258
    Matsuo T. Identification of free cytokinins and the change in endogenous levels during tuber development of sweetpotato[J]. Plant and Cell Physiology,1983,24:1305-1312
    Mengel K, Kirkby E A. Principles of Plant Nutrition[M].International Potash Institute, Bern, Switzerland,1982:411-436
    Mingo-Castel AM, Young RE, Smith OE. Kinetin-induced tuberization of potato in vitro:on the mode of action of kinetin. Plant Cell Physiol,1971,17:557-570
    Morris C F, Paulson GM. Development of hard winter wheat after anthesis as affected by nitrogen [J]. Crop Sci.,1995,25:1007-1010
    Muller-Rober B, Kobmann J. Approaches to influence starch quantity and starch quality in transgenic plants[J]. Plant cell and environment,1994,17:601
    Nakatani M, Koda Y. Identification of jasmonic acid and its effects on root development in sweet potato[C]. Low Input Sustainable Crop Production System in Asia,1993,523-531
    Nakatani M, Komeichi M, Watanabe Y. Role of hormonal and enzymatic activities to sink potential of storage roots in sweet potato[C]. Proceedings of the 8 th Symposium of International Society of Tropical Root Crops,1989,507-515
    Nakatani M, Komeichi M. Changes in the endogenous level of zeatin riboside, abscisic acid and indole acetic acid during formation and thickening of tuberous roots in sweet potato [J]. Japanese Journal of Crop Science,1991,60:91-100
    Nakatani M, Komeichi M. Distribution of endogenous zeatin riboside and abscisic acid in tuberous roots of sweetpotato[J]. Japanese journal of crop science,1991,60:322-323.
    Nakatani M, Matsuda T. Immunohistochemical localization of zeatin riboside in tuberous root of sweet potato[J]. Japanese Journal of Crop Science,1992,61:685-686
    Nakatani M, Tanaka M, Yoshinaga M. Physiological and anaomical characterization of a late-storage root-formingmutant of sweet potato[J]. Journal of the American Society for Horticulture Science.2002,127:178-183
    Nakatani M, Komeichi M. Relationship between starch content and activity of starch synthase and ADP-glucose pyrophosphorylase in tuberous root of sweet potato[J]. Japanese Journal of Crop Science.1992,61(3).463-468
    Ober, E.S. Setter, T.L. Madison, J.T. Thompson. J.F. Shapiro, P.S. Influence of water deficit on maize endosperm development:Enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division[J]. Plant physiology,1991,97(1):154-164
    Okita, T.W. Is there an alternative pathway for starch synthesis? [J]. Plant physiology.1992, 100(2):560-564
    Oritani T, Yoshida T, SasamuraM. Varietal difference in cytokinin and ABA content in some crops[J]. Japanese Journal of Crop Science,1983,52(1):115-116
    Otani M., Hamada T., Katayama K., et al. Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Reports,2007.26(10): 1801-1807
    Pan. S. M. Chang, T. C. Juang, et al. Starch phosphorylase inhibitor is beta-amylase[J]. Plant Physiology,1988,88(4):1154-1156
    Pettersson S. Jensen P. Variation among apecies and varieties in uptake and utilization of potassium[J]. Plant and Soil,1983,72:231-237
    Preiss J, Ball K, Hutney J, et al. Regulatory mechanisms involved in the biosynthesis of starch[J]. Pure and Applied Chemistry,1991,63 (4):535-544
    Przulj N, Momcilovic V. Genetic variation for dry matter and nitrogen accumulation and translocation in two-rowed spring barley. Ⅱ.Nitrogen translocation[J]. European Journal of Agronomy,2001,15:255-265
    Schaffer AA, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation[J]. Plant Physiol,1997,113:739-746
    Schupp N. Ziegler P. The relation of starch phosphorylases to starch metabolism in wheat[J]. Plant Cell Physiol,2004,45:1471-1484
    Siddiqi MY, Glass ADM, Hsiao AI, et al. Genotypic differences among wild oat lines in potassium uptake and growth in relation to potassium supply[J]. Plant Soil,1987,99:93-105
    Sweetlove, L.J. Muller-Rober, B. Willmitzer, et al. The contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis in potato tubers[J]. Planta, 1999,209(3):330-337
    Takahata Y., Tanaka M., Otani M, et al. Inhibition of the expression of the starch synthase Ⅱ gene leads to lower pasting temperature in sweetpotato starch[J]. Plant Cell Reports,2010,29 (6): 535-543
    Tatsuro Hamada, Sun-Hyung Kim, Takiko Shimada. Starch-branching enzyme 1 gene (IbSBEI) from sweet potato (Ipomoea batatas); molecular cloning and expression analysis[J]. Biotechnol Lett (2006)28:1255-1261
    Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants[J]. Journal of Experimental Botany,2004,406:2131-2145
    Tetlow, I.J. Blissett, K.J. Emes, M.J. Starch synthesis and carbohydrate oxidation in amyloplasts from developing wheat endosperm[J]. Planta,1994.194(4):454-460
    Tsai C Y, Huber D M,Glover D V,et al. Relationship of N deposition to grain yield and Response of three maize hybrids[J]. Crop Sci,1984,24:277-281
    Tsubone M, Kubota, F, Saitou, K. Effects of exogenous injection of different sugars on leaf photosynthesis, dry matter production and adenosine 5'-diphosphate glucose pyrophosphorylase (AGPase) activity in sweet potato, Ipomoea batatas (Lam.) [J]. Journal of Agronomy and Crop Science,2001,86(1):37-41
    Tsubone, M. Kubota, F. Saitou, K. et al. Enhancement of tuberous root production and adenosine 5'-diphosphate pyrophosphorylase (AGPase) activity in sweet potato (Ipomoea batatas Lam.) by exogenous injection of sucrose solution[J]. Journal of Agronomy and Crop Science,2000,184(3): 181-186
    Vahab, N. A. Kumaran, N. M. Starch, sugar and protein contents of sweet potato tubers as influenced by ethrel and CCC[C]. India, Tamil Nadu Agricultural University:National seminar on tuber crops production technology,21,22 November 1980,133-136
    Vassey, T.L. Sharkey, T.D. Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity[J]. Plant physiology,1989,89(4): 1066-1070
    Wang QingMei, Zhang LiMing, Guan YanAn, et al. Endogenous hormone concentration in developing tuberous roots of different sweet potato genotypes[J]. Agricultural Sciences in China, 2006,5(12):919-927
    Wang SJ, Chen MH, Yeh KW.et al. Changes in carbohydrate content and gene expression during tuberous root development of sweet potato[J]. Journal of Plant Biochemistry and Biotechnology, 2006,15(1):21-25
    Wardlaw I F, Willenbrink J. Carbohydrate storage and mobilization by the culm of wheat between heading and grain maturity:the relation to sucrose synthase and sucrose-phosphate synthase[J]. Australian Journal of Plant Physiology,1994,21:255-271
    Witt C, Dobermann A, Abdulrachman S, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia[J]. Field Crop Research,1999,63 (2):113-138
    Xiu-qing Li, Da-peng Zhang.Gene expression activity and pathway selection for sucrose metabolism in developing storage root of sweet potato[J]. Plant cell physiol,2003,44(6):630-636
    Xu Z Z, Yu Z W, Wang D. Nitrogen translocation in wheat plants under soil water deficit[J]. Plant and Soil,2006,280:291-303
    Yang X E, Liu J X, Wang W M, et al. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice[J]. Nutrient cycling in agroecosystems,2003,67 (3):273-282
    Yang X E, Romheld V, Marschner H. et al. Shoot photosynthesis and root growth of hybrid and conventional rice cultivars as affected by N and K level s in the root zone. Pedosphere.1997,7(1): 35-42
    Yatomi M, Kubota F, Saito K, et al. Evaluation of root sink ability of sweet potato (Ipomoea batatas Lam.) cultivars on the basis of enzymatic activity in the starch synthesis pathway[J]. Journal of Agronomy and Crop Science,1996,177(1):17-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700