湘西花垣铅锌矿区重金属污染土壤生态修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅锌矿的开采与加工造成了严重的环境污染和生态破坏问题。如何对铅锌矿区环境污染进行有效治理,促进矿业经济与环境协调发展,已成为环境生态领域的研究热点。本文以有色金属之乡—湘西花垣铅锌矿区重金属污染土壤为研究对象,通过野外调查、采样分析铅锌矿区土壤重金属含量和赋存形态、评价了土壤重金属污染现况;调查研究了湘西花垣铅锌矿区植被组成及土壤重金属在优势植物体内积累分配情况,确定黑麦草为该矿区生态修复的先锋植物材料;进一步通过土培试验,研究黑麦草对铅锌矿区土壤多金属胁迫的生理响应和耐受机理。同时通过土壤基质改良,研究改良作用对黑麦草生长、重金属积累及土壤重金属形态、土壤理化性质及土壤微生态环境的影响。在此基础上,进行田间工程示范,系统的研究了改良剂联合黑麦草对湘西花垣铅锌矿区多金属污染土壤的修复效果,为铅锌矿区的生态修复提供了理论依据和实践经验。主要研究结果如下:
     1.湘西花垣铅锌矿区土壤重金属含量较高,冶炼区和尾砂区大多数土壤含量超过国家土壤环境质量三级标准,对矿区土壤造成污染。湘西花垣铅锌矿区菜园土亦受到了不同程度的Pb、Zn和Cd污染;通过内梅罗单因子污染评价,发现湘西花垣铅锌矿冶炼区、尾砂区土壤受到Pb、Zn和Cd的重度污染,尤其Cd污染最严重。菜园土受到Pb、Zn轻度污染和Cd重度污染。矿区土壤中Cu含量为安全水平。综合污染指数结果表明,铅锌尾砂区、冶炼区、矿区菜园土均为重度污染;采用BCR分级提取法对铅锌尾砂区土壤中重度污染因子Cd、Pb、Zn的形态进行分析,发现尾砂区裸地中Cd、Pb、Zn主要以残渣态形式存在。植物的定居使尾砂区重金属Cd、Pb、Zn形态随植物种类的不同而发生变化。植物的定居整体上使重金属残渣态含量降低,其生物有效性得到提高。
     2.研究了湘西花垣铅锌矿区的植被组成和植物对重金属的积累特征。在铅锌矿冶炼区及尾砂区采集到55种植物,分别属于23科、49属,主要由禾本科和菊科植物组成;该矿区不同植物对重金属的吸收和分配能力不一样,且同种植物在不同生境中对重金属的吸收和再分配也存在差异。植物体内重金属Pb、Zn、Cd、Cu的平均含量分别为158.9、853.0、19.0(?)(?)33.2mg/kg。其中稀莶草(Siegesbeckia glabrescens)叶片Cd含量最高,达到了124.4mg/kg;其次为地枇杷(Ficus tikoua)地上部Cd含量,达到了103.3mg/kg;龙葵(Solanum photeinocarpum)、鬼针草(Bidens pilosa)和商陆(Phytolacca americana)地上部Cd含量分别达到了90.8、77.5(?)(?)75.7mg/kg。在样区内,重金属含量较高且转移指数较大的优势植物如地枇杷、辣蓼(Polygonum flaccidum)、商陆可用于污染土壤重金属的提取。而转移指数较低的重金属耐性植物如白茅(Imperata cylindrica)、黑麦草(Lolium perenne)可用于污染土壤重金属的植物固定。通过优势植物重金属吸收及再分配特征,相关植物种子室内发芽生长情况,确定采用黑麦草为铅锌矿区污染土壤生态修复的植物材料。
     3.通过盆栽实验研究了黑麦草对铅锌矿区污染土壤多种重金属胁迫的响应及耐受机制。黑麦草的生物量和叶绿素含量随着土壤重金属污染程度的增加而下降;黑麦草地上部和根部Pb、Zn、Cd含量随着土壤重金属污染程度的增加而增加,其中根部重金属含量明显高于地上部。且随着重金属污染程度的增加,黑麦草对重金属的富集、转运能力逐渐下降;黑麦草叶片抗氧化酶活性(SOD、POD和CAT)、可溶性蛋白含量随着土壤重金属污染程度的增加总体上呈增加趋势,在一定程度上缓解了重金属对黑麦草的毒害,提高了黑麦草对重金属的耐性。
     4.通过盆栽实验研究赤泥、磷石膏、石灰等三种改良剂对铅锌矿区多金属污染土壤的改良效果。赤泥、石灰改良均能显著降低重金属污染土壤中Pb、Zn、Cd的有效态含量,同时使黑麦草地上部和根部Pb、Zn、Cd含量显著下降。赤泥处理降低了土壤中Pb、Zn、Cd可交换态比例,增加了铁锰氧化态比例。石灰处理降低了重金属的可交换态比例,主要增加了碳酸盐结合态比例。磷石膏处理降低了土壤中Pb的有效态含量及可交换态比例,但使Zn、Cd有效态含量及可交换态比例增加。添加1%的赤泥、磷石膏、石灰均能显著增加黑麦草生物量,促进黑麦草的生长。但当赤泥、磷石膏添加剂量为5%、石灰添加剂量为3%时,则抑制了黑麦草的生长。综合考虑植物长势、重金属形态转化情况,赤泥是铅锌矿区多金属污染土壤的最佳改良剂,1%是其适宜的剂量。
     5.采用盆栽试验,进一步研究菜园土、菜园土+赤泥联合黑麦草对铅锌尾矿砂理化性质和微生态环境的改良作用。改良处理显著促进黑麦草的生长;在铅锌尾矿砂中混合添加10%菜园土和1%赤泥联合黑麦草修复处理对铅锌尾矿砂中有机质、碱解氮、速效磷含量提高效果显著,分别比对照提高了51.82%、300.00%和901.29%。同时改良处理均使铅锌尾矿砂中微生物数量、微生物C、N含量显著增加,其中混合添加10%菜园土和1%赤泥联合黑麦草修复处理使土壤细菌、真菌、放线菌数量,微生物C、N含量的增加效果最好,分别比对照增加了33.78、5.99、21.82、6.34和6.35倍;改良处理还显著提高了尾矿砂中脲酶、磷酸酶、蔗糖酶、纤维素酶活性,其中混合添加10%菜园土和1%赤泥联合黑麦草修复处理使土壤脲酶、磷酸酶、蔗糖酶、纤维素酶活性分别比对照提高了18.43、12.58、5.00、9.15倍。黑麦草联合10%菜园土+1%赤泥处理对铅锌尾矿砂的肥力提高及微生态环境改良效果最显著。
     6.研究了在铅锌尾矿砂中覆土5cm、覆土5cm+1%赤泥、覆土5cm+1%磷石膏后种植黑麦草对铅锌尾砂区生态修复的田间效果。结果表明,在铅锌尾矿砂上覆土5cm、覆土5cm+1%赤泥、覆土5cm+1%磷石膏等改良处理均显著增加了黑麦草的生物量,可以在尾矿砂上形成较好的植被覆盖,并且随时间的延长其促生效果越显著;同时改良处理不同程度的增加了黑麦草对重金属的积累量,并随处理时间的增加而增加;研究结果还表明,修复处理后土壤中营养成分显著增加,重金属有效态含量显著下降,细菌、放线菌、真菌等微生物数量及微生物C、N含量均显著提高。其中,覆土5cm+1%赤泥联合黑麦草修复处理使铅锌尾矿砂细菌、真菌、放线菌数量、微生物C、N含量增加效果最显著,分别比对照增加了3.25、1.48、1.84、1.99和8.79倍,显著改善了土壤的微生态环境。因此,覆土5cm+1%赤泥联合黑麦草修复在铅锌矿尾砂区的生态修复实践中应用潜力较大。
With the development and utilization of lead and zinc mine resouces, Pb/Zn ore mining and melting has caused serious environmental pollution and ecological destruction.It has become a popular topic of environmental ecosystem restoration field how to effectively control the environment pollution in mine area,which promote the coordinated development of mining economy and environment.
     In this study, the Huayuan Pb/Zn mine area of Xiangxi, the country of nonferrous metals, was considered as the subject of research.On the basis of field investigation, sample collection and laboratory analysis,the contents of heavy metals and the various chemical forms of heavy metals in Huayuan Pb/Zn mine area were analyzed,and the pollution of soil heavy metals was evaluated,and the accumulation and distribution of heavy metals in the eleven dominent plants were analyzed,and then ryegrass was selected as the tolerance plant for eco-remediation of multi-metal contaminated soils.The greenhouse pot experiment was conducted to study the responses and the mechanisms of tolerance to multi-metal pollution stress on ryegrass.And effects of soil matrix amendment on the growth and metal accumulation of ryegrass, chemical forms of heavy metals in soils,and on the improvement of soil physical-chemical proporties, micro-ecosystem of Pb/Zn mine tailing were also studied.Based on the above recognitions,a demonstration project was conducted to systematically study the effects of remediation by ryegrass-amendment combined remediation in Huayuan Pb/Zn mine areas,in orer to provide the theoretical basis and the practical experience for eco-remediation of multi-metal contaminated soils and its demonstration project around Huayuan Pb/Zn mine areas.The main results were as follows:
     1.The contents of heavy metals were analyzed and the pollution degree of heavy metals in the soil of Huayuan Pb/Zn mine area were evaluated, and chemical forms of heavy metals of Pb/Zn mine tailings were studied.The results showed that there was a wide changing range of concentration of the heavy metals in Huayuan Pb/Zn mine area.The content of Cd,Pb,Zn were far exceeds the background value of soil.The content of Cu was little exceeds the background value of soil.According to China Environment Quality Standard for soils(GB15618-1995),most Pb,Zn and Cd exceeded the threshold values of ClassⅢ. According to single-factor indexes of Nemerow pollution index, the soil in melting area and mine tailing area were severely polluted by Pb,Zn and Cd;and the garden soil in Pb/Zn mine area were severely polluted by Cd, were slightly polluted by Pb and Zn.Comprehensive pollution index indicated the total selected soils of Huayuan Pb/Zn mine area were heavily polluted.BCR sequential extraction procedure was adopted to analyze the chemical forms of heavy metals in Huayuan Pb/Zn mine tailings.The chemical form of Cd, Zn and Pb in bare Pb/Zn mine tailings mainly existed in residual fraction.and the chemical forms of heavy metals in the rhizosphere soils of the pioneer species were different with different plants.By promoting the transformation process from residuals fractions to weakly bound fractions,the growth of plants could alter the distribution of Pb, Zn and Cd,could change residual fraction into availability fraction of Pb, Zn and Cd in rhizosphere soils.
     2.To investigate the plant species composition and accumulation of heavy metals in those species at Lead-Zinc mine melting area and mine tailings disposal sites of Huayuan Pb/Zn mine area, we sampled55species, belonging to23families,49genera.The concentrations of Pb, Zn, Cd and Cu in55plant species were analyzed.The results showed that gramineae and compositae were dominant species of55plant species.The results showed different species had different ability of accumulation and distribution to the same heavy metal.and the different ecological type of same species had different accumulation and distribution ability to the same heavy metal.The average concentrations of Pb,Zn,Cd and Cu in these plants were158.9,853.0,19.0and33.2mg/kg, respectively. The highest concentration of Cd was124.37mg/kg in the leaves of Siegesbeckia glabrescens,followed by Ficus tikoua,Solanum photeinocarpum,Bidens pilosa and Phytolacca Americana with103.3,90.8,77.5and75.7mg/kg in the above-ground. At the contaminated sites, some dominant species with high transfer factor of heavy metals, such as Ficus tikoua, Polygonum flaccidum and Phytolacca Americana might be suitable for use in the phyto-extraction of heavy metals.The dominant species with low transfer factor of heavy metals, such as Imperata cylindrica and Lolium perenne might be suitable for stabilizing heavy metals. On the basis of accumulation and transfer of heavy metal in dominant species and the results of indoor germination test of dominant indigenous plant, Lolium perenne was selected as the pioneer plant for eco-remediation of heavy metals contaminated soils in Huayuan Pb/Zn mine area of Xiangxi.
     3.A soil culture experiment was conducted to study the response and tolerance mechanisms of ryegrass to the heavy metals stress caused by multi-heavy metals pollution soil of Huayuan Pb/Zn mine area.The biomass and chlorophyll content of ryegrass were decreased by mine muti-metals pollution of Pb/Zn mine area;the contens of Pb, Zn and Cd in the shoots and roots of ryegrass were raised with the increase of heavy metal contents in soils,and the heavy metal concentrations of Pb, Zn and Cd in roots were clearly higher than in above-ground parts of ryegrass,the antioxidant enzyme activities(SOD,POD and CAT) and soluble protein contents in the leaves of ryegrass were basically increased with the increase of multi heavy metal contents in the leaves,and the heavy metals accumulation factor and transfer factor of ryegrass were basicaly decreased with the increase of multi heavy metal contents in soils.Therefore the muti-heavy metal stress of heavy metals to ryegrass was alleviated and the tolerance was enhanced of ryegrass.
     4.In the pot experiments,red mud and lime stone addition could significantly decreased Pb,Zn and Cd available contents in soil,and reduced Pb.Zn and Cd contents in shoots and roots of ryegrass.Red mud reduced Pb,Zn,Cd exchangeable fraction,and mainly increased the fraction of form bound to Fe-Mn oxides.Lime reduced Pb, Zn and Cd exchangeable fraction,and mainly increased the fraction of form bound to carbonate.Phosphogypsum reduced the available content and exchangeable fraction of Pb,while increased Zn, Cd available contents and exchangeable fraction.The low dosage (1%) of red mud, phosphogypsum and lime could promoted the growth of ryegrass.When the addition dosage was5%of red mud, phosphogypsum,the addition dosage was3%of lime,the growth of ryegrass was limited.All the things considered,red mud was the reasonable amedment and1%was the suiltable dosage for remediation of heavy metal polluted soils in Xiangxi Huayuan Pb/Zn mine area.
     5.The pot experiments was conducted to study the characters and biological properties of ryegrass and ryegrass-amendment combined remediation in Pb/Zn mine tailing.The results showed that the concentrations of organic matter,olsen phosphorous and alkaline nitrogen were significantly improved with different treatments in Pb/Zn mine tailing,Compared with no remediation,the concentrations of organic matter,alkaline nitrogen and olsen phosphorous in Pb/Zn mine tailing were increased by51.82%,300.00%and901.92%with treatments named the ryegrass and10%garden soil and1%red mud(CNl), respectively.The biomass of ryegrass were promoted under application amendments conditions.The amount of soil bacteria,fungi, actinomyces,soil microbial biomass carbon and nitrogen after remediation were significantly higher than those of no remediation.The amounts of soil bacteria,fungi, actinomyces,soil microbial biomass carbon and nitrogen in CN1treatment was highest among the treatments,with33.78,5.99,21.8,6.34and6.35times respectively.The activities of soil urease,phosphatese,invertase and cellulose were obviously improved by18.43,12.58,5.00and9.15times, in particular,the CN1treatment was highest compared.Thus,it could concluded that combined remediation (CN1),ryegrass and10%garden soil and1%red mud was performed in improving soil fertility,soil micro-ecosystem and promoting ryegrass growth in Pb/Zn mine tailing.
     6.In the field experiment,the eco-remediation effect by ryegrass combined red mud, phosphogypsum and vegetable garden soil in Huayuan Pb/Zn mine tailings was analysed.The results showed the biomass of ryegrass were remarkably improved,and the growth promoting effectiveness was more significant with the time.Heavy metal contents in the shoots and roots of ryegrass were basically decreased to different extent and the heavy metal accumulation in ryegrass was enhanced and increased with time.Compared with no remediation,the results also showed that the ryegrass-amendment combined remediation in Pb/Zn mine tailing increased the amount of soil bacteria,fungi, actinomyces,soil microbial biomass carbon and nitrogen in ryegrass combined covering soil with5cm depth and1%red mud treatment with3.25,1.48,1.84,1.99and8.79times, respectively.By comparison,the general improvement of soil microorgranism activities and soil nutrient contents by ryegrass combined covering soil with5cm depth and1%red mud treatment were greater than other treatments.In conclusion, ryegrass combined covering soil with5cm depth and1%red mud treatment in Pb/Zn mine tailing improved the soil micro-eco-environment and soil nutrient significantly. Therefore,ryegrass combined covering soil with5cm depth and1%red mud treatment had great potentiality for eco-remediation in pulluted land of Pb/Zn mine area.
引文
[1]王亚平,鲍征宇,王苏明.矿区固体废物的环境效果研究进展及大冶铜绿山尾矿的环境效果[J].矿物岩石地球化学通报,1998,17(2):97-100.
    [2]Dudka S,Adriano D C.Environmental impacts of metal ore mining and processing:a review[J] Journal of Environmental Quality,1997,26:590-602.
    [3]Wong M H.Environmental impacts of iron ore tailings,the case of Tolo Harbour.Hong Kong[J]. Environmental Management,1981,5:135-145.
    [4]Li M S.Ecological restoration of mine land with particular reference to the metalliferous mine wasteland in China:A review of research and practice[J].Science of the Total Environment,2006,357:38-53.
    [5]束文圣,叶志鸿,张志权,等.华南铅锌尾矿生态恢复的理论与实践[J].生态学报,2003.23:1629-1639.
    [6]Shu W,Ye Z,Zhang Z,et al.Natural colonization of plants on five Lead/Zinc mine tailings in southern China[J].Restoration Ecology,2005,13(1):49-60.
    [7]蔡美芳,党志,文震,等.矿区周围土壤中重金属危害性评估研究[J].生态环境,2004,13(1):6-8.
    [8]谢荣秀,田大伦,方晰.湘潭锰矿废弃地土壤重金属污染及其评价[J].中南林学院学报,,2005,25(2):38-41.
    [9]郭亚平,胡曰利.土壤-植物系统中重金属污染及植物修复技术[J].中南林学院学报,2005,25(2):59-62.
    [10]常青山,马祥庆,王志勇.南方重金属矿区重金属的污染特征及评价[J].长江流域资源与环境,2007,16(3):395-399.
    [11]Lan C Y,Shu W S,Wong M H. Revegetation of Lead/Zinc mine tailings at Shaoguan, Guangdong province.China:Phytotoxity of the tailings[J].In Wise DL ed.Global Environmental Biotechnology. Amsterdam:Elsevir,1997,119-130.
    [12]Lan C Y,Shu W S,Zhang Z Q.Effects of acid leaching on heavy metals mobility of Pb/Zn tailings and the phyto-toxicity of leachate[J].China Environment Science, 1996,16(4):461-465.
    [13]郭朝晖,朱永官.典型矿冶周边地区土壤重金属污染及有效性含量[J].生态环境,,2004,13(4):553-555.
    [14]郭朝晖,宋杰,陈彩,等.有色矿业区耕作土壤、蔬菜和大米中重金属污染[J].生态环境,2007,16(4):1144-1148.
    [15]Hanson A T.Transport and remediation of subsurface contaminants[M].Washington D. C:American Chemical Society,1992.
    [16]丁样沁.土壤的重金属污染及其防治[J].江西铜业工程,1985,2:60-65.
    [17]张锡辉,王慧,罗启仕.电动力学技术在受污染地下水和土壤修复中新进展[J].水科学进展,2001,12(2):249-255.
    [18]Cox,Chris D.Electro-kinetic remediation of mercury-contaminated soil using iodine/iodide lixiviant[J]. Environment science technology,1996,30:1933-1938.
    [19]马文漪,杨柳燕.环境生物工程[M].南京:南京大学出版社,1998.
    [20]Salt D E,Smith R D,Raskin I.Phytoremediation[J].Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:643-668.
    [21]Salt D E,Blaylock M,Kumar N P B A,et al.Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants[J]. Bioteclmology,1995, 13:468-474.
    [22]Kataba-Pendias A.Pendias H.Trace Elements in Soils and Plants[M].Boca Raton FL:CRC Press.2001.
    [23]Knight B.Zhao F J.McGrath S P.et al.Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soils solution[J].Plant and Soil,1997,197:71-78.
    [24]陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社,2008.
    [25]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1196-1203.
    [26]Conesa H M,Schulin R,Nowack B.A Laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings[J].Water and Soil pollution,2007,183:201-212.
    [27]Mishra S,Srivastava S,Tripathi R D,et al.Thiol metabolism and antioxidant systems complement each other during arsenate detoxification complement in Ceratophyllum demersum[J].Aquatic Toxicology,2008,86(2):205-215.
    [28]Mishra S,Tripathi R D,Srivastava S.et al.Thliol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L.[J].Bioresource Technology,2009,100(7):2155-2161.
    [29]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J];安徽师范大学,2004,1:71-74.
    [30]Rauser W E,Acher C A.Localization of cadmium in gtrqanules within differentiating and mature root cells[J].Can.J.Bot.,1987,65:643-646.
    [31]江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(3):169-174.
    [32]Foyer C H,Theodoulou F L,Delrot S.The functions of inter and intracellular glutathione transport systems in plants[J].Trends Plant Science,2001,6:486-492.
    [33]Pignocchi C,Foyer C H.Apoplastic ascorbate metabolism and its role in the regulation of cell signaling[J].Current Opinion Plant Biology,2003,6:379-389.
    [34]Noctor G,Arisi A C M,Jouanin L.Manipulation of glutathione and amino acid biosynthesis in the chloroplast[J].Plant Physiology,1998,118:471-482.
    [35]Wang J,Evangelou V P.Metal tolerance aspects of plant cell wall and vacuole[A]. In: Pessarakli M.ed.Handbook of plant and crop physiology [C]. Marcel Dekker.Inc.,New York.l 995,695-717.
    [36]Iannelli M A,Pietrini F,Fiore L,et al.Antioxidant response to cadmium in Phragmites australis plants[J].Plant Physiology Biochemistry,2002,40(11):977-982.
    [37]Reddy A M,Kumar S G,et al.Lead induced changes in antioxidant metabolism of horsegram(Macrotyloma uniflorum(Lam.)Verdc.) and bengalgram (Cicer arietinum L.)[J].Chemosphere,2005,60(1):97-104.
    [38]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):70-75.
    [39]李元,王焕校,吴玉树.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    [40]常学秀,段昌群,王焕校.根分泌作用与植物对金属的抗性[J].应用生态学报,2000,11(2):315-320.
    [41]Bradhswa A D.The reconstruction of eco-system[J].Journal of Applied Ecology. 1983.20:1-17.
    [42]薛生国.湘潭锰矿矿业废弃地生态恢复技术试验研究[D].中南林学院,2002.
    [43]李杰华,辜彬,罗庆华.舟山海岛废弃采石场人工植被恢复[J].四川大学学报,2011.48(5):1179-1184.
    [44]谢荣秀.湘潭锰矿废弃地土壤退化及其植被恢复的研究[D].中南林学院,2005.
    [45]Gemeinhardt C,Miiller S,Weigand H,et al.Chemical immobilization of arsenic in contaminated soils using iron(II)sulphate-advantages and pitfalls[J].Water,Air and Soil Pollution:Focus,2006,6:281-297.
    [46]Van Herwijnen R,Hutchings T R,A1-Tabbaa A,et al.Remediation of metal contaminated soil with mineral-amended composts[J].Environmental Pollution,2007, 150:347-354.
    [47]Santona L,Castaldi P,Melis P.Evaluation of the interaction mechanisms between red muds and heavy metals[J].Journal of Hazardous Materials B,2006,136:324-329.
    [48]Liu Y,Lin C,Wu Y.Characterization of red mud derived from a combined Bayer process and bauxite calcinations method[J].Journal of Hazardous materials,2007,146: 255-261.
    [49]Phillips I R.Use of soil amendments to reduce nitrogen,phosphorus and heavy metal availability[J]. Journal of Soil Contamination,1998,7:191-212.
    [50]Zhu YG,Chen SB,Yang JC.Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui,China[J].Environmental International,2004,30:351-356.
    [51]Chen S B,Zhu Y G,Ma Y B.The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J].Journal of Hazardous Materials B,2006,134:74-79.
    [52]Brown S,Chaney R L,Hallfrish J G.et al.In situ soil treatments to reduce the phyto-and bioavailability of lead,zinc and cadmium[J].Journal of Environmental Quality,2004,33:522-531.
    [53]奚甡.世界矿产资源年评,2003-2004[M],北京:地质出版社:2004:142-152.
    [54]Patrick Leahy P. Mineral Commodity Summaries 2006[M].Washington:United States Government Printing Office,2006:96-97,190-191.
    [55]杨胜香,袁志忠,李朝阳.湘西花垣矿区土壤重金属污染及其生物有效性[J].环境科学,2012,33(5):1717-1724.
    [56]杨胜香,易浪波,刘佳.湘西花垣矿区蔬菜重金属污染现状及健康风险评价[J].农业环境科学学报,2012.31(1):17-23.
    [57]王新,周启星.土壤重金属污染生态过程、效果及修复[J].生态科学,2004,23(3):278-281.
    [58]夏汉平,蔡锡安.采矿地的生态恢复技术[J].应用生态学报,2002,13(11)1471-1477.
    [59]蓝崇钰,束文圣,孙庆业.采矿地的复垦.见:陈昌笃主编.持续发展与生态学[M].北京:中国科技出版社,1993:132-138.
    [60]鲍士旦.土壤农化分析(第3版)[M].北京:中国农业出版社,2000:25-114.
    [61]Davidson C M,Duncan A L,Littlejohn D,et al. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially contaminated land[J].Analytica Chimica Acta,1998,363:45-55.
    [62]Li J,Xie Z M,Zhu Y G. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine[J].Environmental Science,2005,17(6):881-885.
    [63]罗永清,陈银萍,陶玲兰,等州市农田土壤重金属污染评价与研究[J].甘肃农业大学学报,2011,46(1):98-104.
    [64]方晰,田大伦,谢荣秀.湘潭锰矿矿渣废弃地植被修复前的土壤诊断[J].生态学报,2006,26(5):1494-1501.
    [65]包丹丹,李恋卿,潘根兴,等.苏南某冶炼厂周边农田土壤重金属分布及风险评价[J].农业环境科学学报,2011,30(8):1046-1052.
    [66]国家环保总局.HJ/T106-2004.土壤环境监测技术规范[M].北京:中国环境科学出版社,2004.
    [67]国家环境保护局南京环境科学研究所.GB15618-1995上壤环境质量标准[S],1995.
    [68]Inaba S,Takenaka C.Effects of dissolved organic matter on toxicity and bioavailability of copper for lettuce sprouts[J].Environment International,2005,31: 603-608.
    [69]杨元根,刘丛强,张国平,等.铅锌矿区开发导致的重金属在环境介质中的积累[J].矿物岩石地球化学通报,2003,22(4):305-309.
    [70]叶霖,刘铁庚.都匀地区镉(Cd)矿资源及其远景初探[J].贵州地质,1997,14(2):160-163.
    [71]国家地质资料局.全国矿产产地资料汇编(稀有稀土分散元素):地质部分[Z].1985:205-230.
    [72]张宝贵,张忠,胡静.吉林集安铅锌矿地球化学与分散元素[J].矿物学报,2002,22(1):62-66.
    [73]薛春纪,陈毓川,杨建民,等.金顶铅锌矿地质-地球化学[J].矿床地质, 2002,21(3):270-277.
    [74]周令治,邹家炎.稀有金属近况[J].有色金属(冶炼部分),1994,(1):42-46.
    [75]庄汝礼,李金冬,张远军.湖南省花垣县李梅矿区耐子堡矿段铅锌矿初步勘探地质报告及补充报告.国家地质资料局,1987.
    [76]Johnson M S,Cooke J A,Stevenson J K W.Revegetation of metalliferous wastes and land after metal mining.In:Hester and Harrison R M eds.Mining and Its Environmental Impact.Cambridge:Royal Society of Chemistry,1994,31-48.
    [77]衣德强,尤六亿,范庆霞.梅山铁矿尾矿综合利用研究[J].矿冶工程,2006,26(2):45-47.
    [78]Ye Z H,Wong J W C,Wong M H,et al.Rvegetation of Pb/Zn mine tailings, Guangdong Province, China[J].Restoration Ecology,2000,8:87-92.
    [79]党志,刘丛强,尚爱安.矿区土壤中重金属活动性评估方法的研究进展[J].地球科学进展,2001,16(1):85-89.
    [80]吴攀,刘丛强,杨元根,等.炼锌固体废渣中重金属(Pb、Zn)的存在状态及环境影响[J].地球化学,2003,32(2):139-145.
    [81]Rajagopal,C K,et al.Relation between organic carbon and available micronutrients in the soils of the Nilgiris[J].Indian Soil Sci,Soc,1974,22(4):347-351.
    [82]马耀华,刘树应.环境土壤学[M].西安:陕西科学技术出版社,1998:198-201.
    [83]Alloway B J.Heavy metal in Soils[M].London:Blackie Academic & Professional, 1995.
    [84]Covelo E F,Vega F A,Andrade M L.Heavy metal sorption and desorption capacity of soils containing endogenous contaminants [J].Journal of hazardous materials,2007, 143:419-430.
    [85]Bolton A.Cadmium adsorption capacity of selected on tario soils[J].Can J Soil Sci,1996,2:183-187.
    [86]Salt D E,Smith R D,Raskin I.Phytoremediation[J].Annu Rev Plant Physiol Plant Mol Biol,1998,49:643-668.
    [87]McGrath S P,Zhao F J.Phytoextraction of metals and metalloids from contaminated soils [J]. Current Opinion Biotechnology,2003,14:277-282.
    [88]Baker A J M. Metal tolerance[J].New phytologist,1987,106:93-111.
    [89]骆永明.金属污染土壤的植物修复[J].土壤,1999,33(5):261-265.
    [90]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001, 21(7):1196-1203.
    [91]陈红琳,张世熔,李婷,等.汉源铅锌矿区植物对Pb和Zn的积累及耐性研究[J].农业环境科学学报,2007,26(2):505-509.
    [92]Eilu G,Obua J,Tumuhairwe J K,et al.Traditional farming and plant species diversity in agricultural landscapes of south-western Uganda[J].Agricultrue,Eeosystem and Environment,2003,99:125-134.
    [93]牛翠娟,娄安如,孙儒泳,等.基础生态学(第2版)[M].北京:高等教育出版社,2007:160-162.
    [94]Jochimsen M E.Vegetation development and species assemblages in a long-term reclamation project on mine spoil [J].Ecological Engineering,2001,17:187-198.
    [95]Gemmell R P. Colinization of industrial wasteland[M].London:Edwars Arnold, 1997:107-112.
    [96]Baker A I M.Proctor J.The influence of Cadmium.Copper,Lead and Zinc on the distribution and evolution of metalophytes in British Isles[J].Plant Systematics and Evolution,1990,173:91-108.
    [97]Kabata-Pendias A,Pendias H.Trace Elements in Soils and Plants and Edition [C]. Boca Raton,FL:CRC Press,1992.
    [98]Reeves R D,Baker A J M. Metal-accumulating plants[M]//Raskin I.Ensley B D. Phytoremdiation of Toxic Metals:Using Plants to Clean up the Environment.New York:John Wiley & Sons,2000,193-229.
    [99]Baker A J M.Brooks R R. Terrestrial higher plants which hyperacumulate metallic elements A review of their distribution.ecology and phytochemistry[J]. Biorecovery, 1989,1:81-126.
    [100]Wenzel W W,Jockwer F.Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps [J].Environmental Pollution,1999,104:.1455.
    [101]苏德纯,黄焕忠.油菜作为超积累植物修复镉污染土壤的潜力[J].中国环境科学,2002,22(1):48-51.
    [102]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)—一种新的镉超富集植物[J].科学通报.2003,48(19):2046-2049.
    [103]魏树和,周启星,SE新,等.一种新发现的镉超积累植物龙葵(Solarium nigrum L.)[J].科学通报,2004,49(24):2568-2573.
    [104]Shen Z G.,Li X D,Chen H M,et al. Lead phytoextraction from contaminated soil with high-biomass plant species[J].Journal of Environmental Quality,2002,31:1893-1900.
    [105]Stoltz E,Greger M.Accumulation prpoperties of As,Cd,Cu,Pb and Zn by four wetland plant species growing on submerged mine tailings [J].Environmental and Expermental Botany,2002,47:271-280.
    [106]聂俊华,刘秀梅,王庆仁.营养元素N、P、K对Pb超富集植物吸收能力的影响[J].农业工程学报,2004,20(5):262-265.
    [107]吴双桃,吴晓芙,胡臼利,等.铅锌冶炼厂土壤污染及重金属富集植物的研究[[J].生态环境,2004,13(2):156-157.
    [108]夏汉平,黄娟,孔国辉.油页岩废渣场的生态恢复[J].生态学报,2004,24(12):2887-2893.
    [109]Macnair M R,Smith S E,Cumbes Q J.Hereditability and copperoplis,California[J]. Heredity,1999,71:445-456.
    [110]Baker A J M. Metal tolerance[J].New Phytologist,1987,106:93-111.
    [111]Rossini S.Oliva R.Mingorance M D.Assessment of airborne heavy metal pollution by aboveground plant parts[J].Chemosphere,2006,65:177-182.
    [112]Wong M H.Ecological restoration of mine degraded soils,with emphasis on metal contaminated soils[J].Chemosphere,2003,50:775-780.
    [113]Sagner S.Kneer R,Wanner G,et al.Hyperaccumulation, complexation and distribution of Nickel in Sebertia acuminate[J].Phytochemistry,1998,47(3):339-347.
    [114]Conesa H M,Schulin R,Nowack B.A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings [J].Water and Soil pollution,2007,183:201-212.
    [115]王剑,周跃.矿区土地复垦的探讨[J].矿业工程2005,3(2):47-49.
    [116]李永庚,蒋高明.矿区废弃地生态重建研究进展[J].生态学报,2004,24(1):95-100.
    [117]姚婧,王友保,李文良,等.黑麦草对土壤中Pb的富积作用及耐受性研究[J].水土保持通报,2008,28(2):17-21.
    [118]张尧,田正贵,曹翠玲,等.黑麦草幼苗对镉耐性能力及吸收积累和细胞分布特点研究[J].农业环境科学学报,2010,29(11):2080-2086.
    [119]张蕾,李红霞,马伟芳,等.黑麦草对复合污染河道疏浚底泥修复的研究[J].农业环境科学学报,2006,25(1):107-112.
    [120]徐卫红,王宏信,王正银,等.锌、镉复合污染对重金属蓄集植物黑麦草养分吸收及锌、镉积累的影响[J].生态毒理学报,2006,1(1):70-74.
    [121]郝秀珍,周东美,钱海燕.改良剂对铜矿尾矿砂与菜园土混合土壤性质及黑麦草生长的影响[J].农村生态环境,2003,19(2):38-42.
    [122]张志良,翟伟菁.植物生理学实验指导[M].北京,高等教育出版社,2003.
    [123]Sheng X F,Xia J J.Improvement of rape(Brassica napus)plant growth and cadmium uptake by cadmium-resistant bacteria[J].Chemosphere,2006,64(6):1036-1042.
    [124]刘建新,赵国林,王毅民Cd. Zn复合胁迫对玉米幼苗膜脂过氧化和抗氧化酶系统的影响[J].农业环境科学学报,,2006,,25(1):54-58.
    [125]徐勤松,施国新,杜开和.锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系的研究[J].植物学通报,2001,18(5):597-604.
    [126]余萍中,廖柏寒,宋稳成.模拟酸雨和Zn对四季豆根与叶酶活性的影响[J].农业环境科学学报,2004,23(5):917-920.
    [127]Sreenivasulu N,Grimm B,Wobus U,et al.Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedings of foxtail millet[J].Phsiologia Plantarum.109:435-442.
    [128]Boussiba S,Richmond A E.The role of abscisic acid in cross adaptation of tobacco plants[J].Plant physiol,1975,56:337-339.
    [129]曾斌,赵鹂,朱诚,等.水稻突变体对上壤汞胁迫耐性机理的初步研究[J].浙江大学学报(农业与生命科学版),2008,34(1):57-64.
    [130]Baryla A,Carrier P,Franck F,et al.Leaf chlorosis in oilseed plants(Brassica napus)grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth[J].Planta,2001,212:696-709.
    [131]Liu N,Peng C L.Lin Z,et al.Changes in photosystem Ⅱ activity and leaf reflectance features of several subtropical woody plants under sitimulated SO2 treatment[J].Journal of Integrative Biology,2006,48(11):1274-1286.
    [132]Chiem H F.Wang J W,Lin C C,et al.Cadmium toxity of rice leaves is mediated through lipid peroxidation[J].Plant Growth Regulation,2001,33:205-213.
    [133][133] Tandy S,Bossart K,Mueller R,et al.Extraction of heavy metals from soils using biodegradable chelating agents [J].Environmental Science and Technology, 2004.38(3):937-944.
    [134]Sreenivasulu N,Grimm B,Wobus U,et al.Differential response of antioxidants to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtalmillet(Setaaria italica)[J].Physiol Plant,2000,109:435-442.
    [135]Lombardi L,Sebastiani L.Copper toxicity in Prunus cerasifera:growth and antioxidant enzymes responses of in vitro grown plants[J].Plant Science,2005,168:797-802.
    [136]Dixit V,Shyan R.Differential responses cadimium in roots and leaves of pea(Pisum sativum L. cv. Azad) [J].Journal of Experimental Botany,2001,52:1101-1109.
    [137]Sandalio L M,Dalurzo H C,Gomez M,et al.Cadimum induced changes in the growth and oxidative metabolism of pea plants [J].Journal of Experimental Botany,2001, 52:2115-2126.
    [138]王欣,刘云国,艾比布·努扎艾提,等.苎麻对镉毒害的生理耐性机制及外源精胺的缓解效果[J].农业环境科学学报,,2007,26(2):487-492.
    [139]Toppi S D L,Gabbrieili R.Response to cadmium in higher plants [J].Environmental and Experimental Botany,1999,41:105-130.
    [140]Ali M B,Vajpayee P,Tripathi R,et al.Phytoremediation of lead,nickel and copper by Salix acmophylla Boiss:role of antioxidant enzymes and antioxidant substances[J]. Bulletin of Environmental Contamination and Toxicology.2003,70:462-469.
    [141]黄铭洪,骆永明.矿区土地修复与生态修复[J].土壤学报.2003,40(2):161-169.
    [142]Hamon RE, McLaughlin MJ, Cozen G. Mechanisms of attenuation of metal availability in in situ remediation treatments[J].Environmental Science and Technology?2002,36:3991-3996.
    [143]Brown S, Christensen B, Lombi E, et al.An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb and Zn in situ[J].Environmental Pollution,2005,138:34-45.
    [144]Kumpiene J, Lagerkvist A, Maurice C.Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:A review[J].Waste Management,2008,28:215-225.
    [145]Karlsson T, Elgh-Dalgren K, Bjorn E, et al.Complexation of cadmium to sulfur and oxygen functional groups in an organic soil[J].Geochimica et Cosmochimica Acta, 2007,71:604-614.
    [146]李怡帆,罗亚红,孙剑辉.赤泥对重金属污染土壤的修复效果[J].吉林农业,2010.6:142.
    [147]纪罗军,陈强.我国磷石膏资源化利用现状及发展前景综述[J].硫磷设计与粉体工程,2006(5):5-20.
    [148]陈晓婷,王果,张潮海,等.石灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响[J].土壤与环境,2001,11(1):17-21.
    [149]Wang A S,Anglel J S,Chaney R L,et al.Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens[J].Plant and Soil,2006,281(1-2):325-337.
    [150]Peng H Y,Yang X E.Effect of Elsholtzia splendens,soil Amendments,and soil managements on Cu,Pb,Zn and Cd fractionation and solubilization in soil under field conditions[J].Bulletin of Environmental Contamination and Toxicology,2007,78(5): 384-389.
    [151]Tessier A.Campbell P G C,Bission M.Sequential extraction procedure for the speciation of particulate trace metals [J].Analytical Chemistry,979,51:844-851.
    [152]Lombi E,Zhao FJ,Wieshammer G,et al.In situ fixation of metals in soils using bauxite residue:biological effects [J]. Environmental Pollution,2002,118:445-452.
    [153]Castaldi P,Santona L,Melis P.Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth [J].Chemosphere,2005,60: 365-371.
    [154]Radwan M M,Heikal M.Hydration characteristics of tricalcium aluminate phase in mixes containing β-hemihydate and phosphogypsum[J].Cement and Concrete Research,2006,35:1601-1608.
    [155]Nurhayat Degirmenci.The using of waste phosphogypsum and natural gypsum in adobe stabilization[J].Construction and Building Materials,2008,22:1220-1224.
    [156]Lee T M,Lai H Y.Chen Z S.Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soil[J].Chemosphere,2004,57:1459-1471
    [157]廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,17(3):101-103.
    [158]陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    [159]Chen Q,Wong J W C.Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization[J]. The Science of the Total Environment, 2006,366 (2-3):448-455.
    [160]郝秀珍,周东美,钱海燕.改良剂对铜矿尾矿砂与菜园土混合土壤性质及黑麦草生长的影响[J].农村生态环境,2003,19(2):38-42.
    [161]Friesl W,Lombi E,Horak O,et al.Immobilization of heavy metals in soils using inorganic amendments in a greenhouse study[J].Journal of Plant Nutrition and Soil Science,2003,166:191-196.
    [162]Lombi E,Zhao FJ,Zhang G,et al.In situ fixation of metals in soils using bauxite residue:chemical assessment[J].Environmental Pollution.2002,118:435-443.
    [163]温丽,傅大放.两种强化措施辅助黑麦草修复重金属污染土壤[J].中国环境科学,2008,28(9):786-79.
    [164]杜瑞英,柏珺,王诗忠,等.多金属污染土壤中微生物群落功能对麻疯树-化学联合修复的响应[J].环境科学学报,,2011,31(3):575-582.
    [165]Lee S H,Lee J S,Choi Y J,et al.In situ stabilization of cadmium-,lead-,and zinc-contaminated soil using various amendments[J].Chemosphere,2009,77:1069-1075.
    [166]Brown S,Sprenger M,Maxemchuk A,et al.Ecosystem function in alluvial tailing after bio-solids and lime addition[J].Journal of Environmental Quality,2005,34:139-148.
    [167]Leitgib L,Kalman J,Gruiz K.Comparison of bioassays by testing whole soil and their water extract from contaminated sites [J].Chemosphere,2007,66:428-434.
    [168]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [169]吴金水.上壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [170]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63.
    [171]和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J].土壤与环境,,2000,9(2):139-142.
    [172]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [173]许光辉,李振高.微生物生态学[M].南京:东南大学出版社,1991.
    [174]束文圣,蓝崇饪,张志权.凡口铅锌尾矿影响植物定居的主要因素分析[J].应用生态学报,1997,8(3):314-318.
    [175]陈怀满,郑春荣,周东美,等.德兴铜矿尾矿库植被重建后的土壤肥力状况和重金属污染初探[J].土壤学报,2005,42(1):29-38.
    [176]Shu W S,Zhang Z Q,Huang L N,et al.Use of tolerant population of P. distichum for revegetation of a Pb/Zn mine tailings at Le-chang:field experimen[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2000,39(4):94-98.
    [177]董长勋,熊建军,李园.土壤微团聚体基本性质及其对重金属吸附的研究进展[J].土壤通报,2009,40(4):972-976.
    [178]Giovanni G.Paola C.Laura S,et al.Influence of red mud,zeolite and lime on heavy metal immobilization,culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J].Geoderma,2007,142:47-57.
    [179]刘艳,罗琳,罗惠莉,等.赤泥颗粒对韭菜吸收污染土壤中铅锌的抑制效果研究[J].农业环境科学学报,2011,30(2):289-294.
    [180]范美蓉,罗琳,廖育林,等.赤泥施用量对Cd污染稻田水稻产量和土壤生物性状的影响[J].水土保持学报,2011,25(6):181-185.
    [181]杨红飞,严密,姚婧.铜、锌污染对油菜生长和土壤酶活性的影响[J].应用生态学报,2007,18(7):1484-1490.
    [182]Adriano D C,Wenzel W W,Vangronsveld J,et al.Role of the assisted natural remediation in environmental cleanup[J].Geoderma,2004,122:121-142.
    [183]Perez-de-Mora A,Burgos P,Madejon E,et al.Microbial community structure and function in a soil contaminated by heavy metals:effects of plant growth and different amendments[J].Soil Biology & Biochemistry,2006,38:327-341.
    [184]Chiu K K,Ye Z H,Wong M H.Growth of Vetiveria zizanioides and Phragmities australis on Pb/Zn and Cu mine tailings amended with manure compost and sewage sludge:A greenhouse Study[J]. Bioresource Technology,2006,97(1):158-170.
    [185]Clemente R,Almela C,Bernal M P.A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste[J].Environmental Pollution,2006,143:397-406.
    [186]Rittmann E B.Definition.objectives and evaluation of natural attenuation[J]. Biodegradation,2004,15:349-357.
    [187]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤.2000,32(3):130-134,
    [188]姚斌,汪海珍,徐建民,等.除草剂对水稻土微生物的影响[J].环境科学学报,2004,,24(2):349-354.
    [189]Merey M C,Paschke M W,Mclendon T,et al.Decteases in soil microbial function and functional diversity in response to depleted uranium[J] Journal of environmental quality,1998,27:1306-1311.
    [190]Clemente R,Walker D J,Bernal M P.Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcllar (Spain):The effect of soil amendments[J].Environmental Pollution,2005,138:46-58.
    [191]Jenkinson D S.Determination of microbial carbon and nitrogen in soil[A]. In:J.B.Whilson.Ed. Advances in Nitrogen Cycling in Agriculture Ecosystem[C]. International,Wallingford,UK.1988,368-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700